
Slit type rodless cylinders

Magnet type rodless cylinders

ORS series MRS series

High Rigidity

Maximum load capacity: 600N [135lbf.] (ORS32,40/MRS32,40) Pitching moment: 60N·m [44.3ft-lbf] (ORS32,40/MRS32,40)

Since shock absorber unit provides positioning of the end of the stroke, it enhances absorbing capacity to the maximum extent. The shock absorber does not protrude beyond the end plate. Moreover, moving the shock absorber unit is all that is required to adjust the stroke all along its range.

Specified Stroke Pus 10mm [0.394in.]

Since the shock absorber can be used for fine stroke adjustment of +5mm [0.197in.] for one side, it totally offers a + 10mm [0.394in.] margin in regards to the specified stroke.

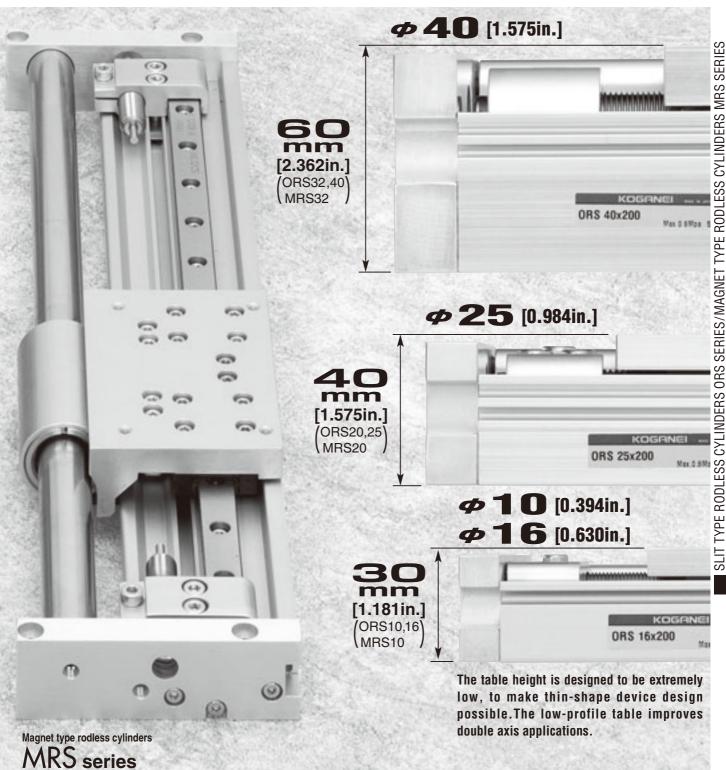
Heli-serts in the Table's Mounting Threads are Optional.

Versatile Mounting Direction

More versatile mounting, with direct mounting at the end plate, or mounting with T-slots on the bottom surface.

While mounting dimensions are the same for ORS and MRS, the table height varies.

Uses Embedded Type Sensor Switch Easily and clearly pulling out lead wires from the grooves on the body.


Concentrated connection ports as standard equipment save space.

The greatest part of its low center of gravity.

Handling Instructions and Precautions

General precautions

Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the rodless cylinder. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

Atmosphere

- 1. If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit or mount with the slider facing downward.
- 2. Do not engage in electric welding close to the rodless cylinders ORS, MRS series. The welding spatters could damage the outer seal band, etc.
- 3. The product cannot be used when the media or ambient atmosphere contains any of the substances listed below. Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Lubrication

- The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or lithium soapbased No. 2 or their equivalents.
- The MRS series requires periodic greasing. Apply the recommended grease to the cylinder tube's outer surface every 300km [186mi.] of traveling distance.
 - Moreover, at 6 month intervals, or every 300km [186mi.] of traveling distance, apply lithium soap-based grease on the raceway surface of the track rail.
 - <Recommended grease>

MRS series: Fluorine-contained lithium type grease

Media

- 1. Use air for media. Consult us for the use of any other media.
- 2. Air used for the rodless cylinders ORS, MRS series should be clean air that contains no moisture, dust, oxidized oil, or other foreign material in the compressed air. Install an air filter (filtration of a minimum 40 µm) near the rodless cylinders ORS, MRS series or valve to remove collected liquid or dust. In addition, drain the air filter periodically.

SLIT TYPE RODLESS CYLINDERS ORS **SERIES**

Symbol

Specifications

	Bore size											
Item	mm [in.]	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]					
Operation type			Double acting type									
Media				A	ir							
Operating pressure range MPa [psi.] 0.25~0.7 [36~102] 0.15~0.8 [22~116]												
Proof pressure MPa [psi.] 1.05 [152] 1.2 [174]												
Operating temperature range °C [°F] 0~60 [32~140]												
Operating speed ra	ange mm/s [in./sec.]	150~1000 [5.9~39.4] (2000 [78.7]) Note2		100~100	00 [3.9~39.4] (2000 [78.7]) Note2						
Cushion			Shoo	ck absorber (Standar	d equipment for both	ends)						
Lubrication	Cylinder portion	Not required (If Iul	orication is required,	use Turbine Oil Clas	s 1 [ISO VG32] or equ	ivalent, or lithium so	ap-based grease.)					
Lubrication	Guide portion			Required (Lithium	soap-based grease)							
Repeatability	mm [in.]			±0.05	±0.002]							
Parallelism Note1	mm [in.]			0.3 [0.012]							
Stroke adjusting range mm [in.] Adjustable over the entire stroke (Specified stroke +10mm [0.394])												
Maximum load	capacity N [lbf.]	130 [2	9.2]	300	[67.4]	600	[135]					
Port size		M5×	0.8	Ro	:1/8	Ro	1/4					

Notes: 1. This is the parallelism between the upper surface of the table and the bottom of the body. It is not the same as the traveling parallelism.

