
Features 293
Basic Models and Configuration 295
110 Series
Specifications 297
Cylinder Operating Speed and Flow Rate 299
Tandem Solenoid Valve Order Codes 300
Solenoid Valve，Air－piloted Valve Order Codes 301
Manifold Order Codes 302
Operating Principles and Symbols，Major Parts and Materials 303
Dimensions of Solenoid Valve 304
Dimensions of Manifold 309
Made to Order 315
Plug Connector
DIN Connector
LED Indicator
Built－in Interface Unit
Air－piloted Valves 110 Series
Handling Instructions and Precautions 321
PC Board Manifold 110 Series
Specifications 323
Order Codes 324
Dimensions 325
Handling Instructions and Precautions 328

110 Series Solenoid Valve, Air-piloted Valve Order Codes

Notes: 1. They cannot be used as single units.
2. The port fittings are for ϕ 4: TSK4-M8M, and for $\phi 6$: TSK6-M8M.
Additional Parts (To be ordered separately)
Speed controller

For direct piping For sub-base piping

Muffler

Notes: 3. Side mounting of valve is not possible when -J41, -J42, -J43, -J61, -J62, or -J63 is selected, because in these cases there are no mounting holes on the valve side surface.
4. Mounting on the manifold only is possible when -J42 or -J62 is selected for the $110-4 \mathrm{E} 2$ or $113-4 \mathrm{E} 2$, because in these cases they do not have mounting holes.

Mounting base

Block-off plate

$\square \mathrm{M} \square$-BP
F - For F type manifold
110-For $110 \mathrm{M} \quad$ A - For A type, AJ type manifolds

Made to Order The 110 series includes made to order items of various kinds for further system development.

Air－piloted valves 110 series

The ideal air valve for master valves or pilot valves for total pneumatic control．

		For direct piping， F type manifold	For sub－base，A，AJ type manifolds
Specifications Basic model		110－4A，110－4A2	A110－4A，A110－4A2
Single valve		4.2 ［0．23］	4.0 ［0．22］
Built－in quick fit－ ting for $\phi 4$ tube	$-\mathrm{J} 42_{\text {with }}^{4(\mathrm{~A}), 2 \text { fitings }}$ ports	3.6 ［0．20］	$3.6[0.20]_{\text {manifold with }}^{\text {(When }} \text { - } 4 \text { specification) }$
	$\begin{array}{\|l\|l\|l\|} \hline 1(\mathrm{P}), 4(\mathrm{~A}), 2(\mathrm{~B}) \\ \text { ports with fitings } \end{array}$		－
Built－in quick fit－ ting for $\phi 6$ tube	$-J 62_{\text {with }}^{4(A), 2(B) \text { fitings ports }}$	－	$4.0[0.22]_{\text {manifold with }-\mathrm{J4} \text { specification) }}^{\text {(When mounte }} \text { mand tye }$
	$-\mathrm{J} 63_{\text {ports }}^{1(\mathrm{P}), 4(\mathrm{At}), 2(\mathrm{~B})}$	－	－
Remarks		Attaching TS4－M5 to the $1(\mathrm{P}), 4(\mathrm{~A})$ ， $2(B)$ ports gives the value $1.8(0.1)$ ． On the Ftype manifold，attaching TS4－M5 to the $4(\mathrm{~A}), 2(\mathrm{~B})$ ports gives the value 2.1 （ 0.12 ）． When large flow rates are required， we recommend the built－in quick fittings．	Attaching TS4－01 to the $1(\mathrm{P}), 4(\mathrm{~A})$ ， 2（B）ports on the sub－base（－25） gives the value 3.2 （0．18）．

