MEMBRANE AIR DRYERS Using Hollow Fiber Membranes to Dehumidify Compressed Air.

- No freon, no power supply
 Freon-free air dryer uses hollow fiber membranes for a gentle touch on the global environment.
 A power supply is unnecessary.

- No vibrations, no heat emissions, long service life
 No mechanical moving parts means no vibration and no heat emissions, for longer operating life.

- With dew point indicator
 Dew point indicator allows condensation check.

- No drain media
 The extracted moisture is emitted as water vapor, preventing drain media problems.

- Compact, lightweight
 Compact, lightweight body occupies 1/5th the installation space and less than 1/10th the mass (compared to Koganei refrigerating type air dryer).

Application example

- Dehumidification of air source for precision equipment
 - Air bearings
 - Laser processing machine
 - Electrical discharge machine
 - Slicers, etc.
- Supply of dry air for precision measurement instruments
- Supply of dry air for semiconductor devices
- Supply of dry air for packaging equipment and printers
- Air control at airline ends

Dehumidification Principles

Compressed air (moist air) is supplied on the inside of the hollow fiber membrane, while purged air (dry air) is supplied on the outside, creating a water vapor pressure differential between the inside and outside that allows water vapor contained in the compressed air to penetrate into the membrane, where it is exhausted to the outside alongside the purged air, in a continuous dehumidification process.

Order Codes

<table>
<thead>
<tr>
<th>KRM</th>
<th>Air dryer size</th>
<th>Standard dry air flow rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>Standard dry air flow rate</td>
<td>50 l/min [1.77 ft³/min.] (ANR)</td>
</tr>
<tr>
<td>1</td>
<td>Standard dry air flow rate</td>
<td>100 l/min [3.53 ft³/min.] (ANR)</td>
</tr>
<tr>
<td>3</td>
<td>Standard dry air flow rate</td>
<td>300 l/min [10.6 ft³/min.] (ANR)</td>
</tr>
</tbody>
</table>

Additional part

Dew point indicator use paper — IN-KRM

Caution: Always install a micro mist filter upstream of the membrane air dryer for use. For the order code, see p.213, “Membrane Air Dryer System Diagrams.”
Operating pressure range MPa [psi.] 0.2 ~ 0.83 [29 ~ 120]
Ambient temperature °C [°F] 5 ~ 55 [41 ~ 131]
Supply air temperature °C [°F] 28 [82.4]
Supply air pressure MPa [psi.] 0.69 [100]
Purged air flow rate R/min [ft.³/min.] (ANR) 13 [0.46] 25 [0.88] (13 [0.46])
Dry air dew point °C [°F] -26 ~ -10 [-14.8 ~ -14] 25 [0.88]

Relationship Between Operating Conditions and Dry Air Dew Point

The air dryness increases with higher air pressure, lower temperature, and less flow rate. Larger purged air flow rate also boosts air dryness.

Supply Air Pressure and Purged Air Flow Rate

When the purged air flow rate is large, the purged air flow rate can be cut almost in half by switching to the orifice provided. In this case, the dew point will rise slightly.

Types of orifice

<table>
<thead>
<tr>
<th>Model</th>
<th>Orifice A</th>
<th>Orifice B</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRM-05</td>
<td>Orifice B</td>
<td>Orifice C</td>
</tr>
<tr>
<td>KRM-1</td>
<td>Orifice C</td>
<td>Orifice D</td>
</tr>
<tr>
<td>KRM-3</td>
<td>Orifice A</td>
<td>Orifice B</td>
</tr>
</tbody>
</table>

Dimensions (mm)

Cap for changing of orifice
IN OUT
Dry air outlet
Bracket mounting thread
KRM-05, KRM-1 (M4×0.7, Depth 8), KRM-3 (M5×0.8, Depth 10)

KRM-05, KRM-1 (Rc1/4), KRM-3 (Rc1/2)

Note: If discharging purged air into the area immediately surrounding the membrane air dryer is unacceptable, connect the purged air discharge piping. When the piping is connected, the discharge from the purged air outlet will cease.
Dry Air Flow Rate, Dry Air Dew Point, and Pressure Loss