Specifications of Shock Absorber

Item	Model	KSHJ10×10-01	KSHJ10×10-02	KSHJ14×12-01	KSHJ14×12-02	KSHJ20×16-01	KSHJ20×16-02	
Applicable cylinder		ORS10,	ORS16	ORS20,	ORS25	ORS32,	ORS40	
Maximum absorption	J [ft·lbf]	3 [2	2.2]	10 [7.4]	30 [2	22.1]	
Absorbing stroke	mm [in.]	10 [0	.394]	12 [0	.472]	16 [0	.630]	
Maximum impact speed	mm/s [in./sec.]	1000 [39.4]	2000 [78.7]	1000 [39.4] 2000 [78.7]		1000 [39.4] 2000 [78		
Maximum operating frequen	cy cycle/min	6	60	4	0	30		
Maximum absorption per J/n	minute nin [ft·lbf/min.]	120 [88.5]	240	[177]	450	[332]	
Spring return force ^{Note} N [lbf.]] 0.8	1.80]	9.2 [2.07]	22.0 [4.95]		
Angle variation		1° or	less		3° or less			
Operating temperature ra	nge °C [°F]		0~60 [32~140]					

Note: Values at retracted position.

Caution: The life of the shock absorber may vary from the Slit Type Rodless Cylinder, depending on its operating conditions.

Cylinder Thrust

								N [lbf.]
Bore size	Pressure area			Air p	ressure MPa	[psi.]		
mm [in.]	mm² [in.²]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]
10 [0.394]	78.5 [0.122]	_	24 [5.4]	31 [7.0]	39 [8.8]	47 [10.6]	55 [12.4]	_
16 [0.630]	201 [0.312]	40 [9.0]	60 [13.5]	80 [18.0]	101 [22.7]	121 [27.2]	141 [31.7]	161 [36.2]
20 [0.787]	314 [0.487]	63 [14.2]	94 [21.1]	126 [28.3]	157 [35.3]	188 [42.3]	220 [49.5]	251 [56.4]
25 [0.984]	490 [0.760]	98 [22.0]	147 [33.0]	196 [44.1]	245 [55.1]	294 [66.1]	343 [77.1]	392 [88.1]
32 [1.260]	804 [1.246]	161 [36.2]	241 [54.2]	322 [72.4]	402 [90.4]	482 [108.4]	563 [126.6]	643 [144.5]
40 [1.575]	1256 [1.947]	251 [56.4]	377 [84.7]	502 [112.8]	628 [141.2]	754 [169.5]	879 [197.6]	1005 [225.9]

^{2.} Figures in parentheses () are for when ORS series with shock absorbers are set for 2000mm/s [78.7in./sec.] impact speed. Remark: For the relation between the mass and piston speed, see the shock absorber absorption capacity graph on p.1196.

Bore Size and Stroke

		mm
Bore size	Standard strokes	Available strokes
10	150,200,250,300,350,400,500,600	50~2000
16	150,200,250,300,350,400,500,600	50~3000
20	200,250,300,350,400,500,600,700,800	50~3000
25	200,250,300,350,400,500,600,700,800	50~3000
32	200,250,300,350,400,500,600,700,800	50~3000
40	300,400,500,600,700,800,900,1000	50~3000

Remark: Non-standard strokes are available at each 50mm stroke. For delivery, consult us .

Mass

				kg [lb.]
Bore size mm [in.]	Zero stroke mass	Additional mass for each 50mm [1.969in.] stroke	Additional mass of ZE	1 sensor switch Note
10 [0.394]	0.85 [1.87]	0.13 [0.29]		
16 [0.630]	0.96 [2.12]	0.15 [0.33]	0.015 [0.033]	
20 [0.787]	2.65 [5.84]	0.29 [0.64]		0.035 [0.077]
25 [0.984]	2.77 [6.11]	0.31 [0.68]	0.015 [0.055]	0.033 [0.077]
32 [1.260]	6.41 [14.13]	0.51 [1.12]		
40 [1.575]	7.30 [16.10]	0.55 [1.21]		

Note: Sensor switch types A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Air Flow Rate and Air Consumption

While the rodless cylinder's air flow rate and air consumption can be found through the following calculations, the quick reference tables below provides the answers more conveniently

Air flow rate: $Q_1 = \frac{\pi D^2}{4} \times L \times \frac{60}{t} \times \frac{P + 0.101}{0.101} \times 10^{-6}$

Air consumption: $Q_2 = \frac{\pi D^2}{4} \times L \times 2 \times n \times \frac{P + 0.101}{0.101} \times 10^{-6}$

Q1: Required air flow rate for cylinder
Q2: Air consumption of cylinder
D: Cylinder tube inner diameter
L: Cylinder stroke
t: Time required for cylinder to travel 1 stroke
n: Number of cylinder reciprocations per minute