Specifications

	For direct piping，F type manifold		For sub－base，A，AJ type manifolds	
	Single pilot	Double pilot	Single pilot	Double pilot
	110－4A	110－4A2	A110－4A	A110－4A2
Media	Air			
Operation type	Air－piloted type			
Number of positions and ports	2 positions， 5 ports			
Effective area［ Cv ］ mm^{2}	4.2 ［0．23］Note 1			
	M $5 \times 0.8{ }^{\text {Note } 2}$		－Note 2	
Port size	M5×0．8			
Lubrication	Not required			
Operating pressure range Main 	$\begin{gathered} 0.15 \sim 0.7\{1.5 \sim 7.1\} \\ {[22 \sim 102]} \end{gathered}$	$\begin{gathered} 0 \sim 0.7\{0 \sim 7.1\} \\ {[0 \sim 102]} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.15 \sim 0.7\{1.5 \sim 7.1\} \\ {[2 \sim \sim 102]} \end{array}$	$\begin{gathered} 0 \sim 0.7\{0 \sim 7.1\} \\ {[0 \sim 102]} \end{gathered}$
MPa \｛kgf／cm\} [psi.] ${ }^{\text {a }}$ Pilot	See the table＂Minimum Pilot Pressure＂			
Proot pressure MPa akgi／m²］［psi．］	1.05 \｛10．7 \} [152]			
Operating temperature range （amosphere and media）${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$	$5 \sim 60$［41～140］			
Shock resistance $\mathrm{m} / \mathrm{s}^{2}\{\mathrm{G}\}$	1373.0 \｛140．0\} (Axial direction 294.2 \｛30．0\})			
Mounting direction	Any			
Maximum operaing frequency Hz	5			
Mass g［oz．］	40 ［1．41］	45 ［1．59］	$45[1.59)$（1400［1．44］${ }^{\text {Wex } 3}$	$50[1.76]^{(1455[.111)}$

Notes：1．For details，see the effective area．
2．For details，see the port size．
3．Figures in parentheses（ ）are the mass with sub－plate：－25．
※ For optional specifications and order codes，see p．301～302．

Manifold Specifications and Port Size

Manifold model	Specifications	Port		Port size
F type	P, R manifold piping A, B valve piping	1（P）		Rc1／8
		4（A）		M5 $\times 0.8$ or quick fitting（Valve order code：－J42）
		3（R2		Rc1／8
A type	All ports manifold piping			Rc1／8
		4（A）		Rc1／8
				Rc1／4
AJ type	A，B ports built－in quick fittings All ports manifold piping			Rc1／8
		4（A）2（B）	－J4	Quick fitting for $\phi 4$ tube
		4（A），2（B）	－J6	Quick fitting for $\phi 6$ tube
				Rc1／4

※ For optional specifications and order codes，see p．302．

Manifold Mass

g［oz．］

Manifold model		Mass calculation of each unit （ $n=$ number of units）	Mounting valve				
		110－4A	110－4A2	A110－4A	A110－4A2		
F type			$(20 \mathrm{Xn})+30\left[\left(0.71 \mathrm{Xn}_{\text {n }}\right)+1.06\right]$	40 ［1．41］	45 ［1．59］	－	－
A type		$\left(60 \mathrm{Xn}^{\prime}\right)+60[(2.12 \mathrm{Xn})+2.12]$	－	－	45 ［1．59］	50 ［1．76］	
AJ type	－J4	$(67 \times n)+60[(2.36 \times \mathrm{Xn})+2.12]$					
	－J6	$\left(64 \mathrm{Xn}^{\prime}\right)+60\left[\left(2.26 \mathrm{Xn}^{\prime}\right)+2.12\right]$					

Calculation example：The mass of 110M 10F stn．1～5 110－4A，stn．6～10 110－4A2 becomes $(20 \times 10)+30+(40 \times 5)+(45 \times 5)=655 \mathrm{~g}$［23．10 oz．］
becomes $(20 \times 10)+30+(40 \times 5)+(45 \times 5)=655 \mathrm{~g}[23.10 \mathrm{oz}$ ．］

Port Size

Specifi－cations Port		For direct piping，	A，Aot trpe manaifolds	Remarks
		$\begin{aligned} & 110-4 \mathrm{~A} \\ & 110-4 \mathrm{~A} 2 \end{aligned}$	$\begin{aligned} & \text { A110-4A } \\ & \text { A110-4A2 } \end{aligned}$	
Female thread	1（P）	M5×0．8	－	Standard
	4（A），2（B）			
	3（R2），5（R1）			
Built－in quick fitting	1（P）	M5×0．8	－	－Straight type －For $\phi 4$ tube －For both nylon tubes and urethane tubes
	4（A），2（B）	Built－in quick fitting		
	3（R2），5（R1）	M5 $\times 0.8$		
	1（P）	Built－in quick		
	4（A），2（B）	fitting		
	3（R2），5（R1）	M5×0．8		
$\begin{aligned} & \text { Sub-base } \\ & -25 \end{aligned}$	1（P）		Rc1／8	All ports sub－base piping
	4（A），2（B）	－		
	3（R2），5（R1）			
F type manifold	1（P）	Rc1／8	－	1（P），3（R2），5（R1） manifold， 4（A），2（B）valve piping
	4（A），2（B）	M5 X 0.8 or quick fiting		
	3（R2），5（R1）	Rc1／8		
A type manifold	1（P）	－	Rc1／8	－All ports manifold piping
	4（A），2（B）			
	3，5（R）		Rc1／4	
AJ type manifold	1（P）	－	Rc1／4	All ports manifold piping 4（A），2（B）ports －J4 ：For $\phi 4$ tube －J6 ：For $\phi 6$ tube
			Built－in quick fitting	
			Built－in quick fitting	
	3，5（R）		Rc1／4	

