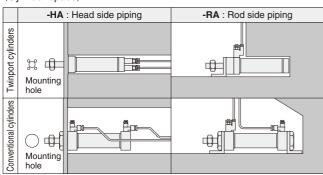
Eliminate Dead Space

TWINPORT CYLINDERS TWO COLUMN TO COL

Two connection ports are positioned on one side to eliminate dead space from the area around the cylinder. Air cylinder works with compact, highly rigid mounts to achieve space-saving and smaller pitch mountings.

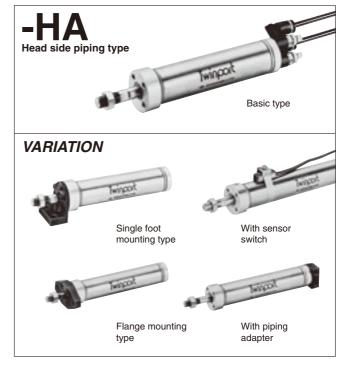

Positioning connection ports on the single plane on the rod side or the head side cuts piping space in half and also eliminates the need to take special considerations for adjusting space for the speed controller.

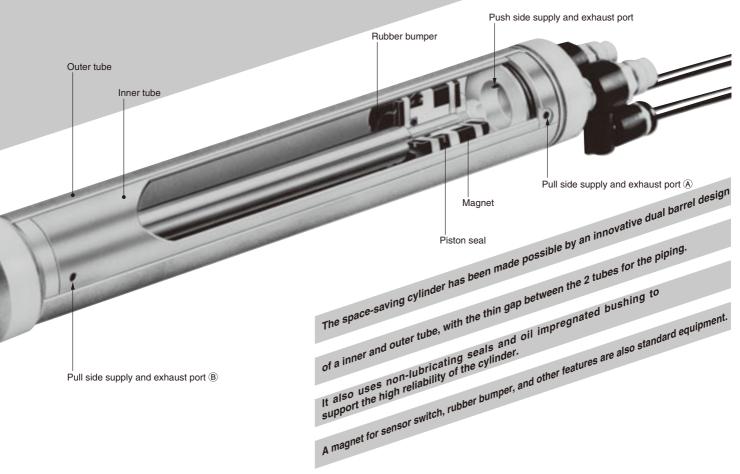
Compact, highly rigid mounting design achieves smaller pitch and highly accurate mountings for twinport cylinders, and also lets the connection ports be freely selected at 90° intervals.

The twinport cylinders are developed for space-saving, flexible design suited to the design, assembly, and maintenance of mechanical devices.

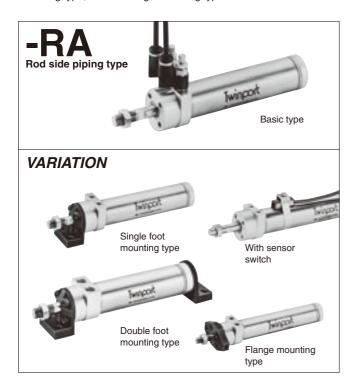
Comparison with conventional cylinders

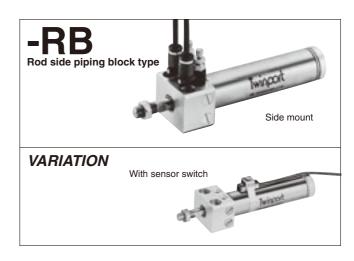
(Cylinder space)


 \langle Mounting pitch \rangle For ϕ 20


	Foot mounting type	Flange mounting type
Twinport cylinders	To 50%	To 75%
Conventional cylinders		

Basic Type and Configurations

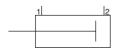

This system makes it possible to fully utilize the space around the piston rod. And use of the piping adapter: -L lets the piping direction to the cylinder center line be changed perpendicularly at right angles. There are 3 mounting types available, including the basic type, the single foot mounting type, and the flange mounting type.


-RA Rod Side Piping Type

Integrating connection ports on the piston rod side is optimum for saving space on the head side. There are 4 mounting types available, including the basic type, the single foot mounting type, the double foot mounting type, and the flange mounting type.

-RB Rod Side Piping Block Type

Both the connection port and the mounting section are located on the rod side. Another connection port is also on the side surface of the block, mounting the connection port to face the mechanical devices' piping port surface enables direct piping without using any fittings.



TWINPORT CYLINDERS

Head Side Piping, Rod Side Piping

※ For cylinder thrust, air consumption and air flow rate, see p.435 ~ 436.