: Pressure

Air flow rate: Q₁'= $\frac{\pi D^{'2}}{4} \times L' \times \frac{60}{t} \times \frac{P'+14.7}{14.7} \times \frac{1}{1728}$

Air consumption: $Q_2' = \frac{\pi \ D'^2}{4} \times L' \times 2 \times n \times \frac{P'+14.7}{14.7} \times \frac{1}{1728}$

*Refer to p.54 for an explanation of ANR.

cm3 [in.3]/Reciprocation (ANR)

MPa

Bore size	Air pressure MPa [psi.]											
mm [in.]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]					
10 [0.394]	_	0.623 [0.0380]	0.779 [0.0475]	0.934 [0.0570]	1.090 [0.0665]	1.245 [0.0760]	_					
16 [0.630]	1.198 [0.0731]	1.596 [0.0974]	1.993 [0.1216]	2.391 [0.1459]	2.789 [0.1702]	3.187 [0.1945]	3.585 [0.2188]					
20 [0.787]	1.872 [0.1142]	2.493 [0.1521]	3.115 [0.1901]	3.737 [0.2280]	4.359 [0.2660]	4.980 [0.3039]	5.602 [0.3419]					
25 [0.984]	2.924 [0.1784]	3.896 [0.2377]	4.867 [0.2970]	5.838 [0.3563]	6.810 [0.4156]	7.781 [0.4748]	8.753 [0.5341]					
32 [1.260]	4.792 [0.2924]	6.384 [0.3896]	7.976 [0.4867]	9.568 [0.5839]	11.16 [0.6810]	12.753 [0.7782]	14.345 [0.8754]					
40 [1.575]	7.486 [0.4568]	9.973 [0.6086]	12.46 [0.7604]	14.95 [0.9123]	17.43 [1.0636]	19.92 [1.2156]	22.41 [1.3675]					

The figures in the table show the air flow rate and air consumption when a rodless cylinder makes 1 reciprocation with stroke of 1mm [0.0394in.]. The air flow rate and consumption actually required are found by the following calculations.

• Finding the air flow rate (for selecting F.R.L., valves, etc.)

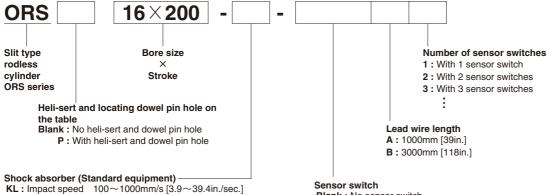
Example: When operating a rodless cylinder with bore size of 40mm [1.575in.] at speed of 300mm/s [11.8in./sec.] and under air pressure of 0.5Mpa [73psi.]

$$14.95 \times \frac{1}{2} \times 300 \times 10^{-3} = 2.24 \, \ell/s \, [0.0791 \, \text{ft}^3/\text{sec.}] \, \text{(ANR)}$$

(At this time, the air flow rate per minute is $14.95 \times \frac{1}{2} \times 300 \times 60 \times 10^{-3} = 134.55 \ \ell/min \ [4.750ft.^3/min.]$ (ANR).)

Finding the air consumption

Example 1. When operating a rodless cylinder with bore size of 40mm [1.575in.] and stroke of 100mm [3.94in.], and under air pressure of 0.5MPa [73psi.], for 1 reciprocation


14.95 \times 100 \times 10⁻³=1.495 ℓ [0.0528ft³]/Reciprocation (ANR)

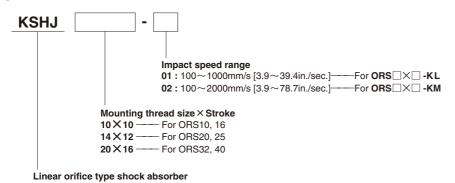
Example 2. When operating a rodless cylinder with bore size of 40mm [1.575in.] and stroke of 100mm [3.94in.], and under air pressure of 0.5MPa [73psi.], for 10 reciprocations per minute

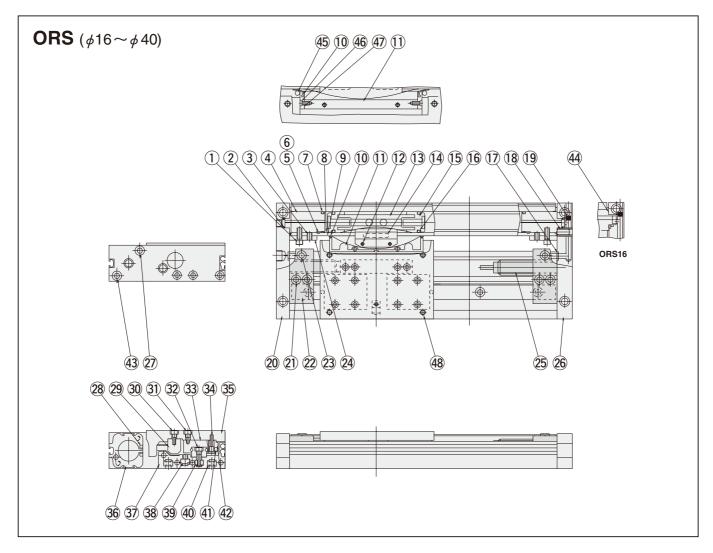
14.95 \times 100 \times 10 \times 10 $^{-3}$ = 14.95 ℓ /min [0.528ft.3/min.] (ANR)

Note: To find the actual air consumption required when using rodless cylinders, add the air consumption of the piping to the air consumption obtained from the above calculation.