Minimum Pi	ot Pres	re	MPa $\left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\}$［psi．］	
Main pressure Model	0.15 \｛1．5\} [22]	0.3 \｛3．0\} [44]	0.5 \｛5．1\} [73]	0.7 \｛7．1\} [102]
110－4A	0.15 \｛1．5\} [22]	0.25 \｛2．5\} [36]	$0.34\{3.5\}$［49］	0.45 \｛4．5\} [65]
110－4A2	0.08 \｛0．8\} [12]	0.10 \｛1．0\} [15]	0.12 \｛1．2\} [17]	0.14 \｛1．4\} [20]

Required Time for Switching

Model	Operation	Pilot line length L m［ft．］						Measurement circuit	Measurement conditions
		2 ［6．6］	6 ［19．7］	10 ［32．8］	20 ［65．6］	50 ［163．9］	100 ［327．8］		
110－4A	ON	0.06	0.14	0.26	0.63	2.30	6.54	Piot vave＇tichertipug）！	－Pilot valve＝050－4E1（effective area1．2mm ${ }^{2}$〔Cv：0．067〕） －Tube inner diameter $=4 \mathrm{~mm}$［0．16in．］ －Air pressure（both main and pilot）$=0.5 \mathrm{MPa}$ ［73psi．］
	OFF	0.12	0.33	0.67	1.65	6.30	19.50	－－	
A110－4A2	ON	0.07	0.16	0.29	0.70	2.66	7.40		

Cylinder Operating Speed and Flow Rate

110-4A

- Measurement conditions
- Air pressure : $0.5 \mathrm{MPa}\left\{5.1 \mathrm{kgf} / \mathrm{cm}^{2}\right\}$ [73psi.]
-Piping inner diameter and length: $\phi 2.5$ [0.10in.] $\times 1000 \mathrm{~mm}$ [39in.]
Fitting: Quick fitting TS4-M
- Load ratio $=\frac{\text { Load }}{\text { Cylinder theoretical thrust }}(\%)$
- Cylinder stroke:150mm [5.91in.]

Maximum operating speed

A110-4A-25

- Measurement conditions
- Air pressure : $0.5 \mathrm{MPa}\left\{5.1 \mathrm{kgf} / \mathrm{cm}^{2}\right\}[73 \mathrm{psi}$.
-Piping inner diameter and length : $\phi 4[0.16$ in $] \times 1000 \mathrm{~mm}[39 \mathrm{in}$.
-Fitting : Quick fitting TS6-01
- Load ratio $=\frac{\text { Load }}{\text { Cylinder theoretical thrust }}(\%)$
- Cylinder stroke: 150 mm [5.91in.]

Maximum operating speed

Flow rate

$1 \mathrm{MPa}=145 \mathrm{psi} ., 1 \ell / \mathrm{min}=0.0353 \mathrm{ft} / \mathrm{min}$.

How to read the graph

When the supply pressure is $0.5 \mathrm{MPa}[73 \mathrm{psi}$.] and the flow rate is $210 \ell / \mathrm{min}[7.41 \mathrm{ft} 3 / \mathrm{min}$.] (ANR), the valve outlet pressure becomes 0.4 MPa [58psi.]

Operating Principles and Major Parts
5-port, 2-position

Major Parts and Materials

Parts	Materials
Body	Aluminum alloy (anodized)
Stem	Synthetic rubber
Lip seal	Mild steel (zinc plated)
Mounting base	Aluminum alloy (anodized)
Sub-base	

110-4A2

Options

Mounting base : -21

With quick fittings: -J42 (For $\phi 4$ tube, 4(A), 2(B) ports with fittings)
-J43 (For $\phi 4$ tube, 1(P), 4(A), 2(B) ports with fittings -J62 (For $\phi 6$ tube, 4(A), 2(B) ports with fittings) -J63 (For $\phi 6$ tube, 1(P), 4(A), 2(B) ports with fittings) The drawing shows the -J43 specification.

