MULTIMOUNT CYLINDERS FOR VACUUM PADS

These devices preserve the multimount cylinder design concept while employing a hollow rod structure to keep total length very short.

Furthermore, all the piping is concentrated on one side. These cylinders provide suction and conveyance with a minimal stroke, while easy piping installation means they can be directly installed to mechanical devices and walls, thus saving space and offering enhanced design flexibility.

<text>

Calculation of Lift Capacity

Lift capacity (W) is calculated using the formula below:

(ISU)

$$W = P \times A \times 0.1 \times \frac{1}{S}$$

W: Lift capacity (N)

- P: Degree of vacuum (-kPa)
- A : Area of pad (cm^2)

S : Safety factor

(Metric units)

$$W = \frac{P'}{760} \times 1.033 \times A \times \frac{1}{S}$$

W': Lift capacity (kgf)

- P': Degree of vacuum (-mmHg)
- A : Area of pad (cm²)
- S : Safety factor

When calculating lift capacity, include one of the following two safety factors: Horizontal lifting....2 times min. Vertical lifting....4 times min.

Example:

A 300g workpiece is lifted horizontally by a standard fixed vacuum pad. Calculate the required pad diameter assuming that the degree of vacuum is set to -53.3kPa {-400mmHg} and there is no vacuum leakage from the suction surface.

According to the above calculation, a pad measuring at least ϕ 15 is required.

(Metric units)

$$0.3 = \frac{400}{760} \times 1.033 \times A \times \frac{1}{2}$$

Pad diameter =
$$\sqrt{1.107 \times \frac{4}{\pi}} = 1.18$$
cm

Theoretical Lift Capacities

Round Pads

Round Pads						N {Kgf}
Pad diameter	φ 2.5	φ 3.5	φ6	φ8	<i>φ</i> 10	<i>φ</i> 15
of vacuum kPa {mmHg}	0.049	0.096	0.283	0.502	0.785	1.766
-93.3 {-700}	0.457 {0.047}	0.896 {0.091}	2.64 {0.269}	4.68 {0.48}	7.32 {0.75}	16.48 {1.68}
-80 {-600}	0.392 {0.040}	0.768 {0.078}	2.26 {0.231}	4.02 {0.41}	6.28 {0.64}	14.13 {1.44}
-66.7 {-500}	0.327 {0.033}	0.640 {0.065}	1.89 {0.192}	3.35 {0.34}	5.24 {0.53}	11.78 {1.20}
-53.3 {-400}	0.261 {0.027}	0.512 {0.052}	1.51 {0.154}	2.68 {0.27}	4.18 {0.43}	9.41 {0.96}
-40 {-300}	0.196 {0.020}	0.384 {0.039}	1.13 {0.115}	2.01 {0.20}	3.14 {0.32}	7.06 {0.72}
-26.7 {-200}	0.131 {0.013}	0.256 {0.026}	0.76 {0.077}	1.34 {0.14}	2.10 {0.21}	4.72 {0.48}
-13.3 {-100}	0.065 {0.007}	0.128 {0.013}	0.38 {0.038}	0.67 {0.07}	1.04 {0.11}	2.35 {0.24}

* All values in the table above are theoretical.

MULTIMOUNT CYLINDERS FOR VACUUM PADS

Double Acting Non-rotating Type

Symbol

Thrust

										N
Cylinder bore	Piston rod	Operation	Area subject to			Air pr	essure	MPa		
mm	mm	pressur mm ²	pressure mm ²	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	5	Double esting	59	—	11.6	17.4	23.1	28.9	34.7	40.5
16	6	Donnis actilità	173	17.0	33.9	50.9	67.9	84.8	101.4	118.8