Moreover, for the slit type rodless cylinder ORS series, add 1 ℓ/min [0.0353ft3/min.] (ANR) as air leakage from the slit.

KM : Impact speed 100~2000mm/s [3.9~78.7in./sec.]

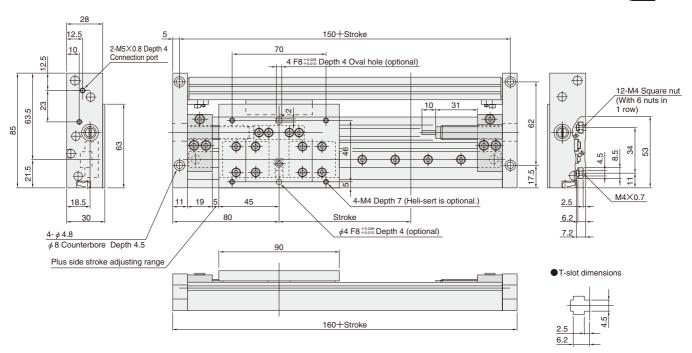

Blank: No sensor switch


DC10~28V **ZE135**: 2-lead wire Solid state type with indicator lamp DC4.5~28V **ZE155**: 3-lead wire Solid state type with indicator lamp

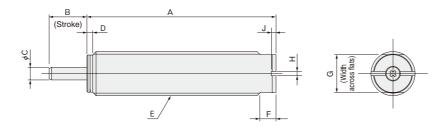
ZE101: 2-lead wire Reed switch type without indicator lamp DC5~28V, AC85~115V DC10~28V, AC85~115V **ZE102**: 2-lead wire Reed switch type with indicator lamp

Additional Parts

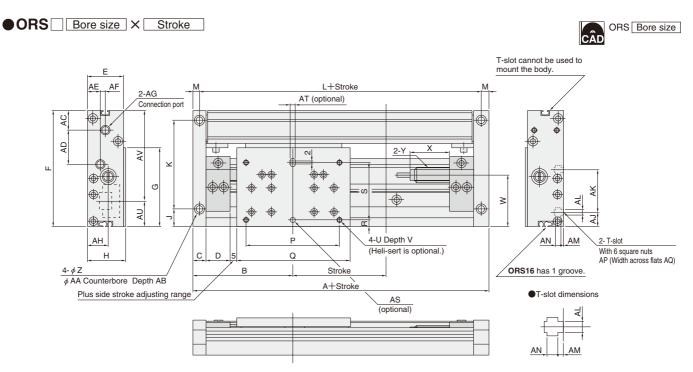
Shock absorber


Major Parts and Materials

No.	Parts	Materials	Q'ty	Remarks
1	Hexagon socket head bolt	Alloy steel	2	Zinc plated
2	Plate gasket	Synthetic rubber (NBR)	2	
3	Hexagon socket setscrew	Alloy steel	2	Black oxide
4	End pipe	Aluminum alloy	2	
(5)	Rivet	Brass	2	
6	Band washer	Brass	2	
7	Cylinder gasket	Synthetic rubber (NBR)	2	
8	Inner seal band	Stainless chrome steel	1	
9	Outer seal band	Stainless chrome steel	1	
10	Scraper	Nylon	1	For ϕ 40 [1.575in.], polyacetal, 2pcs.
11)	Piston mount	Aluminum alloy	1	Anodized, nylon for ϕ 10 [0.394in.]
12	Spring pin	Alloy steel	2	
13	Piston yoke	Aluminum alloy	1	Anodized (chromate treated zinc alloy for ϕ 10)
14)	Bearing strip	Polyethylene	2	For ϕ 40 [1.575in.], 4 pcs.
15	Piston	Polyacetal	2	
16	Piston seal	Synthetic rubber (NBR)	2	
17	Gasket	Rubber contained cork	2	
18	Hexagon socket setscrew	Alloy steel	2	Black oxide
19	Steel ball	Steel	1	
20	End plate L	Aluminum alloy	1	Anodized
21)	Hexagon socket head bolt	Alloy steel	4	Zinc plated
22	Attachment holder	Aluminum alloy	2	Anodized
23	Hexagon socket head bolt	Alloy steel	2	Zinc plated
24)	Band lock	Steel	2	Nickel plated