Speed controller : -70

Muffler : -75

A110-4A

A110-4A2

Options

Sub-base : -25

-Speed controller : -70

Handling Instructions and Precautions

Solenoid

Internal circuit

-DC12V, DC24V

Standard solenoid (Surge suppression)

(2) and (3) are for with DIN connector (Order code: -39).

Solenoid with LED indicator
(Surge suppression)
Order code: -PSL, -PLL

- AC100V, AC200V

Standard solenoid (Surge suppression)

-DC24V
Tandem solenoid

Cautions: 1. Do not apply megger between the lead wires.
2. The DC solenoid will not short circuit even if the wrong polarity is applied, but the valve will not operate.
3. Leakage current inside the circuit could result in failure of the solenoid valve to return, or in other erratic operation. Always use it within the range of the allowable leakage current. If circuit conditions, etc. cause the leakage current to exceed the allowable leakage current, consult us.
4. For double solenoid and twin solenoid, avoid energizing both solenoids simultaneously. The valve could fall into a neutral position.

Plug connector

Attaching and removing plug connector

Use fingers to insert the connector into the pin, push it in until the lever claw latches onto the protruded section of the connector housing, and complete the connection.
To remove the connector, squeeze the lever along with the connector, lift the lever claw up from the protruded section of the connector housing, and pull it out.

※Illustration shows the 110 series.

Crimping of connecting lead wire and contact

To crimp lead wires into contacts, strip off 4 mm [0.16in.] of the insulation from the end of the lead wire, insert it into the contact, and crimp it. Be sure to avoid catching the insulation on the exposed wire crimping section.

Cautions: 1. Do not pull hard on the lead wire.
2. Always use a dedicated tool for crimping of connecting lead wire and contact.
Contact: Model 702062-2M Manufactured by Sumiko Tech, Inc.
Crimping tool: Model F1-702062 Manufactured by Sumiko Tech, Inc.

Attaching and removing contact and connector

Insert the contact with a lead wire into a plug connector \square hole until the contact hook latches on the connector and is secured to the plug connector. Confirm that the lead wire cannot be easily pulled out.
To remove it, insert a tool with a fine tip (such as a small screwdriver) into the rectangular hole on the side of the plug connector to push up on the hook, and then pull out the lead wire.

Cautions: 1. Do not pull hard on the lead wire.lt could result in defective contacts, breaking wires, etc.
2. If the pin is bent, use a small screwdriver, etc. to gently straighten out the pin, and then complete the connection to the plug connector.

Common terminal pre-wired plug connector

1. Pre-wired common terminal at DC positive side or AC.
Order code With straight connector: -CPSL
With L connector: -CPLL

2. Pre-wired common terminal at DC negative side
Order code With straight connector: -CMSL
With L connector: -CMLL

Cautions: 1. The diagrams show the straight connector configuration.
While the connector's orientation is different in the case of the L connector, in every case the first COM lead wire comes from the last station's mounted valve.
2. Since the COM terminal is connected to a crossover terminal inside the connector housing, the connector cannot be switched between a positive common and a negative common by changing the connectors.

Manual override

Non-locking type

To operate the manual override, press it all the way down. The single solenoid valve works the same as when in the energized state as long as the manual override is pushed down, and returns to the normal position upon release.
For the double solenoid and twin solenoid valves, pressing the manual override on the 12(S1) side switches the 12(S1) to enter the energized position, and the unit remains in that state even after the manual override is released. To return it to the normal position, operate the manual override on the $14(\mathrm{~S} 2)$ side. This is the same for the solenoid 14(S2).

Locking protruding type

Use a small screwdriver to turn the adjusting knob several times in the clockwise direction, and lock the manual override in place. When locked, turning the adjusting knob several times in the counterclockwise direction releases a spring on the manual override, returns it to the normal position, and releases the lock.
For the locking protruding type, when the adjusting knob is not turned, this type acts just like the non-locking type, like the valve is the energized position as long as the manual override is pushed down, and it returns to the normal position upon release.

Cautions: 1. The 110 series valves are internal pilot type solenoid valves. As a result, the manual override cannot switch the main valve without air supplied from the 1(P) port.
2. Always release the lock of the locking type and locking protruding type manual override before commencing normal operation.
3. Do not attempt to operate the manual override with a pin or other object having an extremely fine tip. It could damage the manual override button.
4. Do not turn the adjusting knob more than needed. It could result in defective operation.