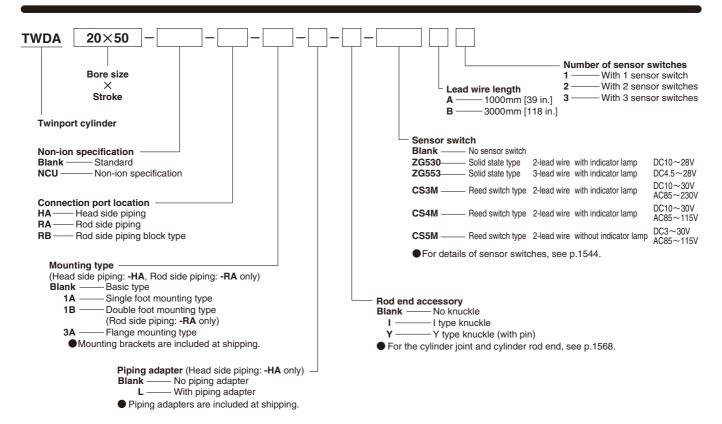
Symbol

1 : Pull side connection port2 : Push side connection port

Specifications

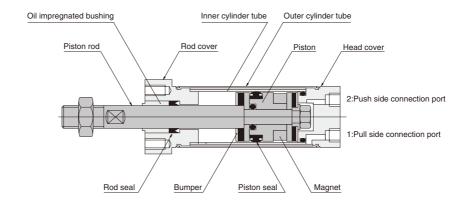
Item Bore size mm [in.]	16 [0.630] 20 [0.787]	25 [0.984] 32 [1.260] 40 [1.575]
Operation type	Dou	ble acting type
Media		Air
Mounting type	Basic type, Single	e foot type, Double foot type,
Mounting type	Flange	type, Side mount
Operating pressure range MPa [psi.]	0.1~	~0.7 [15~102]
Proof pressure MPa [psi.]		1.03 [149]
Operating temperature range °C [°F]	0~	60 [32~140]
Operating speed range mm/s [in./sec.]	50~	500 [2.0~19.7]
Cushion	Fixed typ	e (Rubber bumper)
Lubrication	N	lot required
Port size	M5×0.8	Rc1/8

Bore Size and Stroke


			mm
Bore size	Standard strokes	Maximum stroke	Maximum available stroke
16	15, 25, 50, 75, 100	100	300
20	15, 25, 50, 75, 100, 150	150	500
25	15, 25, 50, 75, 100, 150, 200	200	500
32	15, 25, 50, 75, 100, 150, 200	200	500
40	15, 25, 50, 75, 100, 150, 200, 250, 300	300	500

Remark: Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$]

Connection Port Location and Mounting Type


Connection port location	Mounting type
Hood side piping : HA	Basic type, Single foot type,
Head side piping : -HA	and Flange type
Rod side piping : -RA	Basic type, Single foot type, Double foot type,
nou side pipingna	and Flange type
Rod side piping block type : -RB	Side mount

Order Codes

Inner Construction and Major Parts

The diagram is for the head side piping: -HA

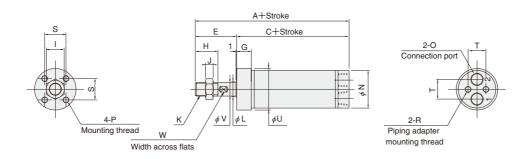
Major Parts and Materials

Parts Bore size mm	16	20	25	32	40							
Outer cylinder tube	Stainless steel											
Inner cylinder tube			BrassNote									
Piston			Plastic									
Piston rod	Stainles (Hard chro	ss steel me plated)	(Haro	Steel d chrome pl	ated)							
Rod cover												
Head cover	- Aluminum (Anodized)											
Seal		Cumtha	atia wubbar	(NIDD)								
Bumper		Syritre	etic rubber	(INDH)								
Magnet	Rubber magnet		Plastic	magnet								
Piping adapter	Aluminum (Black anodized)											
Rod nut			Mild steel									
I type,Y type knuckle	Mild steel (Zinc plated; nickel plated for ϕ 16.)											

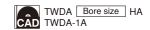
Note: The non-ion specification's inner cylinder tube is stainless steel, while the oil impregnated bronze bushing is changed to an oil impregnated plastic bushing.

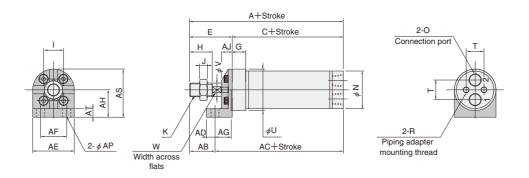
Seals

Parts	Rod seal	Piston seal
Bore size mm Quantity	1	1
16	NY-3-6	PPH-16
20	NY-12×8×3.5	PPH-20
25	NY-14×10×3.5	PPH-25
32	NY-17×12×4	PPH-32
40	NY-22×16×5	PPH-40

