# Flexible and centralized control of supply pressure Manifold Regulators

The Manifold Regulator offers adjustment and confirmation of supply pressure at a single location. Moreover, a new high-relief type has been added to the R100 series, further expanding functional capabilities. P port piping is available in two types, a port collective type and an individual station type, selected according to flow rate and primary pressure conditions.

In addition, such options as the built-in check mechanism type, the compact pressure gauge, as well as the non-ion specification, offer flexible response to every application.



# **Flow Rate Characteristics**



1MPa = 145psi. 1ℓ/min = 0.0353ft3/min.

# Specifications

#### Standard type

P port collective type: R050M A, R100M A



Notes: 1.The R050 series does not have a pressure gauge connection port. 2. The check mechanism is available in MR052 and MR102 only.

# Individual station type: **R050MB**, **R100MB**



# 

Notes: 1.The R050 series does not have a pressure gauge connection port. 2.The check mechanism is available in MR052 and MR102 only.

#### •High-relief type

P port collective type: R100M HA



#### Individual station type: R100M HB



### **Relief Flow Rate Characteristics**



| Model                                 | Standard type            | MR050 MR100        |                                                     | —           |  |
|---------------------------------------|--------------------------|--------------------|-----------------------------------------------------|-------------|--|
|                                       | Built-in check mechanism | MR052              | MR102                                               | —           |  |
| Item                                  | High-relief type         | _                  | —                                                   | HR100       |  |
| Media                                 |                          | Air                |                                                     |             |  |
| Operation method                      |                          | Piston type        | Diaphragm type                                      | Piston type |  |
| Port size <sup>Note</sup>             | Rc                       | 1/8                | 1/8, 1/4                                            |             |  |
| Pressure setting range                | e MPa [psi.]             | 0.05~0.5<br>[7~73] | 0.05~0.7 [7~102]                                    |             |  |
| Relief starting pressur               | e MPa [psi.]             | _                  | — Setting pressure +0                               |             |  |
| Maximum operating pressure MPa [psi.] |                          | 0.7 [102]          | 0.9 [131]                                           | 0.93 [135]  |  |
| Proof pressure                        | MPa [psi.]               | 1.03 [149]         | 1.32 [191]                                          | 1.47 [213]  |  |
| Operating temperature range °C [°F]   |                          | 5~60 [41~140]      |                                                     |             |  |
| Options                               | Pressure gauge           | _                  | With G1-20A (bottom piping) or G1-20D (back piping) |             |  |

Note: See the table of port size, for details

#### Port size

| Model   | Ports                          | Location of piping connection | Port size |  |
|---------|--------------------------------|-------------------------------|-----------|--|
|         | IN                             | Manifold (collective)         | Rc1/8     |  |
|         | OUT                            | Manifold                      |           |  |
|         | IN                             | Manifold                      | D.4/0     |  |
| R020M   | OUT                            | Manifold                      | HC1/8     |  |
|         | IN                             | Manifold (collective)         | Rc1/4     |  |
| R100M A | OUT                            | Manifold                      | De1/9     |  |
|         | Pressure gauge connection port | Regulator body                | RC1/6     |  |
|         | IN                             | Manifold                      |           |  |
| R100M B | OUT                            | Manifold                      | Rc1/8     |  |
|         | Pressure gauge connection port | Regulator body                |           |  |
|         | IN                             | Manifold (collective)         | Rc1/4     |  |
|         | OUT                            | Manifold                      | Rc1/8     |  |
|         | EXH (relief)                   | Manifold                      |           |  |
|         | Pressure gauge connection port | Regulator body                |           |  |
|         | IN                             | Manifold                      |           |  |
|         | OUT                            | Manifold                      | Rc1/8     |  |
|         | EXH (relief)                   | Manifold                      |           |  |
|         | Pressure gauge connection port | Regulator body                |           |  |

#### Mass

|                    |                                                    |                   |                |                              |            |            | g [lb]     |
|--------------------|----------------------------------------------------|-------------------|----------------|------------------------------|------------|------------|------------|
| Model              | Manifold mass<br>calculation<br>(n = No. of units) | Mounted regulator |                | Pressure gauge<br>(Optional) |            | Block-off  |            |
|                    |                                                    | MR050<br>MR052    | MR100<br>MR102 | HR100                        | -GA20      | -GD20      | plate      |
| R050M□A, R050M□B   | (24×n)+20<br>[0.053×n+0.044]                       | 40 [0.088]        | —              | —                            | _          | _          | 3 [0.007]  |
| R100M□A, R100M□B   | (36×n)+30<br>[0.079×n+0.066]                       |                   | 82 [0.181]     | —                            | 37 [0.082] | 33 [0.073] | 5 [0.011]  |
| R100M HA, R100M HB | (124×n)+102<br>[0.273×n+0.225]                     | _                 | 82 [0.181]     | 134 [0.295]                  | 37 [0.082] | 33 [0.073] | 10 [0.022] |