- **Supply air: At 0.3MPa [44psi.] (saturation at 28°C [82.4°F])**

- **Supply air: At 0.5MPa [73psi.] (saturation at 28°C [82.4°F])**

- **Supply air: At 0.7MPa [102psi.] (saturation at 28°C [82.4°F])**

Remark: The dry air dew point can change, depending on the purged air volume. Replacement of the orifice inside the membrane air dryer body will change the purged air volume (KRM-1, KRM-3 only).

\[F = \frac{9C}{5} + 32, \text{ ft}^3/\min \times \text{pressure} = 0.0353 \text{ ft}^3/\min \times 145 \text{ psi} = 1 \text{ MPa} \]

Dew Point and Relative Humidity Conversion Table

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative humidity %</td>
<td></td>
</tr>
<tr>
<td>Air temperature 10°C [50°F]</td>
<td>100</td>
<td>71</td>
<td>50</td>
<td>33</td>
<td>21</td>
<td>13</td>
<td>8.4</td>
<td>5.1</td>
<td>3.1</td>
<td>1.8</td>
<td>1.0</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air temperature 20°C [68°F]</td>
<td>100</td>
<td>73</td>
<td>52</td>
<td>37</td>
<td>26</td>
<td>17</td>
<td>11</td>
<td>7.1</td>
<td>4.4</td>
<td>2.7</td>
<td>1.6</td>
<td>1.0</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air temperature 30°C [86°F]</td>
<td>100</td>
<td>75</td>
<td>55</td>
<td>40</td>
<td>29</td>
<td>21</td>
<td>14</td>
<td>9.5</td>
<td>6.1</td>
<td>3.9</td>
<td>2.4</td>
<td>1.5</td>
<td>0.89</td>
<td>0.52</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Model Selection on Dry Air Flow Rate

How to select the most suitable model

Selection formula

$\text{Standard dry air flow rate} > \text{Pressure correction coefficient} \times \text{Temperature correction coefficient} \times \text{Dew point correction coefficient}$

If the dry air flow rate is 20 ℓ/min [0.706 ft³/min] (ANR) or less, certain conditions may prevent some models from being selected. Consult us.

Selection example 1

Conditions
- Dry air flow rate: 100 ℓ/min (ANR)
- Supply air pressure: 0.5MPa
- Supply air temperature: 35°C
- Dry air dew point: −10°C

\[
100 \div 0.45 \times 0.6 \times 2.2 = 168
\]

Using the Standard Dry Air Flow Volume and Orifice Table, 168 ℓ/min (ANR) is satisfied by KRM-3 (Orifice B), due to its standard dry air flow rate of 240 ℓ/min (ANR).

Selection example 2

Conditions
- Dry air flow rate: 50 ℓ/min (ANR)
- Supply air pressure: 0.7MPa
- Supply air temperature: 35°C
- Dry air dew point: −10°C

\[
50 \div 1.0 \times 0.6 \times 2.2 = 38
\]

Using the Standard Dry Air Flow Volume and Orifice Table, 38 ℓ/min (ANR) is satisfied by KRM-05 (Orifice D), due to its standard dry air flow rate of 50 ℓ/min (ANR).

Standard Dry Air Flow Rate and Orifice Table

<table>
<thead>
<tr>
<th>Model</th>
<th>KRM-05</th>
<th>KRM-1</th>
<th>KRM-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard dry air flow rate ℓ/min [ft³/min] (ANR)</td>
<td>50 [1.77]</td>
<td>80 [2.82]</td>
<td>240 [8.47]</td>
</tr>
<tr>
<td>Orifice</td>
<td>Orifice D</td>
<td>Orifice D</td>
<td>Orifice C</td>
</tr>
</tbody>
</table>