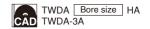

Mass

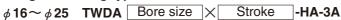
									kg [lb.]
Connection port location	Bore size	Zero stroke mass	Additional mass for each 1mm			Addition	nal mass		
Connection port location	mm [in.]	Basic type	[0.0394in.] stroke	Single foot mounting type	Double foot mounting type	Flange mounting type	With piping adapter	I type knuckle	Y type knuckle
	16 [0.630]	0.060 [0.132]	0.0008 [0.0018]	0.028 [0.062]		0.030 [0.066]	0.008 [0.018]	0.022 [0.049]	0.015 [0.033]
Hood side pining	20 [0.787]	0.110 [0.243]	0.0012 [0.0026]	0.050 [0.110]		0.054 [0.119]	0.013 [0.029]	0.036 [0.079]	0.041 [0.090]
Head side piping : -HA	25 [0.984]	0.165 [0.364]	0.0016 [0.0035]	0.070 [0.154]		0.076 [0.168]	0.030 [0.066]	0.070 [0.154]	0.075 [0.165]
па	32 [1.260]	0.275 [0.606]	0.0023 [0.0051]	0.105 [0.232]		0.135 [0.298]	0.060 [0.132]	0.070 [0.154]	0.075 [0.165]
	40 [1.575]	0.485 [1.069]	0.0033 [0.0073]	0.185 [0.408]		0.235 [0.518]	0.095 [0.209]	0.132 [0.291]	0.120 [0.265]
	16 [0.630]	0.075 [0.165]	0.0008 [0.0018]	0.028 [0.062]	0.055 [0.121]	0.030 [0.066]			
Dad side pining	20 [0.787]	0.130 [0.287]	0.0012 [0.0026]	0.050 [0.110]	0.098 [0.216]	0.054 [0.119]			
Rod side piping	25 [0.984]	0.210 [0.463]	0.0016 [0.0035]	0.070 [0.154]	0.140 [0.309]	0.076 [0.168]	_	_	_
:-RA	32 [1.260]	0.365 [0.805]	0.0023 [0.0051]	0.105 [0.232]	0.205 [0.452]	0.135 [0.298]			
	40 [1.575]	0.650 [1.433]	0.0033 [0.0073]	0.185 [0.408]	0.355 [0.783]	0.235 [0.518]			
	16 [0.630]	0.090 [0.198]	0.0008 [0.0018]						
Pod side pipina	20 [0.787]	0.155 [0.342]	0.0012 [0.0026]						
Rod side piping	25 [0.984]	0.245 [0.540]	0.0016 [0.0035]	_	_	_	_	_	_
Block type:-RB	32 [1.260]	0.430 [0.948]	0.0023 [0.0051]						
	40 [1.575]	0.775 [1.709]	0.0033 [0.0073]						

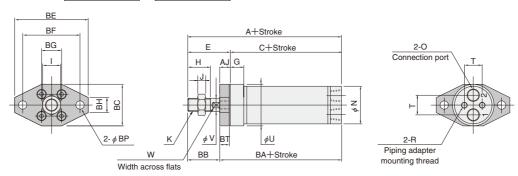

Calculation example: For head side piping: **-HA** single foot mounting type of 20mm bore size and 50mm stroke, with piping adapter, 0.110+(0.0012×50)+0.050+0.013=0.233kg [0.514 lb.]

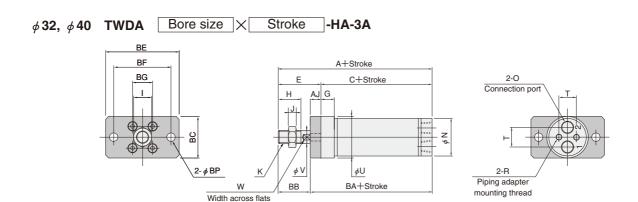

● Basic type TWDA Bore size X Stroke -HA

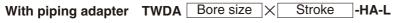
● Single foot mounting type TWDA Bore size X Stroke -HA-1A

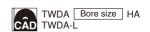


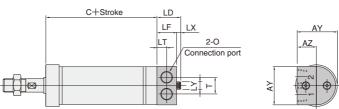


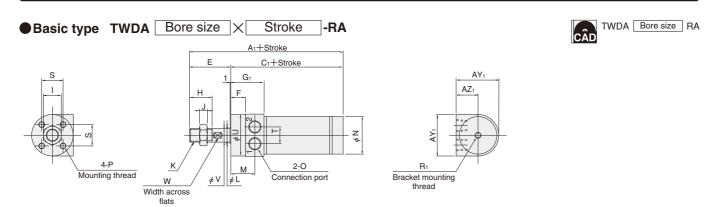

Bore Code mm [in.]	Α	С	Е	G	Н	ı	J	K	L	N	0	Р	R	S	Т	U	٧	W
16 [0.630]	77	51	26	8	15	10	5	M6×1	8_0_05	19	M5×0.8	M3×0.5 Depth5.5	M3×0.5 Depth6	12	11	22	6	_
20 [0.787]	89	58	31	10	15	12	5	M8×1	10 -0.05	23.6	M5×0.8	M4×0.7 Depth7.5	M4×0.7 Depth6	14	13	28	8	6
25 [0.984]	96	62	34	10	18	14	6	M10×1.25	12_0.05	28.8	Rc1/8	M5×0.8 Depth7.5	M4×0.7 Depth6	16	15	32	10	8
32 [1.260]	107	68	39	10	23	14	6	M10×1.25	15_0 0.05	36.4	Rc1/8	M5×0.8 Depth7.5	M5×0.8 Depth7	20	20	40	12	10
40 [1.575]	117	77	40	12	23	19	8	M14×1.5	20_0 05	44.6	Rc1/8	M6×1 Depth9.5	M5×0.8 Depth7	26	26	50	16	14