# **Pressure Characteristics**





**HR100** 



# **Major Parts and Materials**

| Item                               | Model | MR050                     | MR100                                             | HR100                     | Non-ion specification             |  |
|------------------------------------|-------|---------------------------|---------------------------------------------------|---------------------------|-----------------------------------|--|
| Body                               |       | Aluminum alloy (anodized) | Aluminum die-casting                              | Aluminum alloy (anodized) | ←                                 |  |
| Pressure regulating screw          |       | Brass                     | —                                                 |                           | Brass (Electroless nickel plated) |  |
| Knob                               |       | —                         | Plastic (POM) —                                   |                           | <b>←</b>                          |  |
| Pressure regulating k              | nob   | —                         | —                                                 | Aluminum alloy (anodized) | <b>←</b>                          |  |
| Cover                              |       | Aluminum alloy (anodized) | —                                                 | Brass                     | Brass (Electroless nickel plaed)  |  |
| Bonnet                             |       | —                         | Plastic (PBT)                                     | —                         | ←                                 |  |
| Piston                             |       | Aluminum alloy (anodized) | —                                                 | Aluminum alloy (anodized) | ←                                 |  |
| Diaphragm                          |       | —                         | Synthetic rubber (NBR)                            | —                         | <b>←</b>                          |  |
| Pressure regulating s              | pring | Piano wire (chromated)    |                                                   |                           | ←                                 |  |
| Seal                               |       | Synthetic rubber (NBR)    |                                                   | ←                         |                                   |  |
| Pressure regulating valve assembly |       | Brass                     | Aluminum alloy, brass (Electroless nickel plated) |                           |                                   |  |
| Manifold                           | Body  |                           | Aluminum alloy (anodized)                         | <b>←</b>                  |                                   |  |
|                                    | Seal  |                           | Synthetic rubber (NBR)                            |                           | <b>←</b>                          |  |

Remark: The non-ion specification is made to order.



# **Application Examples**

#### When using standard types with built-in check mechanism (MR052, MR102)

Differential pressure operation



#### High-relief type (HR100)

For one HR100 unit, use a cylinder with bore size of 32mm and stroke of 200mm or less.

Balancer, tension control, or compressed pressure control



#### Differential pressure operation





Rapid speed control



Note: As the high-relief type HR100 has a relief starting pressure of about 0.03MPa [4psi.], it cannot be used for high-precision control.





MANIFOLD REGULATORS







#### Pressure regulating

- Install a pressure gauge to regulate pressure. In the R050 series, there is a pressure indicator sight glass. Use it to measure as a guide.
- 2. To regulate the pressure in the MR100 and MR102, pull out the knob firmly. Turning it to the right (clockwise) to increase the pressure, and to the left (counterclockwise) to reduce the pressure. After regulating pressure, push the knob back into the body and lock it in place.



**Caution**: The high-relief type HR100 has a relief starting pressure of about 0.03MPa [4psi.], this prevents use for high-precision control.



#### Piping

- Always thoroughly blow off (use compressed air) the piping before connecting it to the valve. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.
- 2. When using the P port collective type, use P port piping of sufficiently large size, and supply air from the P ports on both sides as much as possible.
- **3.** The high-relief type cannot use the R (relief) port under choked conditions. Also, if installing piping or a muffler, keep the exhaust resistance as low as possible. For the R (relief) port piping, use a tube of at least  $\phi 6 \times 4$  (when collective exhaust for two or more units, then  $\phi 10 \times 8$  or larger). Use a tube as short as possible. Avoid using a tube of length 2m [6.6ft.] or more.
- **Caution**: When mounting the pressure gauge, use a wrench to tighten the hexagonal portion of the piping connection port, and avoid applying any force to the gauge.

#### Block-off plate

#### Use a block-off plate

(Order Code: **R050M**-**BP**, **R100M**-**BP**) to block the stations that are not being used.



#### **General precautions**

#### Media

- 1. Use air for the media. For the use of any other media, consult us.
- 2. Use clean air that does not contain deteriorated compressor oil or other contaminants. Install an air filter (with filtration of a minimum  $40 \mu$  m) close to the valve to eliminate any airline collected liquid or dust. Moreover, clean the air filter at regular intervals.

#### Lubrication

While the system can be used without lubrication, if lubricating the actuators etc. is required, use Turbine Oil Class 1 (ISO VG32) or equivalent.

Avoid using spindle oil or machine oil.

#### Atmosphere

1. The product cannot be used when the media or the ambient atmosphere contains any of the substances listed below.

Solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

2. If using in locations subject to dripping water or oil, etc., or to large amounts of dust, use something to cover and protect the unit.

# System Upgrade Using a Regulator with Built-In Check Mechanism

The regulator with built-in check mechanism is equipped with a built-in check valve that opens when the primary pressure falls off, causing the pressure balance to break and simultaneously opening the main valve to relieve the secondary pressure to the primary side.

**Changing push side and pull side thrust** The thrust on an air cylinder's push side and pull side can be changed easily. Cylinders can be operated at low pressure on the side where thrust is not required, allowing reduction of air consumption.