Manual override (Tandem solenoid)

Locking type

To lock the locking type manual override, use a small screwdriver to push down the manual override in all the way, then set the 0 position as the reference point and turn it in the clockwise direction as far as position A. This achieves the same conditions as when the $14(\mathrm{SA})$ side is energized, and the manual override is locked in place. For the $12(\mathrm{SB})$ side, turn it in the counterclockwise direction as far as position B. To release the lock, return the manual override to the 0 position. A spring mechanism returns the manual override to its normal position, and the lock is released. Care should be taken to avoid excessive turning of the manual override, which could damage it.

Locking protruding type, locking manual lever type
To lock the locking protruding type manual override or locking manual lever type, use either a small screwdriver or your fingertips to push the manual override button (manual lever) all the way down, then set the 0 position as the reference point and turn it in the clockwise direction as far as position A. This achieves the same conditions as when the 14(SA) side is energized, and the manual override button (manual lever) is locked in place. For the 12(SB) side, turn it in the counterclockwise direction as far as position B . To release the lock, return the manual override button (manual lever) to the 0 position. A spring mechanism returns the manual override button (manual lever) to its normal position, and the lock is released. Care should be taken to avoid excessive turning of the manual override button (manual lever), which could damage it.

Locking protruding type manual override

Locking manual lever type

Mounting base 110-21

When installing a mounting base to the valve, always use the provided screws. The recommended tightening torque for the screws is $49 \mathrm{~N} \cdot \mathrm{~cm}\{5 \mathrm{~kg} \cdot \mathrm{~cm}\}[4.3 \mathrm{in} \cdot \mathrm{lbf}]$.

Mounting valves on manifold

When mounting valves on manifold, apply the recommended tightening torque of $39.2 \mathrm{~N} \cdot \mathrm{~cm}\{4 \mathrm{kgf} \cdot \mathrm{cm}\}$ [$3.5 \mathrm{in} \cdot \mathrm{lbf}$] for the valve mounting screws.

Solenoid

Circuit configurations

For positive common type (standard) Operation example

Correspondence to sequencer
Output module is negative common type.

-For negative common type (optional: -CM)
Operation example

Correspondence to sequencer
Output module is positive common type.

Plug connector

Attaching and removing plug connector

Use fingers to insert the connector into the pin, push it in until the lever claw latches onto the protruded section of the connector housing, and complete the connection.
To remove the connector, squeeze the lever along with the connector, lift the lever claw up from the protruded section of the connector housing, and pull it out.

Cautions: 1. Do not pull hard on the lead wire.It could result in defective contacts, breaking wires, etc.
2. If the pin is bent, use a small screwdriver, etc. to gently straighten out the pin, and then complete the connection to the plug connector.

Connector for flat cable

Manifold

Print circuit board

Avoid using in the locations listed below, as it may result in deterioration of the print circuit board or a short circuit in the wiring. If use in such conditions is unavoidable, always provide a cover or other adequate protective measures.

1. Locations subject to high levels of dust or oil mists
2. Locations subject to salt, corrosive gases, or conductive particles
3. Locations directly subject to condensation, direct sunlight, or other weather effects

Combination mounting for different type of valves

In the 110 series manifold for combination mounting of 2-, 3-, 5-port, and the PC board manifold for combination mounting of 2-, 3-, 5port, single solenoids can be mounted together with double solenoids, or with twin solenoids, and a total number of up to 8 or 16 solenoids can be mounted.
In this case, observe the following precautions:

1. Always use a block-off plate (-BP) to close the next right station (the side with the higher numbered station) of the double solenoid valve mounting station.
2. When using block-off plates (-BP) for some reason other than item 1, place them together on the higher numbered stations side.
3. Connector pin numbers are allocated to stations in order from the left end of the manifold. For a double solenoid mounting, the upper pins are allocated to 14(S2) and the lower ones to 12(S1), with the upper 14(S2) numbers being the smaller pin numbers. And for a twin solenoid mounting, the left side is allocated to $14(\mathrm{~S} 2)$ and the right side allocated to 12(S1), with the left side 14(S2) numbers being the smaller pin numbers.

Example of 4 single solenoid valves and 2 double solenoid valves installation on an 8 unit manifold:

Connector pin location of 8 units:

Remark: The standard is positive common wiring Negative common wiring is optional (-CM).

Example of 3 single solenoid valves and 2 double solenoid valves installation on an 8 unit manifold:

Connector pin location of 8 units:

Remark: The standard is positive common wiring Negative common wiring is optional (-CM).