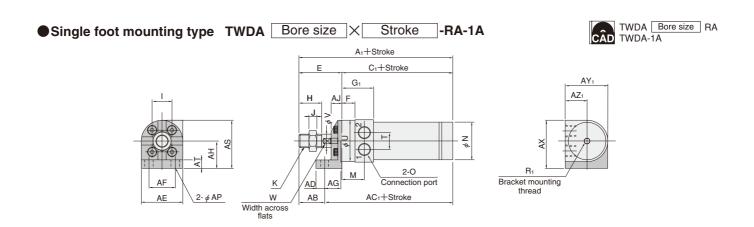

Bore Code mm [in.]	AB	AC	AD	AE	AF	AG	АН	AJ	AP	AS	AT
16 [0.630]	15	62	4	22	14	10	16	7	4.5	27	6
20 [0.787]	18	71	5	28	18	12	19	8	5.5	33	7
25 [0.984]	19	77	6	32	20	14	21	9	6.5	37	8
32 [1.260]	24	83	6	40	28	14	25	9	6.5	45	8
40 [1.575]	21	96	8	50	34	18	30	10	9	55	9

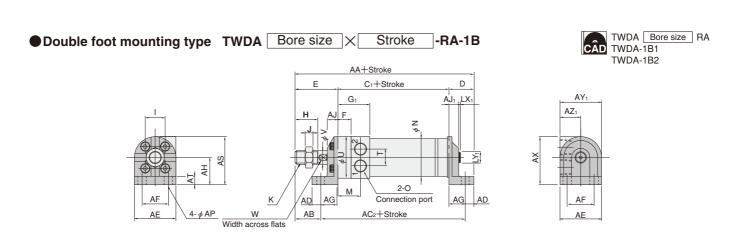

Flange mounting type





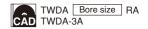


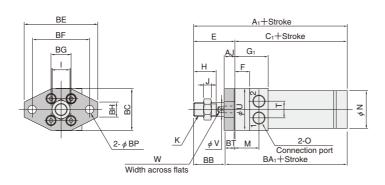


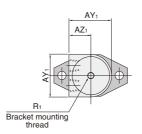

Bore Code mm [in.]	Α	С	Е	G	Н	I	J	K	N	0	R	Т	U	٧	W
16 [0.630]	77	51	26	8	15	10	5	M6×1	19	M5×0.8	M3×0.5 Depth6	11	22	6	_
20 [0.787]	89	58	31	10	15	12	5	M8×1	23.6	M5×0.8	M4×0.7 Depth6	13	28	8	6
25 [0.984]	96	62	34	10	18	14	6	M10×1.25	28.8	Rc1/8	M4×0.7 Depth6	15	32	10	8
32 [1.260]	107	68	39	10	23	14	6	M10×1.25	36.4	Rc1/8	M5×0.8 Depth7	20	40	12	10
40 [1.575]	117	77	40	12	23	19	8	M14×1.5	44.6	Rc1/8	M5×0.8 Depth7	26	50	16	14

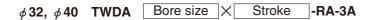
Bore Code mm [in.]	AJ	AY	AZ	ВА	ВВ	вс	BE	BF	BG	ВН	BP	ВТ	LD	LF	LT	LX	LY
16 [0.630]	7	20	10	58	19	22	40	32	12	8	4.5	6	9	8	4	1	5.5
20 [0.787]	8	24.6	12.3	66	23	28	50	40	14	10	5.5	7	10	8	4	2	7
25 [0.984]	9	29.8	14.9	71	25	32	56	44	16	12	6.5	8	19	16	8	3	7
32 [1.260]	9	41	20.5	77	30	40	66	54	20	_	6.5	_	19	16	8	3	8.5
40 [1.575]	10	51	25.5	87	30	50	84	68	26	_	9	_	19	16	8	3	8.5

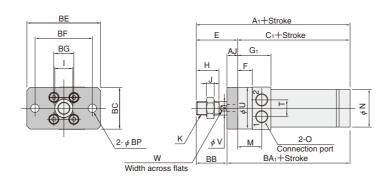
-RA Dimensions of Rod Side Piping Type (mm)

