

KOGANEI ACTUATORS GENERAL CATALOG

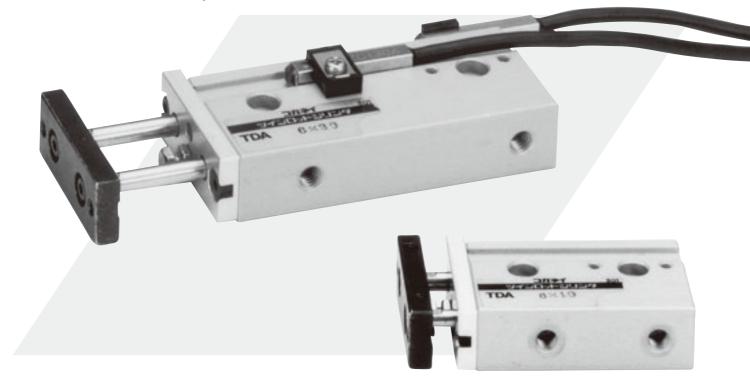
TWIN ROD CYLINDERS ϕ 6

NPT Threaded port TWIN ROD CYLINDERS

Caution Before use, be sure to read the "Safety Precautions" on p. 57.

KOGANEI ACTUATORS GENERAL CATALOG

TWIN ROD CYLINDERS φ6 CONTENTS


Features	— 745
Specifications/Order Codes	— 747
Inner Construction and Major Parts	— 748
Dimensions	— 749
Sensor Switches	— 750
Handling Instructions and Precautions	- 752

TWIN ROD CYLINDERS *∲*6

Caution Before use, be sure to read the "Safety Precautions" on p. 57.

TWIN ROD CYLINDERS ϕ 6

A square style, a compact design that needs no guides, and direct mounting makes the mechanical devices more compact! Non-rotating accuracy is $\pm 0.45^{\circ}$. Moreover, cylinder thrust is twice that of conventional cylinders.

Selection Chart

Item Operation type	Bore size mm	Strokes inch	Sensor s Solid state type	switches Reed switch type	Non-ion specification
Double acting type	6	1/2, 3/4, 1, 1 1/2, 2	ZC130 ZC153	CS5T CS11T	None

Cylinder Thrust

Select a suitable cylinder bore size considering the load and air pressure to obtain the required thrust. Since the figures in the table are calculated values, select a bore size that results in a load ratio (load ratio $= \frac{Load}{Calculated value}$) of 70% or less (50% or less for high speed application). N [lbf.]

Bore size	Rod size	Operation		Pressure area			Air p	ressure MPa	[psi.]		
mm [in.]	mm [in.]			Opera	Operation	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]
6 [0 226]	4 [0 157]	Double	Push side	56 [0.087]	—	11.2 [2.52]	16.8 [3.78]	22.4 [5.04]	28 [6.29]	33.6 [7.55]	39.2 [8.81]
6 [0.236]	4 [0.157]	acting type	Pull side	31 [0.048]	—	6.2 [1.39]	9.3 [2.09]	12.4 [2.79]	15.5 [3.48]	18.6 [4.18]	21.7 [4.88]

Note: Minimum operating pressure is 0.2MPa.

Air Flow Rate and Air Consumption

While the twin rod cylinder's air flow rate and air consumption can be found through the following calculations, the quick reference chart below provides the answers more conveniently.