No.	Parts	Materials	Q'ty	Remarks
25	Shock absorber	_	2	
26	End plate R	Aluminum alloy	1	Anodized
27)	Hexagon socket head bolt	Alloy steel	8	Zinc plated
28	Magnet strip	Rubber magnet	2	
29	Stopper	Steel	1	Zinc plated
30	Hexagon socket head bolt	Alloy steel	4	Zinc plated
31)	Hexagon socket head bolt	Alloy steel	8	Zinc plated
32	Hexagon socket head bolt	Alloy steel	_	Zinc plated
33	Linear guide	Steel	1	
34	Hexagon socket button head bolt	Stainless steel	1	
35	Table	Aluminum alloy	1	Anodized
36	Cylinder barrel	Aluminum alloy	1	Anodized
37)	Base	Aluminum alloy	1	Anodized
38	Holder nut	Steel	2	Zinc plated
39	Square nut	Steel	_	Zinc plated
40	Square nut	Steel		Zinc plated
41)	Sensor magnet	Rare earth magnet	1	
42	Magnet holder	Aluminum alloy	1	Anodized
43	Low head cap screw	Alloy steel	2	Black oxide for φ 10, 16, hexagon socket button head bolt
44	Washer	Aluminum alloy	1	Anodized
45	Scraper holder O-ring	Synthetic rubber (CR)	1	
46	End plate mounting screw	Steel	2	Nickel plated
47	End plate	Aluminum alloy	2	Anodized
48	Heli-sert	Stainless steel	(4)	Optional

●ORS 10× Stroke



Dimensions of Shock Absorber (mm)

Model Code	Α	В	С	D	E	F	G	Н	J
KSHJ10 X 10-01, KSHJ10 X 10-02 (For	50	10	3	2	M10×1	5	8.5	1.3	1.5
KSHJ14 X 12-01, KSHJ14 X 12-02 (For	60	12	4	2	M14×1.5	5	12	1.3	1.5
KSHJ20 X 16-01, KSHJ20 X 16-02 (For \$\phi\$ 32 [1.260in.] and \$\phi\$ 40 [1.575in.])	77	16	5	3	M20×1.5	7	17	1.8	2

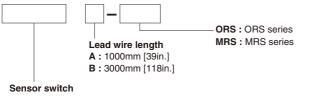
Note: Locating dowel	nin hole and	heli-sert are	ontional
Note. Localing dower	pii i ilole allu	Hell-Sell ale	optional.

Bore Code	Α	В	С	D	E	F	G	Н	J	K	L	M	P	Q	R	S
16 [0.630]	160	80	11	19	28	92	63	30	17.5	66	150	5	70	90	5	46
20 [0.787]	230	115	14	26	38	132	94	40	19	104	216	7	120	140	7	66
25 [0.984]	230	115	14	26	38	137	94	40	19	106	216	7	120	140	7	66
32 [1.260]	300	150	17	35	59	164	102	60	20	132	284	8	160	186	10	82
40 [1.575]	300	150	17	35	59	173	102	60	20	138	284	8	160	186	10	82

Bore Code	U	V	W	Х	Υ	Z	AA	AB	AC	AD	AE	AF	AG
16 [0.630]	M4×0.7	7	41.5	31	M10×1	4.8	8	4.5	16.5	26	10	3	M5×0.8
20 [0.787]	M6×1	9	61.5	34	M14×1.5	7	11	6.5	21	37	14	4	Rc1/8
25 [0.984]	M6×1	9	61.5	34	M14×1.5	7	11	6.5	24	39	14	5	Rc1/8
32 [1.260]	M8×1.25	14	65	42	M20×1.5	9	14	8.5	32	56	18.5	11	Rc1/4
40 [1.575]	M8×1.25	14	65	42	M20×1.5	9	14	8.5	38	59	18.5	11	Rc1/4

Bore Code	AH	AJ	AK	AL	AM	AN	AP	AQ	AS	AT	AU	AV
16 [0.630]	18.5	11	34	4.5	2.5	3.7	M4×0.7	8	φ 4F8 Depth 4	4F8 Depth 4 (Oval hole)	21.5	70.5
20 [0.787]	24	16	52	6.5	3	5.5	M6×1	10	φ 6F8 Depth 6	6F8 Depth 6 (Oval hole)	31.5	100.5
25 [0.984]	24	16	52	6.5	3	5.5	M6×1	10	φ 6F8 Depth 6	6F8 Depth 6 (Oval hole)	31.5	105.5
32 [1.260]	38.5	12	60	8.5	4	6.5	M8×1.25	14	φ 8F8 Depth 8	8F8 Depth 8 (Oval hole)	30	134
40 [1.575]	38.5	12	60	8.5	4	6.5	M8×1.25	14	φ 8F8 Depth 8	8F8 Depth 8 (Oval hole)	30	143

SLIT TYPE RODLESS CYLINDERS ORS SERIES/MAGNET TYPE RODLESS CYLINDERS MRS SERIES


SENSOR SWITCHES

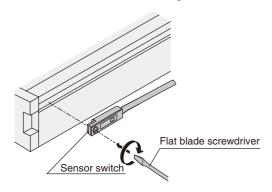
Solid State Type, Reed Switch Type

Symbol

Order Codes

ZE135 : Solid state type with indicator lamp **ZE101 :** Reed switch type without indicator lamp

DC10V~28V Horizontal lead wire
DC5V~28V Horizontal lead wire
AC85~115V

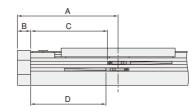

● For details of sensor switches, see p.1544.

ZE155: Solid state type with indicator lamp DC4.5V \sim 28V Horizontal lead wire **ZE102**: Reed switch type with indicator lamp DC10V \sim 28V Horizontal lead wire AC85 \sim 115V

Moving Sensor Switch

Loosening the sensor switch's mounting screw allows the sensor switch to be moved along the switch mounting groove on the

It is possible to insert the lead wire into the groove.