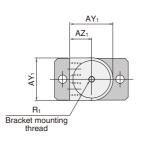


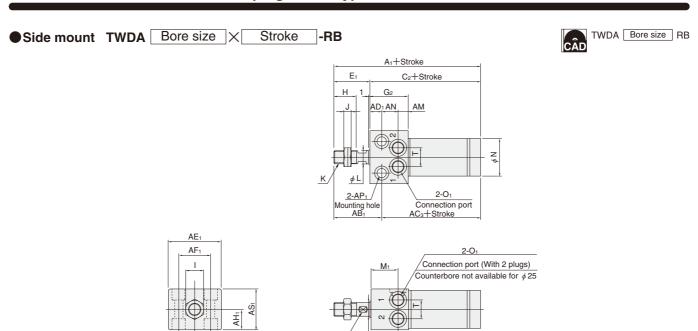

Bore Code mm [in.]	A 1	C ₁	D	Е	F	G ₁	Н	_	7	K	L	M	N	0	P	R ₁	S	Т	U	٧	W
16 [0.630]	87	61	14	26	10	18	15	10	5	M6×1	8_0_0	14	19	M5×0.8	M3×0.5 Depth5.5	M3×0.5 Depth6	12	11	22	6	\equiv
20 [0.787]	99	68	17	31	12	20	15	12	5	M8×1	10 _0.05	16	23.6	M5×0.8	M4×0.7 Depth7.5	M4×0.7 Depth6	14	13	28	8	6
25 [0.984]	111	77	20	34	11	25	18	14	6	M10×1.25	$12_{-0.05}^{0}$	18	28.8	Rc1/8	M5×0.8 Depth7.5	M5×0.8 Depth7	16	15	32	10	8
32 [1.260]	127	88	20	39	16	30	23	14	6	M10×1.25	$15_{-0.05}^{0}$	23	36.4	Rc1/8	M5×0.8 Depth7.5	M5×0.8 Depth7	20	20	40	12	10
40 [1.575]	142	102	26	40	23	37	23	19		M14×1.5	20 _0.05		44.6	Rc1/8	M6×1 Depth9.5	M6×1 Depth9	26	26	50	16	14


Bore Code mm [in.]	AA	AB	AC ₁	AC ₂	AD	ΑE	AF	AG	АН	AJ	AJ ₁	AP	AS	AT	AX	AY ₁	AZ ₁	LX ₁	LY ₁
16 [0.630]	101	15	72	82	4	22	14	10	16	7	6	4.5	27	6	27.5	23	11.5	_	
20 [0.787]	116	18	81	93	5	28	18	12	19	8	7	5.5	33	7	33.5	29	14.5	2	7
25 [0.984]	131	19	92	106	6	32	20	14	21	9	8	6.5	37	8	37.5	33	16.5	1	8.5
32 [1.260]	147	24	103	117	6	40	28	14	25	9	8	6.5	45	8	45.5	41	20.5	1	8.5
40 [1.575]	168	21	121	139	8	50	34	18	30	10	9	9	55	9	55.5	51	25.5	1	10

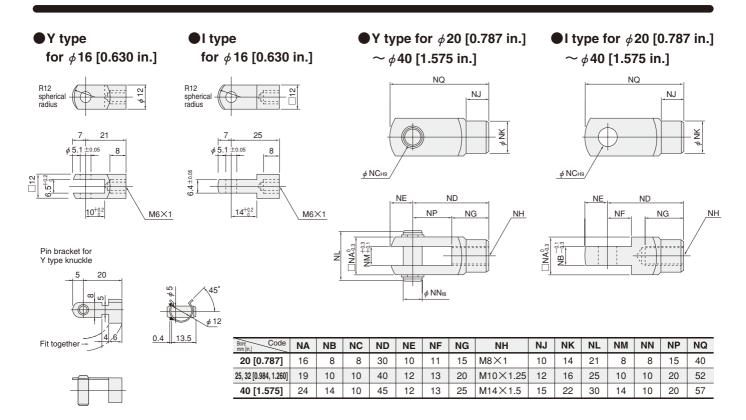

Flange mounting type


 ϕ 16 \sim ϕ 25 TWDA Bore size \times Stroke -RA-3A





Bore Code mm [in.]	A 1	C ₁	Е	F	G ₁	Н	I	J	K	M	N	0	R ₁	Т	U	V	W
16 [0.630]	87	61	26	10	18	15	10	5	M6×1	14	19	M5×0.8	M3×0.5 Depth6	11	22	6	
20 [0.787]	99	68	31	12	20	15	12	5	M8×1	16	23.6	M5×0.8	M4×0.7 Depth6	13	28	8	6
25 [0.984]	111	77	34	11	25	18	14	6	M10×1.25	18	28.8	Rc1/8	M5×0.8 Depth7	15	32	10	8
32 [1.260]	127	88	39	16	30	23	14	6	M10×1.25	23	36.4	Rc1/8	M5×0.8 Depth7	20	40	12	10
40 [1.575]	142	102	40	23	37	23	19	8	M14×1.5	30	44.6	Rc1/8	M6×1 Depth9	26	50	16	14