Cylinder Bore and Stroke

	mm
Cylinder bore	Standard stroke
10 16	5, 10, 15, 20, 25, 30

Specifications

-			
	Cylinder bore mm	10	16
Item			
Operation		Double	e acting
Media		A	ir
Pressure range	MPa {kgf/cm ² }	0.15~0.7 {1.5~7.1}	0.1~0.7 {1~7.1}
Vacuum port pressure		-101.32kPa (Vacuum breaking time = The time it f	a~0.6MPa akes to go from 0 to 0.6MPa.) ^(Note 1)
Proof pressure	MPa {kgf/cm²}	1.03	10.5}
Temperature range	З°	0~	-60
Velocity range (Note 2)	mm/s	50~	-500
Cushion		Rubber	bumper
Lubrication		Not ner (If you lubricate, use a product which meets	C essary s grade 1 turbine oil (ISO VG32) standards.)
Non-rotating accuracy		±1.5°	±1°
Port (atmospheric pressure•vac	uum pressure)	M5>	<0.8
Stroke tolerance	mm	+	0
Rod tip thread		M4x0.7, male thread	M5x0.8, male thread

Notes: 1. Apply pressure only from the vacuum port during vacuum breaking.

Do not allow this pressure to exceed cylinder port pressure.

2. Standard velocity for an unloaded cylinder.

Mass

																	g
		Side mor	unt mass					Addition	al mass								
Culinder here	Stroke	Ctandard	Concor	With 1 concor owitch	(appear outlind	lor only)	Mounting	fixture (rod)	Head	mounting f	ixture	Vac	uum p	ad mo	del (w	ith soc	cket)
Cylinder bore	mm	Standard	Selisor	WILLI I SENSOR SWILCH	(sensor cynno	ier only)	Flange-type	Flange-type	Foot-type	Flange-type	Flange-type	-	DO 5	DC	6	D 10	DIE
		cynnder	cynnder	ZC130 ZC153	CS5T 🗌 🕻	CS11T	A-mount	B-mount	A-mount	A-mount	B-mount	P2	P3.3	PO	PO	P10	P 15
	5	7:	2														
	10	8	1														
10	15	90	0		0			0	24		0			°			
10	20	99	9		0			2	24		0		`	5			
	25	10	8														
	30	11	7														
	5	14	4														
	10	16	1														
16	15 178 20							4	50	1	7				1	6	6
10	20 195							4	55		/				+	Ċ	2
	25	21	2														
	30	229	9														

Sample calculation (for a **BDAVS** 10x20 sensor cylinder with 2 sensor switches): $99 + (20 \times 2) = 139g$ Remark: Sensor switch lead wires come in 2 different lengths: A : 1000mm, B : 3000mm

Order Codes

- The photograph shows a mounting fixture for the head side.
- For order codes, see page 532.
- Comes with 2 mounting screws.

 For sensor cylinders
 For order codes, see page 538.
 Comes with 2 mounting screws.

Vacuum Pad Mass (With sockets)

							ç
Pad model	P2	P3.5	P6	P8	P10	P15	Coolect formale
Pad diameter Cylinder bore mm mm	2.5	3.5	6	8	10	15	thread diamete
10	3	3	3	3	—	—	M4×0.7
16	—	—	4	4	6	6	M5×0.8

Rubber Pads: Materials and Their Properties

Material	Item	Tensile strength	Stretching	Oil resistance (gasoline)	Oil resistance (benzol)	Weather resistance	Ozone resistance	Heat resistance	Cold resistance	Resistance to chemicals	Abrasion resistance	Electrical insulation	Shear resistance	Adhesiveness (metal)	Resistance to gas permeation	Hardness HS
	NBR (N)	O	0	\bigcirc	\bigtriangleup	0	0	0	×	0	0	0	0	0	0	70 ± 5
Standard	Silicone (S)		0	\bigtriangleup	\bigtriangleup	0	0	0	O	0	×	O	×	×		50 ± 5
	Urethane (U)	O	0	0	0	\bigcirc	O	×	0	0	\bigcirc	O	0		0	70 ±5
	Viton (F)	O	0	O	O	\bigcirc	O	0	0	0	0	O	0		0	70 ±5