■ Tighten the mounting screw with a tightening torque of 20~30N·cm [1.8~2.7in·lbf].

Mounting Location of End of Stroke Detection Sensor Switch

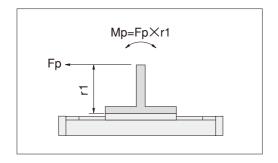
mm [in]

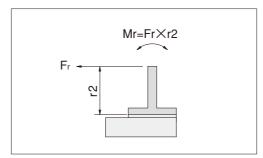
When the sensor switch is mounted in the locations shown below, the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

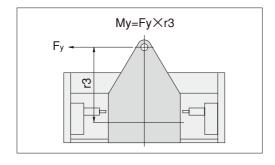
■ Reed switch type (ZE101, ZE102)

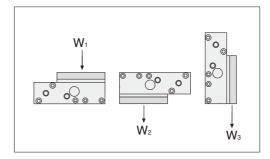
Model	Α	В	С	D
ORS10, MRS10	80 [3.150]	11 [0.433]	59 [2.323]	56.5 [2.224]
ORS16, MRS16	80 [3.150]	11 [0.433]	59 [2.323]	56.5 [2.224]
ORS20, MRS20	115 [4.528]	14 [0.551]	91 [3.583]	88.5 [3.484]
ORS25, MRS25	115 [4.528]	14 [0.551]	91 [3.583]	88.5 [3.484]
ORS32, MRS32	150 [5.906]	17 [0.669]	123 [4.843]	120.5 [4.744]
ORS40, MRS40	150 [5.906]	17 [0.669]	123 [4.843]	120.5 [4.744]

● Solid state type (ZE135, ZE155)


• • • • • • • • • • • • • • • • • • •						
Model	Α	В	С	D		
ORS10, MRS10	80 [3.150]	11 [0.433]	63 [2.480]	59.5 [2.343]		
ORS16, MRS16	80 [3.150]	11 [0.433]	63 [2.480]	59.5 [2.343]		
ORS20, MRS20	115 [4.528]	14 [0.551]	95 [3.740]	91.5 [3.602]		
ORS25, MRS25	115 [4.528]	14 [0.551]	95 [3.740]	91.5 [3.602]		
ORS32, MRS32	150 [5.906]	17 [0.669]	127 [5.000]	123.5 [4.862]		
ORS40, MRS40	150 [5.906]	17 [0.669]	127 [5.000]	123.5 [4.862]		




Selection and Mounting


Allowable load and moment

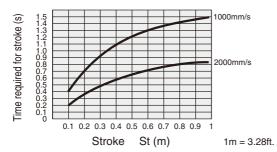
Although the rodless cylinders **ORS**, **MRS** series can be used with directly applying loads, make sure that the load and moment do not exceed the values in the table below.

 $\label{eq:pitching moment: Mp=Fp×r1 (N·m)} $$ Rolling moment: Mr=Fr×r2 (N·m) $$ Yawing moment: My=Fy×r3 (N·m) $$ Maximum load capacity: W1, W2, W3 (N) $$$

Moment and Max. load		Mr N·m [ft·lbf]	My N·m [ft·lbf]	W₁ N [lbf.]	W ₂ N [lbf.]	W₃ N [lbf.]
ORS10, MRS10	6 [4.4]	5 [3.7]	6 [4.4]		130 [29.2]	
ORS16, MRS16	6 [4.4]	5 [3.7]	6 [4.4]		130 [29.2]	
ORS20, MRS20	26 [19.2]	25 [18.4]	25 [18.4]		300 [67.4]	
ORS25, MRS25	26 [19.2]	25 [18.4]	25 [18.4]		300 [67.4]	
ORS32, MRS32	60 [44.3]	50 [36.9]	60 [44.3]		600 [135]	
ORS40, MRS40	60 [44.3]	50 [36.9]	60 [44.3]		600 [135]	

Cautions: 1. The moment including the inertial force generated when the load is moved or stopped must not exceed the values in the above table. For the load and speed, keep within the range of the shock absorber capacity graph.

2. In the rodless cylinders ORS series, the T-slot on the cylinder barrel is not suitable for mounting. Since an insufficiently secured cylinder by using the above T-slot during operation could result in damage, always use an end plate mounting hole or a square nut in the T-slot on the bottom to mount the cylinder in place.

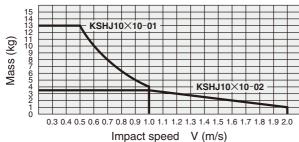

Shock absorber absorption capacity

Shock absorbers are standard equipment for the entire rodless cylinders ORS, MRS series. Find the figures for the absorption mass and impact speed from the impact speed graph, which then should be within the ranges of the "Shock absorber capacity graph" below. It cannot be used with speeds in excess of the maximum operating speeds of 1000mm/s [39.4in./sec.] or 2000mm/s [78.7in./sec.].

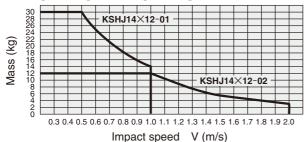
■ Impact speed graph (Horizontal use, at air pressure of 0.5MPa)

The graph below shows the table's required time to reach the end of the stroke, at impact speeds of 1000mm/s [39.4in./sec.] or 2000mm/s [78.7in./sec.], for each stroke.