Bore Code mm [in.]	AJ	AY ₁	AZ ₁	BA ₁	BB	ВС	BE	BF	BG	ВН	BP	ВТ
16 [0.630]	7	23	11.5	68	19	22	40	32	12	8	4.5	6
20 [0.787]	8	29	14.5	76	23	28	50	40	14	10	5.5	7
25 [0.984]	9	33	16.5	86	25	32	56	44	16	12	6.5	8
32 [1.260]	9	41	20.5	97	30	40	66	54	20	_	6.5	_
40 [1.575]	10	51	25.5	112	30	50	84	68	26	_	9	_

Bore Code mm [in.]	A 1	C ₂	E ₁	G ₂	Н	1	J	K	L	M ₁	N	O 1	Т	٧	W	AB ₁	AC3	AD ₁	AE ₁	AF ₁	AΗ1	AM	AN	AP ₁	AS ₁
16 [0.630]	87	64	23	21	15	10	5	M6×1	8 _0.05	15	19	M5 X 0.8 Counterbore ø 8.4 Depth1.8	11	6	_	28	59	5	30	16	12	6	10	φ 4.5 C'bore φ 8 Depth4.5	24
20 [0.787]	99	72	27	24	15	12	5	M8×1	10 _0.05	18	23.6	M5 X 0.8 Counterbore ϕ 8.4 Depth1.8	13	8	6	34	65	7	38	22	14	6	11	φ 6.6 C'bore φ 11 Depth 6.5	28
25 [0.984]	111	82	29	30	18	14	6	M10×1.25	$12_{-0.05}^{0}$	22	28.8	Rc1/8 Counterbore	15	10	8	38	73	9	42	26	15	8	13	φ 6.6 C'bore φ 11 Depth6.5	30
32 [1.260]	127	94	33	36	23	14	6	M10×1.25	15_0.05	28	36.4	Rc1/8 Counterbore ø 13.4 Depth1.8	20	12	10	45	82	12	54	34	19	8	16	φ 9 C'bore φ 14 Depth 8.6	38
40 [1.575]	142	109	33	44	23	19	8	M14×1.5	20 _0.05	36	44.6	Rc1/8 Counterbore ø 13.4 Depth1.8	26	16	14	48	94	15	68	46	23	8	21	φ 11 C'bore φ 17.5 Depth10.8	46

W Width across flats

Dimensions of Rod End Accessories (mm)

SENSOR SWITCHES

Order Codes for Sensor Switches

Sensor switches (with mounting strap)

				Sensor switch model	Lead wire length	Cylinder basic type	Bore size
Solid state type	2-lead wire	With indicator lamp	DC10~28V	ZG530			
Solid state type	3-lead wire	With indicator lamp	DC4.5~28V	ZG553			16 20
Reed switch type	2-lead wire	With indicator lamp	DC10~30V AC85~230V	CS3M	A B	-TWDA	25
Reed switch type	2-lead wire	With indicator lamp	DC10~30V AC85~115V	CS4M			32 40
Reed switch type	2-lead wire	Without indicator lamp	DC3~30V AC85~115V	CS5M			
Remark: For de	tails of s	sensor switches	s, see p.1544.				
					■ A · 10	100mm [39 in 1	

B: 3000mm [118 in.]

Order codes for mounting straps only **G5-TWDA** Bore size **16** : For *ϕ* 16 **20**: For ϕ 20 **25**: For φ 25 **32** : For ϕ 32 **40**: For φ 40 Cylinder basic type

Sensor switch type G5: For solid state type

sensor switches (ZG5 ...) For reed switch type sensor switches (CS M)

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

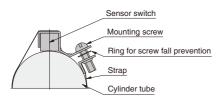

For ZG5 and CS M types

lacktriangle Operating range : ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.



						mm [ın.]			
		ZG530□, ZG553□		CS□M□					
Bore size mm [in.]	Operating range	Response differential	Maximum sensing location ^{Note}	Operating range	Response differential	Maximum sensing location ^{Note}			
16 [0.630]	2.7~4.5 [0.106~0.177]			7.0~9.0 [0.276~0.354]					
20 [0.787]	2.8~4.7 [0.110~0.185]	0.7 [0.028] or less		8.5~10.5 [0.335~0.413]					
25 [0.984]	2.7~4.5 [0.106~0.177]	0.7 [0.028] of less	11 [0.433]	7.0~8.5 [0.276~0.335]	2.0 [0.079] or less	11 [0.433]			
32 [1.260]	3.0~5.1 [0.118~0.201]			8.0~10.0 [0.315~0.394]					
40 [1.575]	3.3~5.5 [0.130~0.217]	0.8 [0.031] or less		9.5~11.0 [0.374~0.433]					

Remark: The above table shows reference values.

Note: This is the length measured from the switch's opposite end side to the lead wire.