Remarks: \bigcirc Excellent \bigcirc Acceptable in some cases \triangle Substandard \times Unacceptable

● *φ* 16 Standard Cylinders BDAV

Φ 16 Sensor Cylinders BDAVS

Principle Materials

No.	Name	Materials
1	Body	Aluminum (anodized)
2	Rod cover (Note 1)	Aluminum (black anodized)
3	Rod bushing	Oil-impregnated copper alloy
4	Piston rod	Stainless steel
5	Piston	Brass
6	Spacer	Brass
7	Snap ring	Stainless steel
8	Retainer	Brass
9	Bumper	Urethane rubber
(10)	Packing case	Brass
11	Packing case B	Brass
(12)	Support (Note 2)	Brass
(13)	Magnet	Plastic magnet
(14)	Plate	Brass (electroplated with nickel)
(15)	Guide pin	Stainless steel
(16)	Rod nut	Hard steel (electroplated with nickel)
17	Seal washer	Synthetic rubber (NBR) • Rolled plate
(18)	Set screw	Hard steel blackening
(19)	Piston packing	Synthetic rubber (NBR)
20	0-ring	Synthetic rubber (NBR)
(21)	0-ring	Synthetic rubber (NBR)
22	Rod packing	Synthetic rubber (NBR)
23	Socket	Brass (electroplated with nickel)

Notes: 1. Hard steel (black zinc plated) is used for the foot-type A-mount for the head.

2. The support does not come in size ϕ 10.

Packing

Name Diameter mm	Rod packing	Piston packing	O-ring	O-ring
10	MY-8×5×2	PPH-10	10×7.6×1.2	4.6×3.4×0.6
16	MY-9×6×2	PPH-16	16×13×1.5	6×4.4×0.8

Vacuum Pad Installation Dimensions

φ 10
 P2, P3.5

P6, P8

Code	•	Б	~	6	Ц	F	(depe	nds o	n stroke)	6	ш	-		ĸ		м	м	~	в
Diameter	A	В				5	10	15	20 • 25 • 30	G	п		J	ĸ	L		IN	0	F
10	66	23	43	13.5	15.5	10	10	00		6	10	7	2.4	$M4 \times 0.7$	8 ⁰ -0.05	19	11.5	15	ϕ 3.5; Counterbore: ϕ 6; Depth: 3.2 (Both)
16	70	25	45	16	17.5	10	10	23	20	7	12	8	3.2	M5×0.8	10 ⁰ -0.05	22	12.5	19	φ 4.5; Counterbore: φ 7.6; Depth: 4.2 (Both)

Code Diameter	Q	R	s	т	U	v	w	x	Y	z	CD	CE	CF	СР	BP	DD	DE	DF	xz	ΥZ
10	18	8	24	14	10.5	5	6.5	42	16	24	9	8.5	4	3	M3×0.5; Depth: 6.5	10.2	1.5	4	11.5	13
16	25	12	33	20	12	6	7.5	47	24	23	12.5	9	6	4	M4×0.7; Depth: 6.5	12.5	2	5	16	19

P10, P15

Vacuum Pad Installation Dimensions

Code		Б	<u> </u>	_	-	F	(depe	nds o	n stroke)	6				r		м	N	0	в
Diameter	A	Р			E	5	10	15	20 • 25 • 30	G	п	•	J	r.	L	IVI	IN	0	Р
10	66	23	43	13.5	15.5	10	10	00	00	6	10	7	2.4	M4×0.7	8 ⁰ -0.05	19	11.5	15	ϕ 3.5; Counterbore: ϕ 6; Depth: 3.2 (B
16	70	25	45	16	17.5	16	18	23	28	7	12	8	3.2	M5×0.8	10 ⁰ -0.05	22	12.5	19	φ 4.5; Counterbore: φ 7.6; Depth: 4.2 (B