Air flow rate Air consumption	$Q_{1} = \frac{\pi D^{2}}{4} \times L \times \frac{60}{t} \times \frac{P + 0.1013}{0.1013} \times 10^{-6} \times 2$ $Q_{2} = \frac{\pi D^{2}}{4} \times L \times 2 \times n \times \frac{P + 0.1013}{0.1013} \times 10^{-6} \times 2$	 Q1: Required air flow rate for cylinder Q2: Air consumption of cylinder D: Cylinder bore diameter L: Cylinder stroke t: Time required for cylinder to travel one stroke n: Number of cylinder reciprocations per minute P: Air pressure 	ℓ /min (ANR) ℓ /min (ANR) mm s times/min MPa
Air flow rate Air consumption	$Q_{1}' = \frac{\pi D'^{2}}{4} \times L' \times \frac{60}{t} \times \frac{P' + 14.696}{14.696} \times \frac{1}{1728} \times 2$ $Q_{2}' = \frac{\pi D'^{2}}{4} \times L' \times 2 \times n \times \frac{P' + 14.696}{14.696} \times \frac{1}{1728} \times 2$	Q1': Required air flow rate for cylinder Q2': Air consumption of cylinder D': Cylinder bore diameter L': Cylinder stroke t: Time required for cylinder to travel one stroke n: Number of cylinder reciprocations per minute P': Air pressure	ft3/min. (ANR)* ft3/min. (ANR)* in. in. sec. times/min. psi.
		※Refer to p.54 for an explanation of ANR.	

Air consumption for each 1mm [0.0394in.] stroke

cm³ [in.³]/Reciprocation (ANR)

Bore size	Air pressure MPa [psi.]						
mm [in.]	0.1 [15] 0.2 [29] 0.3 [44] 0.4 [58] 0.5 [73] 0.6 [87]						0.7 [102]
6 [0.236]	(0.22 [0.0134])	0.34 [0.0207]	0.45 [0.0275]	0.56 [0.0342]	0.67 [0.0409]	0.78 [0.0476]	0.89 [0.0543]

The figures in the table show the air flow rate and air consumption when a Twin Rod cylinder makes 1 reciprocation with stroke of 1mm [0.0394in.].

The air flow rate and air consumption actually required is found by the following calculations.

• Finding the air flow rate (for selecting F.R.L., valves, etc.)

Example 1. When operating a Twin Rod cylinder with bore size of 6mm [0.236in.] at speed of 300mm/s [11.8in./sec.], under air pressure of 0.5MPa [73psi.]

 $0.67 \times \frac{1}{2} \times 300 \times 10^{-3} = 0.1 \ \ell \text{/s} [0.00353 \text{ft}^3/\text{sec.}] (\text{ANR})^*$

(At this time, the flow rate per minute is $0.67 \times \frac{1}{2} \times 300 \times 60 \times 10^{-3} = 6.03 \ \ell$ /min [0.213ft³/sec.] (ANR))

• Finding the air consumption

Example 1. When operating a Twin Rod cylinder with bore size of 6mm [0.236in.] and stroke of 50mm [1.97in.], under air pressure of 0.5MPa [73psi.], for 1 reciprocation

0.67×50×10-3=0.0335 ℓ [0.00118ft.3]/Reciprocation (ANR)

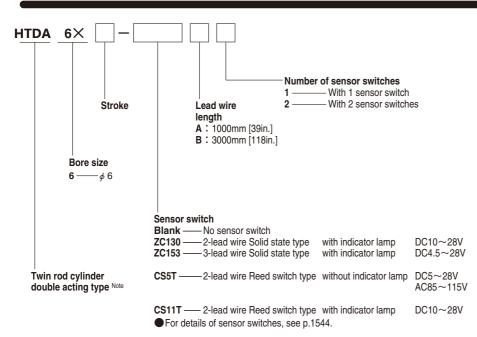
Example 2. When operating a twin rod cylinder with bore size of 6mm [0.236in.] and stroke of 50mm [1.97in.], under air pressure of 0.5MPa [73psi.], for 10 reciprocations per minute

% Refer to p.54 for an explanation of ANR.