Moving Sensor Switch

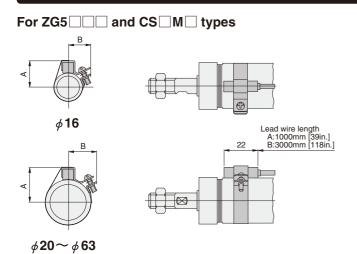
- Loosening the mounting screw allows the sensor switch to be moved freely along with the strap in the axial and circumferential direction. The sensor switch alone cannot be moved.
- To remove the sensor switch from the strap, first detach the strap from the cylinder tube and then remove the sensor switch from the strap.
- Tighten the mounting screw with a tightening torque of 49N·cm [4.3in·lbf] or less.

Mounting Location of Sensor Switch

When the piston reaches the end of the stroke with the sensor switch installed in the location shown in the diagram, the magnet mounted on the piston comes to the sensor switch's maximum sensing location.

A

B


mm [in.]

Poro oizo mm (in 1	ZG5□□□	, CS□M□
Bore size mm [in.]	Α	В
16 [0.630]	9 [0.354]	8 [0.315] (16 [0.630])
20 [0.787]	12 [0.472]	9 [0.354] (17 [0.669])
25 [0.984]	14 [0.551]	11 [0.433] (27 [1.063])
32 [1.260]	17 [0.669]	13 [0.512] (29 [1.142])
40 [1.575]	20 [0.787]	17 [0.669] (33 [1.299])

Remarks 1: The value is the same regardless of the connection port location.

2: Figure in parentheses () are for the distance from the piping adapter end surface, for the case of piping adapter: -L.

Dimensions of Sensor Switch

		mm [in.]
Bore Code mm [in.]	Α	В
16 [0.630]	17 [0.669]	15 [0.591]
20 [0.787]	19.5 [0.768]	17.5 [0.689]
25 [0.984]	22.5 [0.886]	18 [0.709]
32 [1.260]	27 [1.063]	19.5 [0.768]
40 [1.575]	30 [1.181]	_*

When used on \(\phi \) 40, dimension B is the radius of the cylinder tube's outer diameter.

Therefore, there is no protrusion in the B direction of the mounting portion.

Cylinder Thrust

											N [lbf.]
Bore size	Rod dia.	Operati	ion type	Pressure area			Air p	ressure MPa	[psi.]		
mm [in.]	mm [in.]	Ореган	ion type	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
16 [0.630]	6 [0.236]	Double	Push side	201 [0.312]	20.1 [4.52]	40.2 [9.04]	60.3 [13.56]	80.4 [18.07]	100.5 [22.59]	120.6 [27.11]	140.7 [31.63]
10 [0.030]	0 [0.230]	acting type	Pull side	172 [0.267]	17.2 [3.87]	34.4 [7.73]	51.6 [11.60]	68.8 [15.47]	86.0 [19.33]	103.2 [23.20]	120.4 [27.07]
20 [0.787]	8 [0.315]	Double	Push side	314 [0.487]	31.4 [7.06]	62.8 [14.12]	94.2 [21.18]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]
20 [0.787]	0 [0.313]	acting type	Pull side	264 [0.409]	26.4 [5.93]	52.8 [11.87]	79.2 [17.80]	105.6 [23.74]	132.0 [29.67]	158.4 [35.61]	184.8 [41.54]
25 [0.984]	10 [0.394]	Double	Push side	490 [0.760]	49.0 [11.02]	98.0 [22.03]	147.0 [33.05]	196.0 [44.06]	245.0 [55.08]	294.0 [66.09]	343.0 [77.11]
25 [0.964]	10 [0.394]	acting type	Pull side	412 [0.639]	41.2 [9.26]	82.4 [18.52]	123.6 [27.79]	164.8 [37.05]	206.0 [46.31]	247.2 [55.57]	288.4 [64.83]
32 [1.260]	12 [0.472]	Double	Push side	804 [1.246]	80.4 [18.07]	160.8 [36.15]	241.2 [54.22]	321.6 [72.30]	402.0 [90.37]	482.4 [108.44]	562.8 [126.52]
32 [1.260]	12 [0.472]	acting type	Pull side	690 [1.070]	69.0 [15.51]	138.0 [31.02]	207.0 [46.53]	276.0 [62.04]	345.0 [77.56]	414.0 [93.07]	483.0 [108.58]
40 [1 575]	16 [0.630]	Double	Push side	1256 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.94]	628.0 [141.17]	753.6 [169.41]	879.2 [197.64]
40 [1.575]	10 [0.630]	acting type	Pull side	1055 [1.635]	106.0 [23.83]	211.0 [47.43]	317.0 [71.26]	422.0 [94.87]	528.0 [118.69]	633.0 [142.30]	739.0 [166.13]

Air Consumption and Air Flow Rate

The figures in the table below show the air consumption when a Twinport Cylinder makes 1 reciprocation with stroke of 1mm [0.039in.]. The air flow rate and air consumption actually required is found by the calculation below.