Code Diameter	s	т	U	v	w	x	Y	z	AF	AP	вв	вс	BG	вн	CD	CE	CF	СР	DD	DE	DF	xz	ΥZ
10	24	14	10.5	5	6.5	42	16	24	8	3.5	29	31.5	3.5	16	9	8.5	4	3	10.2	1.5	4	11.5	13
16	33	20	12	6	7.5	47	24	23	12	4.5	32	42	4.5	21	12.5	9	6	4	12.5	2	5	16	19

Dimensional Drawings for Flange-type B-mount (Unit: mm)

Vacuum Pad Installation Dimensions

φ 10
 P2, P3.5

P6, P8

Code		0	~	6	E	F	(depe	nds o	n stroke)	6				r		м	м	0	Б
Diameter	A	В				5	10	15	20 • 25 • 30	G	п	•	J		L L		IN	0	F
10	66	23	43	13.5	15.5	10	10	00		6	10	7	2.4	M4×0.7	8 ⁰ -0.05	19	11.5	15	\$ 3.5; Counterbore: \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$6; Depth: 3.2 (Both)
16	70	25	45	16	17.5	10	10	23	20	7	12	8	3.2	M5×0.8	10 ⁰ -0.05	22	12.5	19	φ 4.5; Counterbore: φ 7.6; Depth: 4.2 (Both)

Code Diameter	s	т	U	v	w	x	Y	z	AP	вв	BE	BF	BI	CD	CF	сн	СР	DD	DE	DF	γz
10	24	14	10.5	5	6.5	42	16	24	3.5	29	26	20	5	9	4	11.5	3	10.2	1.5	4	13
16	33	20	12	6	7.5	47	24	23	4.5	32	36	28	6	12.5	6	16	4	12.5	2	5	19

emark: Figures enclosed in parentneses are tr dimensions for inside screws of **PE**.

MOUNTING BRACKETS

Rod Mounting Brackets Head Mounting Brackets

Order Codes for Mounting Brackets

Installation position	Mounting bracket Cylinder bore mm	Side mount	Foot-type A-mount	Flange-type A-mount	Flange-type B-mount
Dedetde	10	L100A	_	L103A	L103B
Rod side	16	L160A	—	L163A	L163B
	10	—	B101A	B103A	B103B
Head side	16	_	B161A	B163A	B163B

Remarks: 1. All mounting brackets come with 2 mounting screws.

2. All head side mounting brackets are sold separately.

3. To order a rod side mounting bracket already assembled to the cylinder, see the order codes on page 526.

4. There is no rod side foot-type A-mount.

5. Rod side mounting brackets include rod bushings.

B For head side

Dimensional Drawings (Unit: mm)

Code Cylinder bore	G	Q	R	s	т	AC	AD	AF	AG	AI	AP	вс	BE	BF	BG	BH	BJ
10	6	18	8	24	14	31	14	8	10	4	3.5	31.5	26	20	3.5	2 ^{+0.05}	12 ^{+0.1}
16	7	25	12	33	20	41.5	17	12	12	5	4.5	42	36	28	4.5	2 ^{+0.05}	18 ^{+0.1}

SENSOR SWITCHES

Solid State Type Reed Type

Symbol

Specifications

Solid state type

<u> </u>		
Model	ZC130□	ZC153
Wiring	2 wires	3 wires
Power supply voltage	—	DC4.5~28V
Load voltage	DC10~28V	DC4.5~28V
Load current	4~50mA	100mA max.
Consumption current with power ON	_	10mA max. (at DC24V)
Internal drop voltage (Note 1)	3.5V max.	0.5V max. (at 50mA)
Current leakage	1mA max. (at DC24V)	50 μ A max . (at DC24V)
Delay	1ms	max.
Insulation resistance	100M Ω min. (at DC500V r	nega; case-lead wire terminal)
Insulation withstanding voltage	AC500V (50/60Hz) 1 mi	nute (case-lead wire terminal)
Shock resistance (Note 2)	294.2m/s ² {30.0	G} (non-repeating)
Vibration resistance (Note 2)	88.3m/s ² {9.0G} (total a	mplitude: 1.5mm•10~55Hz)
Protective case	IP67 (IEC standards), JIS	S C 0920 (watertight type)
Operation indicator	Red LED indicator light	s up when power is ON.
Lead wire	PVC 0.2SQ \times 2 lines (brown · blue) $\times l$ (Note 3)	PVC 0.2SQ \times 3 lines (brown · black · blue) $\times l$ (Note 3)
Operating temperature range	0~(0°C
Storage temperature range	-10~	-70°C
Mass (including installation fixture)	20g (when lead wi	re is 1000mm long)
Notos: 1. Internal drep voltage varies depending on the	load ourrept	