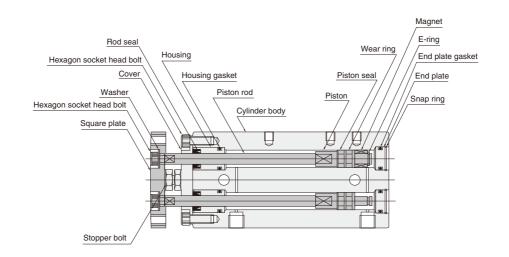
TWIN ROD CYLINDERS ϕ 6

 ϕ 6 Double Acting Type

Symbol


Specifications

Bore size mm [in.]	6 [0.236]
Operation type	Double acting type
Media	Air
Mounting type	Side mount
Operating pressure range MPa [psi.]	0.2~0.7 [29~102]
Proof pressure MPa [psi.]	1.03 [149]
Operating temperature range °C [°F]	0~60 [32~140]
Operating speed range mm/s [in./sec.]	100~500 [3.9~19.7]
Cushion	None
Lubrication	Not required
Non-rotating accuracy	±0.45°
Stroke adjusting range mm [in.]	$-5 \sim 0$ [-0.197 ~ 0] (To the specification stroke)
Port size	10-32 UNF


Bore Size and Stroke

		mm
Bore size	Standard strokes inch	Pull side stroke adjusting range
6	1/2, 3/4, 1, 1 1/2, 2	-5~0

Order Codes

Note: In the standard cylinder, a magnet for sensor switch is built-in.

Major Parts and Materials

Parts	Materials
Cylinder body	Aluminum alloy (anodized)
Piston	Aluminum alloy (anodized)
Cover	Steel (nickel plated)
Wear ring	Plastic
Piston rod	Stainless steel
Gasket	Synthetic rubber (NBR)
Housing	Aluminum alloy (special wear-resistant treatment)
End plate	Plastic
Seal	Synthetic rubber (NBR)
Snap ring	Steel (nickel plated)
Magnet	Sintered alloy magnet
E-ring	Stainless steel
Washer	Steel (nickel plated)
Square plate	Mild steel (special surface treatment)
Stopper bolt	Mild steel (zinc plated)

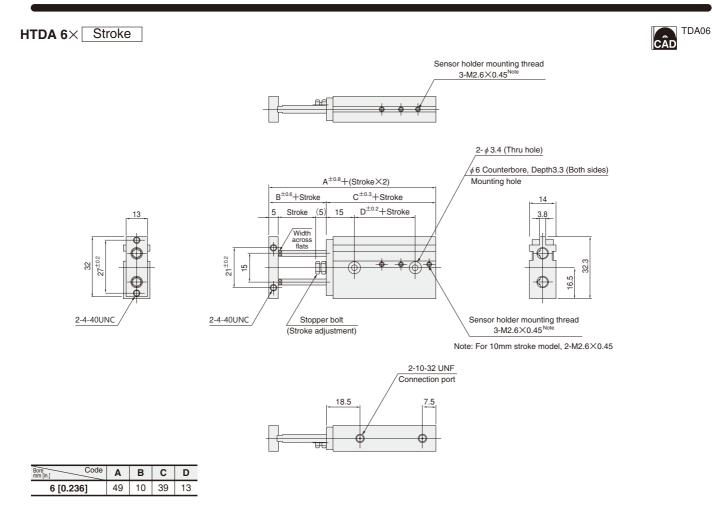
Seals

Parts	Rod seal	Piston seal	End plate gasket	Housing gasket
Quantity	2	2	2	2
6	MYR-4	COP-6L	1×6	1×6

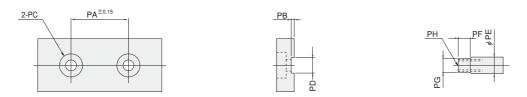
Remark: Non-ion specification is not available.

Mass

				g [oz.]		
	Bore size		Additional mass			
		Zero stroke mass Note1	Zero stroke mass Note1	Additional mass of each	Mass of 1 sensor switch Note2	
	mm [in.]	10mm [0.394in.] stroke	CS5T ,CS11T ,ZC130 ,ZC153			
6 [0.236]	Standard specification	55 [1.94]	12 [0.42]	20 [0.71]		


Notes: 1. The above table is for the standard strokes.