Air consumption for each 1mm [0.0394in.] stroke

cm³ [in³]/reciprocation (ANR)

Bore size			Air pre	ssure MF	a [psi.]		
mm [in.]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
16 [0.630]	0.79 [0.0482]	1.18 [0.0720]	1.57 [0.0958]	1.96 [0.1196]	2.35 [0.1434]	2.74 [0.1672]	3.13 [0.1910]
20 [0.787]	1.24 [0.0757]	1.86 [0.1135]	2.45 [0.1495]	3.07 [0.1873]	3.68 [0.2246]	4.29 [0.2618]	4.90 [0.2990]
25 [0.984]	1.94 [0.1184]	2.89 [0.1764]	3.83 [0.2337]	4.79 [0.2923]	5.75 [0.3509]	6.71 [0.4095]	7.67 [0.4681]
32 [1.260]	3.18 [0.1941]	4.73 [0.2886]	6.28 [0.3832]	7.85 [0.4790]	9.41 [0.5742]	10.98 [0.6700]	12.55 [0.7659]
40 [1.575]	4.95 [0.3021]	7.40 [0.4516]	9.83 [0.5999]	12.26 [0.7482]	14.69 [0.8964]	17.16 [1.047]	19.60 [1.196]

Finding the air consumption

Example 1. When operating a Twinport Cylinder with bore size of 16mm and stroke of 50mm under air pressure of 0.5MPa

 $2.35 \times 50 \times 10^{-3} = 0.1175 \ell [7.17in^{.3}]/reciprocation (ANR)$

From the table Stroke

Example 2. When operating a Twinport Cylinder with bore size of 16mm and stroke of 50mm under air pressure of 0.5MPa, at rate of 20 reciprocations per minute

 $2.35 \times 50 \times 20 \times 10^{-3} = 2.35 \ell [143in^{3}]/min(ANR)$

From the table Stroke Operating frequency per minute (reciprocation)

Finding the air flow rate (for selecting F.R.L., valves, etc.)
 Example: When operating a Twinport Cylinder with bore size of 16mm at speed of 100mm/s under air pressure of 0.5MPa

$$2.35 \times 100 \times \frac{1}{2} \times 10^{-3} = 0.1175 \ell [7.17 \text{in}^{3}]/\text{s} (ANR)$$

From the table Speed mm/s

(The flow rate per minute at this time is $0.1175 \times 60 = 7.05 \ \ell \ [430in^3]/min \ (ANR).)$

Mounting and piping

Mounting

- 1. For the head side piping: -HA, use of a piping adapter (order code: -L) allows the piping direction to be changed at right-angles. To mount the piping adapter, attach the Oring provided into the piping adapter's Oring groove, and attach it on the cylinder.
- 2. For the rod side piping block type: -RB, mounting the connection port to face the porting surface of the mechanical device and then mounting directly to the mechanical device without fittings and tubing achieve still more space-saving in piping. In this case, use the O-ring (P5 for ϕ **16** and **20**, and P10 or equivalents for $\phi 25 \sim 40$ [JIS B2401]) into the connection port's O-ring groove, and mount it on the mechanical device.

Piping

For Twinport cylinders, use the fittings and speed controllers in the table below.

Cautions: 1. In the case of a long stroke with foot mounting, we recommend using the rod side piping: -RA double foot type mounting.

- 2. When using mounting threads on a rod cover in the basic mounting, use a mounting screw that can utilize the entire effective thread depth of the mounting thread
- 3. Avoid cantilever mountings by using mounting threads on a head cover piping adapter or head cover mounting bracket.

General precautions

Media

- Use air for the media. For the use of any other media, consult us.
- 2. Air used for the cylinder should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum 40 μ m) near the cylinder or valve to remove collected liquid or dust. In addition, drain the air filter periodically.
 - Collected liquid or dust entering the cylinder may cause improper operation.

Lubrication

The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or equivalent.

Avoid using spindle oil or machine oil.

Atmosphere

- If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.
- 2. The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.

 Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Applicable fittings

Cylinder type Bore size mm [in	16, 20 [0.630, 0.787]	25 [0.984]	32, 40 [1.260, 1.575]
Head side piping:-HA Rod side piping:-RA	 Quick fitting, mini type for φ 3, φ 4, φ 6 tubes Quick fitting for φ 4 tube TAC fittings 	 Quick fitting, mini type for φ 4 or φ 6 tubes 	$lacktriangle$ Quick fitting, mini type for ϕ 6
Rod side piping Block type :-RB	 Quick fitting, mini type for	 Quick fitting for	tube • Quick fitting for ϕ 6 or ϕ 8 tubes • TAC fittings

Applicable speed controller

Cylinder type Bore size mm [in.]	16, 20 [0.630, 0.787]	25~40 [0.984~1.575]
Head side piping:-HA Rod side piping:-RA	 Speed controller with quick fitting SCO-US, SCO-UL TSC-US, TSC-US-BF 	Considerables with suits fitting
Rod side piping Block type:-RB	Speed controller with quick fitting	Speed controller with quick fitting