Notes: 1. Internal drop voltage varies depending on the load current. 2. Figures based on tests performed by KOGANEI.

3. Lead wire length I: A: 1000mm, B: 3000mm

Reed type

Model	COST	C611T					
Item	CS51	CSIII					
Wiring	2 w	vires					
Load voltage	DC5~28V AC85~115V (r.m.s.)	DC10~28V					
Load current	DC0.1~40mA AC2~25mA	DC5~40mA					
Internal drop voltage	10mV max. (with 40mA load current)	2.1V max. (with 40mA load current) (Note 1)					
Current leakage	On	nA					
Delay	1ms	max.					
Insulation resistance	100M Ω min. (at DC500V r	nega; case-lead wire terminal)					
Insulation withstanding voltage	AC1000V (50/60Hz) 1 minute (case-lead wire terminal)						
Shock resistance (Note 2)	294.2m/s ² {30.0G} (non-repeating)						
Vibration resistance (Note 2)	88.3m/s ² {9.0G} (total amplitude: 1.5mm	 10~55Hz) Resonant frequency: 2750 ± 250Hz 					
Protective case	IP66 (IEC standards), JIS	S C 0920 (watertight type)					
Operation indicator	—	Red LED indicator lights up when power is ON					
Lead wire	PVC 0.2SQ×2 lines	$(brown \cdot blue) \times l$ (Note 3)					
Electrical service life (Note 2)	5×10 ⁶ ti	mes min.					
Operating temperature range	0~60°C						
Storage temperature range	-10~70°C						
Contact point protection	Required (see section on page 53	35 "Protection of Contact Points")					
Mass (including installation fixture)	20g (when lead wi	re is 1000mm long)					

Notes: 1. Internal drop voltage varies depending on the load current. 2. Figures based on tests performed by KOGANEI.

3. Lead wire length I: A: 1000mm, B: 3000mm

Order Codes for Sensor Switches Only

	-Sensor switch	-Options -Lead wire length-	With sensor holder –
Solid state type With display lamp DC10~28V	ZC130		
Solid state type With display lamp DC4.5~28	V ZC153	Α	-B10
Reed type DC5~28V	COFT	B	-B16
Without display lamp AC85~115	5V C351		
Reed type With display lamp DC10~28V	CS11T		
	●A:1000r ●B:3000r	mm —— mm ——	
	●-B10 : ●-B16 :	For ϕ 10 cylir For ϕ 16 cylir	nder —

★Order codes for sensor holders only For ϕ 10 cylinder—**T-B10** For ϕ 16 cylinder—**T-B16**

Changing Sensor Switch Position

- •When the set screw is loosened, the sensor switch can be moved freely in an axial direction.
- Tighten the set screw with a torque of 20N cm max.

Minimum Cylinder Stroke for Various Sensor Switches

				mm
Culinder here	Solid state s	ensor switch	Reed sens	sor switch
Cylinder bore	2 installed	1 installed	2 installed	1 installed
10	F	F	10	F
16	5	5	10	5

Remarks: Two sensor switches cannot be installed to the flange-type B-mount.

When a flange-type B-mount is used on the rod side, 1 sensor is installed on the head side. When a flange-type B-mount is used on the head side, 1 sensor is installed on the rod side.