Coefficient Tables

1. Supply air pressure correction coefficient table

| Supply air pressure MPa [psi] | 0.2 [29] | 0.29 [42] | 0.39 [57] | 0.49 [71] | 0.59 [86] | 0.69 [100] | 0.78 [113] |
| Correction coefficient | 0.05 | 0.14 | 0.27 | 0.45 | 0.70 | 1.0 | 1.4 |

2. Supply air temperature correction coefficient table

| Correction coefficient | 7.6 | 5.3 | 3.7 | 2.6 | 1.8 | 1.2 | 1.0 | 0.9 | 0.6 | 0.42 | 0.30 | 0.21 | 0.14 |

3. Dry air dew point correction coefficient table

| Correction coefficient | 0.22 | 0.4 | 0.7 | 1.0 | 1.3 | 2.2 | 4.0 | 7.1 | 12.5 | 22 |

F = 9C/5 + 32, 1 ℓ/min = 0.0353 ft³/min, 1MPa = 145psi.
Membrane Air Dryer System Diagrams (Reference)

Caution: Always mount an air filter (5 μm) and micro mist filter (0.01 μm) upstream of the membrane air dryer for use.

<table>
<thead>
<tr>
<th>Air filter (5 μm)</th>
<th>Connection module</th>
<th>Micro mist filter (0.01 μm)</th>
<th>Connection module</th>
<th>Membrane air dryer</th>
<th>Connection module</th>
<th>Regulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRM-05</td>
<td>F150-02</td>
<td>8-20D</td>
<td>MMF150-02-A</td>
<td>8-30F</td>
<td>KRM-05</td>
<td>8-20D</td>
</tr>
<tr>
<td>KRM-1</td>
<td></td>
<td></td>
<td></td>
<td>KRM-1</td>
<td></td>
<td>R150-02</td>
</tr>
<tr>
<td>KRM-3</td>
<td>F300-03-A</td>
<td>8-40D</td>
<td>MMF300-04-A</td>
<td>8-60F</td>
<td>KRM-3</td>
<td>8-40D</td>
</tr>
</tbody>
</table>

“A” denotes the absolute minimum system.
Note: Some models without an auto drain are available. To order such models, remove “A” from the order code.

Handling Instructions and Precautions

1. Install in locations where the supply air and ambient temperature is 40°C [104°F] or less (for KRM-05, 55°C [131°F] or less).
2. If connecting piping to the air compressor outlet port, use air that has passed through an aftercooler to cool the temperature at 40°C [104°F] or below, then install a filter and micro mist filter to prevent intrusion of oil mist to the membrane air dryer.
3. The membrane air dryer cannot operate on its own to remove water vapor or collected liquid.
 If water vapor or collected liquid is intruding, use a filter and micro mist filter.
4. For the mounting method, install vertically with the piping connection part on the top.
 In addition, leave a space to facilitate maintenance.
 (minimum of 100mm [3.94in.] from the floor)
5. The membrane air dryer discharges constant purged air from the purged air outlet.
 If discharging purged air into the area immediately surrounding the membrane air dryer is unacceptable, remove the cover of the purged air piping port and plumb piping for the purged air discharge. When the piping is plumbed, the discharge from the purged air outlet will cease.
 If using piping connection fittings 8-30F or 8-60F to connect the micromist filter and membrane air dryer, screw in the quick fitting first before making the connection. The quick fitting cannot be screwed in after the connection is completed because of interference with the micro mist filter.

Recommended fittings
KRM-05: SLH6-01
KRM-1: SLH6-01
KRM-3: SLH10-02

Mounting and piping

1. Check the color of the indicator during the daily inspections.
 Blue means that the situation is normal.
 If the outlet dew point is rising, the color will change to pink or white.
 In such a situation, see the instruction manual provided with the product, under “Causes of Breakdowns and Abnormalities, and Countermeasures.”

General precautions

1. Always thoroughly blow off (use compressed air) the piping before plumbing.
 Entering chips, sealing tape, rust, etc., generated during plumbing could result in air leaks or other defective operation.
2. The product cannot be used when the media or the ambient atmosphere contains any of the substances listed below.
 Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, chlorofluorocarbon or acids, etc.
3. If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use something to cover and protect the unit.