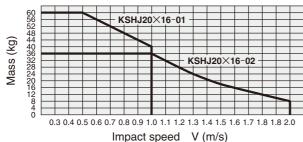
In operation, set the time in above area of the graph's curve.



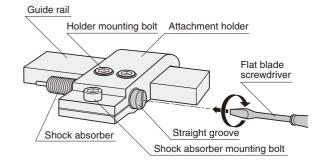
Shock absorber capacity graph


(Horizontal operation, at air pressure of 0.5MPa)

The "mass" in the graph refers to the total mass carried by the ORS and MRS series. "Impact speed" refers to the speed immediately before striking the shock absorber. Note that this is not the same as "average speed (cylinder stroke/time required)."


• For ϕ 10 [0.394in.] and ϕ 16 [0.630in.]

For φ20 [0.787in.] and φ25 [0.984in.]


• For ϕ 32 [1.260in.] and ϕ 40 [1.575in.]

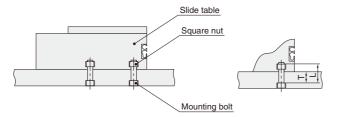
Shock absorber stroke adjustment

In the rodless cylinders ORS and MRS series, stroke adjustment by the shock absorber is easy for entire strokes.

- 1 Loosen the holder mounting bolts, and move the attachment holder to determine the rough position.
- ② Press the holder against the guides such that the shock absorber contacts the impact surface of the table at right angles, and then tighten and secure it in place with the holder mounting bolts.
- 3 Next, loosen the shock absorber mounting bolt.
- (4) Insert a flat blade screwdriver into the shock absorber's straight groove to finely adjust the position by rotating it so that it provides the required stopping position of the table.
- (5) Finally, tighten and secure the shock absorber mounting bolt, and complete the operation.

Approximate tightening torque for holder mounting bolt

Bore size mm [in.]	Tightening torque N⋅cm [in⋅lbf]	Allen wrench size mm [in.]	
10,16 [0.394,0.630]	140 [12.4]	3 [0.118]	
20,25 [0.787,0.984]	450 [39.8]	5 [0.197]	
32,40 [1.260,1.575]	1350 [119.5]	6 [0.236]	


Remark: For securing the shock absorber holder in place, use the above values to tighten the bolt.

Cautions: 1. Adjust it so that the stopper on the table and the shock absorber make full contact.

- 2. Use the shock absorber within the range of the capacity of the shock absorber (range of the capacity graph). Note that the absorption energy of the shock absorber is different in a lowspeed range than that in a high-speed range.
- 3. The maximum impact speed of the shock absorber will vary depending on the shock absorber. Moreover, since impact speed and average speed are not the same, use only after checking the shock absorber's impact speed.
- 4. Do not use the shock absorber in a place subject to dripping water or oil, or to large amount of dust. If using it in these places, install a cover, etc. so that the water or oil drops do not drip it directly. Otherwise, it could lead to improper operation and may decrease the absorption energy.
- 5. Do not loosen the small screw on the rear end of the shock absorber. The oil inside will leak out which will fail the function of the shock absorber.
- 6. To ensure that the table is not in contact with the attachment holder, always adjust the location of the shock absorber so that a clearance exists between the table and the attachment holder. Contact of anything other than the absorber when stopping could result in damage to the cylinder.
- 7. Do not install other shock absorbers for this product without our permission. Since our shock absorber's characteristics are different from those of other shock absorbers, use of other shock absorbers could cause damage to the cylinder.

1196 1 kg = 2.205 lb1m/s = 3.28ft./sec.

Mounting with T-slot

Tightening torque

N·cm [in·lbf]

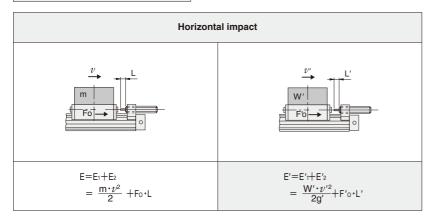
Туре	ORS10,16 MRS10,16	ORS20,25 MRS20,25	ORS32,40 MRS32,40
Tightoning torque	140 [12.4]	450 [39.8]	1350 [119.5]
Tightening torque	(M4)	(M6)	(M8)

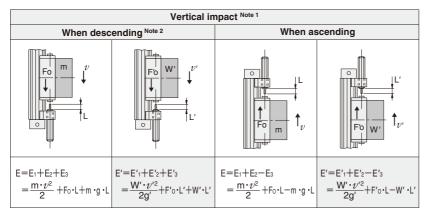
Screw length L

mm [in.]