Sensor Switch Operating Range • Hysteresis • Point of Maximum Sensitivity

mm

Operating range: 1

The term "operating range" refers to the range of the piston between the time it moves to turn the sensor ON, and when it moves in the same direction to turn the sensor OFF.

•Hysteresis: C

The term "hysteresis" refers to the distance traveled by the piston between the following two points A and B:

- A: The point at which the piston is located when it moves to turn the sensor switch ON.
- B: The point to which the piston moves in the opposite direction to turn the sensor switch OFF.

Cvlinder bore	ZC130□,	ZC153	CS5T , CS11T				
Cylinder bore	Operating range	Hysteresis	Operating range	Hysteresis			
10	2.0~3.0	0.3 max.	5.8~8.3	1.6 max.			
16	2.5~4.0	0.3 max.	7.5~9.4	1.9 max.			

Remark: The figures in this table are only approximate.

Installation Position of the Stroke End Sensor Switch

Sensor cylinder

					mm						
Culinder here	Installation position		Sensor switch model								
Cyllinder Dore	Installation position	ZC130	ZC153	CS5T	CS11T						
10	Х	5.	.5	4.5	8.0						
10	Y	1.	.5	0.5	4.0						
16	Х	6.	.0	4.5	8.0						
16	Y	1.	.5	0	3.5						

Remarks: 1. The figures in the table above are approximate guidelines for sensor switches with a standard stroke. For instructions on how to set the switch in the best position, see page 539.

2. In the illustration on the left, the port is facing upward.

3. Install the sensor switch so that the name plate (with the model name) is face up.

Internal Circuits

Solid state type ZC130 ZC153 Display LED Diode (to protect reverse connection) Display LED Brown ¦(+) Brown (+)Load Black ť Load Main switch Main switch DC4.5~28V DC10~28V circuit circuit Blue (-)(-) Blue (External electrical connection) (switch) (External electrical connection) (switch) Zener diode (for surge protection) Zener diode (for surge protection) Reed type CS5T CS11T Display LED * -O Brown -0 Brown (+) ß $\binom{p}{2}$ -O Blue

Protection Circuits for Reed Type Sensors

To assure stable performance of reed type sensors, take the following measures to protect the contact points:

•When connected to an inductive load (solenoid relay, etc.)

When capacitative surges occur
(When lead wire length is over 10m)
Choke coil: 1~5mH

Electrical Connections for Solid State Sensor Switches

H MULTIMOUNT CYLINDERS FOR VACUUM PADS

- Caution: 1. Pay attention to the color of the lead wires when connecting. Improper connections could result in malfunctions or damage.
 - 2. A 2-wire solid state type sensor switch should not be connected to a TTL or C-MOS.
 - 3. Surge protection is recommended for solenoid relays and other inductive loads.
 - 4. In the case of OR connections, the outputs (the black lead wires, for example) from multiple sensors can be directly connected together, but the current leakage will be increased in proportion to the number of connected sensors, therefore take caution against possible erratic load reset.
- The sensors operate on the principle of magnetic sensing. Do not use them under a strong external magnetic field, or near power lines or other large electric currents.
- 6. Do not pull on the lead wires forcefully, bend them sharply, or otherwise subject them to undue force.
- 7. Do not use these sensor switches where they would be exposed to chemicals, harmful dases, etc.
- 8. If the sensors must be used under water and/or oil dripping or vapors, consult us.
- 9. In the case of AND connections, the increased number of sensors will result in greater internal voltage drop. Be cautious against any possibilities of improper operation of loads.

Dimensional Drawings for Sensor Switches (Unit: mm)

* Lead wire length I : A: 1000mm, B: 3000mm

Dimensional Drawings for Sensor Switch Installation (Unit: mm)

• *q* 10

● *ϕ* 16

When installing more than one multimount cylinder with sensor switch cylinders in close proximity to each other, observe the requirements listed in the table to the right.

Remark: There are no particular requirements regarding the installation of cylinders other than those listed above.

Order Codes for Shield Plates

Stroke mm Cylinder bore mm	5, 10, 15	20, 25, 30
10	BVS101	BVS102
16	BVS161	BVS162

Remarks: 1. All shield plates come with 2 mounting screws. 2. All shield plates are sold separately.

Proper Handling and Precautions

Replacement of Mounting Brackets

Rod side mounting brackets

Remove the rod nut, loosen the rod cover (mounting bracket) and remove the rod cover (mounting bracket). To install the new mounting bracket, reverse the procedure just described. In the case of a non-rotating type cylinder, loosen the set screw for plate, remove the plate assembly and remove the rod cover (mounting bracket). To mount the replacement bracket, fit the mounting assembly into the holes on the cylinder guide pins, insert the plate assembly and secure the piston rod by tightening the set screw for the plate. With the piston rod pushed all the way to the stroke end on the head side, tighten the plate assembly with a gap of about 0.5mm between the plate and the rod bushing.

Mounting bracket on the head side

Comes with a mounting screw. Use this screw to assemble the bracket.

- Caution: 1. To install the side mount cylinder as accurately as possible, assemble the device so that the rod cover and head cover do not project beyond the body of the cylinder, and when installing the cylinder to the machine, be sure it fits flat against the machine.
 - 2. To secure the mounting bracket, the mounting screw that comes with it can be used. If using a commercially sold screw, it should be of the size listed in the table below.

Cylinder bore	Screw size	Length below head
10	M3×0.5	8
16	M4×0.7	8

3. Please tighten the set screw for plate with the proper torque and use the proper size hexagonal wrench. See the table below

Cylinder bore	Tightening torque (N·cm)	Nominal size of hexagonal wrench
10	98	1.5
16	137	2

Setting at the Best Position

•Setting the stroke end on the head side

- 1. Move the piston until it touches the stroke end on the head side.
- With the sensor switch secured loosely to the body, move the sensor switch from the head side toward the rod side until it reaches the ON position (at which point, on models ZC130, ZC153 and CS11T, the LED will light up). Then move it either 1 mark (1mm) further (for models ZC130 and ZC153) or 2 marks (2mm) further (for models CS5T and CS11T) and tighten the set screw.

•Setting the stroke end on the rod side

Do the opposite of what was done on the head side.

- Move the piston until it touches the stroke end on the rod side.
- With the sensor switch secured loosely to the body, move the sensor switch from the rod side toward the head side until it reaches the ON position. Then move it either 1 mark (1mm) further (for models ZC130 and ZC153) or 2 marks (2mm) further (for models CS5T and CS11T) and tighten the set screw.

General Precautions

Pressurization

- 1. Applying pressure at the vacuum port should only be allowed during vacuum breaking and it should be less than the operating pressure at the cylinder port.
- 2. When applying pressure at the cylinder port is 0, do not apply pressure from the vacuum port.

Installation

- 1. When the load ratio is high or the device is being used at high speed, install an external stopper so that the cylinder will not be subject to direct impact.
- 2. The $4-M3 \times 0.5$ female-thread on the cylinder body should only be used to install a sensor switch or a shield plate.

Piping

Before piping to the cylinder, be sure to thoroughly flush the piping (using compressed air). Be careful not to let chips, seal tape, rust, or other foreign material get inside the piping while installing it. Such foreign material could cause air leaks or other malfunctions.

Atmosphere

- When the equipment is used where it will be exposed to dripping water or oil, or where there is a lot of dust, protect it with a cover.

Lubrication

These devices can be used without lubrication, but if lubrication is required, it is recommended that a product equivalent to grade 1 turbine oil (ISO VG32) be used. Do not use spindle oil or machine oil.

Air supply

- 1. Air is the proper media for this product. If you wish to use some other type of media, consult us.
- Supply the valve with clean air which is not contaminated with compressor oil or other impurities. Install an air filter (filtration of 40 μm max.) near the cylinder and valve to eliminate water vapor and solid matter. Liquid which collects in the valve should be drained regularly.