			[]	
Туре	ORS10,16 MRS10,16	ORS20,25 MRS20,25	ORS32,40 MRS32,40	
	M4	M6	M8	
	T + 6 [0.236]	T + 8 [0.315]	T + 10 [0.394]	

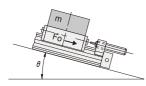
Mounting

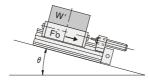

- 1. While any mounting direction in the rodless cylinders ORS, MRS series is allowed, mount the slider so that it faces downward or protect it with a cover, etc., when mounting in locations subject to dripping water or oil, etc., or to large amounts of dust. Mounting as the seal band faces downward is particularly effective for the ORS series.
- Avoid any electric welding either during or after mounting the rodless cylinders ORS, MRS series. Flows of welding current to the cylinder could generate arcs that result in damage or depositions to the cylinder.
- 3. Since the magnet type rodless cylinders MRS series has strong magnets built into the cylinder body, do not use in locations subject to cutting oil or metal chips that contain magnetized materials.
- **4.** Be careful to avoid making scratches or dents, etc., on the cylinder tube/barrel and guide.
- 5. If external forces exceeding the magnet retaining force cause the slider and piston to become misaligned or separated, make the piston return to the end of the stroke and then apply an external force to the slider to restore it to the correct position.
- 6. If using in locations where the cylinder tube/barrel and guide can easily become smeared, clean the cylinder tube/barrel and guide periodically.
 - After cleaning, always apply lubrication to the cylinder tube and guide surfaces.
- Avoid using the rodless cylinders ORS, MRS series in combination with linear ball bearings and other external guides.


Caution: Do not apply a strong shock to the slit portion of the cylinder barrel.

Intermediate stopping control

- 1. Since for structural reasons external air leakage is inevitable for the ORS series, use of all port block (closed center) 3-position valves, etc., for intermediate stop control could result in failure to maintain the stopping position, and the piston speed could not be controlled when restarting. We recommend, therefore, the installation of double-sided pressure control circuits that use PAB-connection (pressure center) 3-position valves, etc.
 - For intermediate stopping under constant loads, such as vertical mountings, consult us.
- For the MRS series, hold the pressure at 0.55MPa [80psi.] or less when used with external stoppers, etc., for intermediate stroke stopping. Use at higher pressures may cause the piston to misalign.


Calculation of impact energy



Note 1: For impact on incline, E_3 becomes $E_3' = m \cdot g \cdot L \cdot \sin \theta$.

Note 1: For impact on incline, E'3 becomes E"3= W' \cdot L' \cdot sin θ .

Note 2: When descending, the operating air pressure: P, should be lower than when ascending, because heavier loads can be carried.

 $\begin{array}{ll} E & \text{: Total impact energy} \cdots [J] \\ E_1 & \text{: Kinetic energy} \cdots \frac{m \cdot \nu^2}{2} \ [J] \end{array}$

 $\mathsf{E}_2\,$: Additional energy by cylinder thrust $\cdots\mathsf{Fo}.\mathsf{L}\left[\mathsf{J}\right]$

: Additional energy by load mass ···m·g·L [J]

: Load mass [kg]

: Impact speed [m/s]

: Gravity acceleration 9.8 [m/s²] g

Fo : Cylinder thrust $\cdots = \frac{\pi}{4} \cdot D^2 \cdot P$ [N]

[D: Cylinder bore (mm) P: Operating air pressure (MPa)]

: Absorbing stroke of shock absorber [m]

Note 2: When descending, the operating air pressure: P^{\prime} , should be lower than when ascending, because heavier loads can be carried.

 E'_2 : Additional energy by cylinder thrust \cdots $F'_0 \cdot L'[ft \cdot lbf]$ E'_3 : Additional energy by load weight $\cdots W' \cdot L'[ft \cdot lbf]$

v': Impact speed [ft./sec.] v': Gravity acceleration 32.2 [ft./sec.]

Fo: Cylinder thrust $\cdots = \frac{\pi}{4} \cdot D'^2 \cdot P'$ [lbf] [D': Cylinder bore [in.] P': Operating air pressure [psi.]]

: Absorbing stroke of shock absorber [ft.]

Special Rodless Cylinders in ORS and MRS Series

For the rodless cylinders **ORS** and **MRS** series, we have targeted certain special models that have proven to be particularly popular as semi-standard products.

To order, enter codes in parentheses () at the end of the order code.

As we expand our special product range, we hope you will continue to incorporate new models into your work.

For detailed specifications, dimensions, and delivery schedules, consult us.

Clean room-compatible grease specification (-1002W) For MRS series only

Uses a low-volatility, low particle generation grease. The linear guide uses a standard grease, however.

2. Low-speed and speed-variable specification (-1003W)

Effective for operations that involve repeated stops and starts, and for constant low-speed operations.

Operating speed range $20 \sim 100 \text{mm/s} [0.8 \sim 3.9 \text{in./sec.}]$

3. Simplified clean room specification (-1014W) For MRS series only

The linear guide is Raydent-treated, while the bolts and screws are stainless steel or nickel-plated. Moreover, the grease used is a low particle generation grease. The items are not packaged in the clean rooms, however. And the shock absorber is not available for the clean room specification.

4. Lateral piping block specification (-3W)

Can be used for piping in lateral directions.

With the exception of a longer total length, other specifications are the same as the standard item.

5. Reverse piping directions specification (-4W)

Since piping directions in the ORS and MRS series are set, use this specification for piping in the reverse direction.

 $\ensuremath{\ensuremath{\%}}$ Other specifications are the same as the standard item.

Order example : For reverse piping specification

●ORSP16×300 - KL - 4W

Note: These special specifications may vary from standard items in delivery, prices, dimensions, life cycles, etc. Confirm us the details before ordering

Moreover, consult us about similar available settings in other rodless cylinder series.