Calculation example: The mass for bore size of 6mm and stroke of 2inch 2. There are 2 types of sensor switch lead wire lengths. with 2 sensor switches (CS5TA), A: 1000mm [39in.], B: 3000mm [118in.]


The sensor switch mass in the table above is for Type A.

55+(12×5.08)+(20×2)=156g [5.50oz.]

Dimensions of Rod End Portion (mm)

Bore Code	PA	PB	PC	PD	PE	PF	PG	PH
6 [0.236]	15	0.5	ϕ 3 Counterbore ϕ 5 Depth 3.2	3.5 +0.15 +0.03	4	3	3.5 _{-0.15}	M2.6×0.45 Depth5

SENSOR SWITCHES

Solid State Type, Reed Switch Type

Order Codes

	inder			
Sensor switch ZC130 Solid state type with indicator lamp ZC153 Solid state type with indicator lamp CS5T Reed switch type without indicator lamp CS11T Reed switch type with indicator lamp	DC10~28V DC4.5~28V DC5~28V AC85~115V DC10~28V			
Order code of sensor holder only C1-TDA6 Note2 Notes: 1. Two sensor holders (one for the A, C				

- surface and one for the B surface) come with 1 sensor switch.
 - One set consists of 2 sensor holders (1 each for the A, C surface and for the B surface).

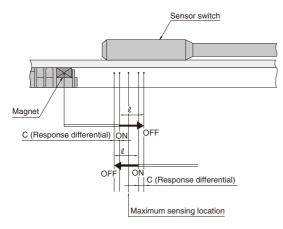
Remark : For the mounting surfaces, see p.751.

• For details of sensor switches, see p.1544.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: *l*

The distance the piston travels in one direction, while the switch is in the ON position.

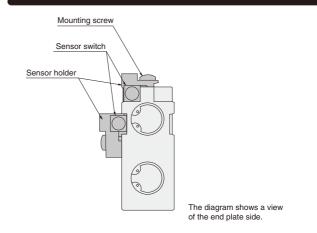

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

								mm [in.]
	CS5T			CS11T]	ZC13	0□, ZC	153
Operating range	Response differential	Maximum sensing location	Operating range	Response differential		Operating range	Response differential	Maximum sensing location
5~7 [0.197~ 0.276]	1.3 [0.051] or less	7 [0.276]	5~7 [0.197~ 0.276]	1.3 [0.051] or less	10.5 [0.413]	2~3 [0.079~ 0.118]	0.3 [0.012] or less	8.5 [0.335]

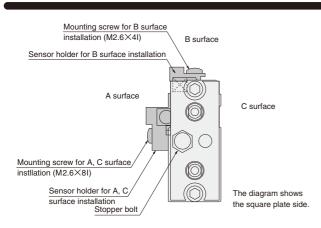
Note: The maximum sensing location is the length measured from the switch's opposite end side to the lead wire.

Remark: The above table shows reference values.



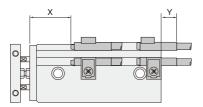
Minimum Cylinder Strokes When Using Sensor Switches

				mm
Turneraf	2	pcs. mountir	ng	
Type of sensor	1-surface	mounting	2-surface	1 pc.
switch	One groove on each A surface and B surface	Two grooves on B surface	mounting	mounting
CS	40	10	10	10
ZC	40	10	10	10


Remark : For the mounting surfaces, see p.751.

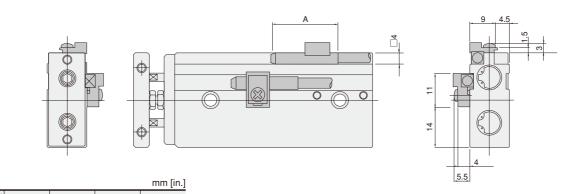
Moving Sensor Switch

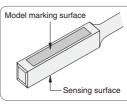
- Loosening mounting screw allows the sensor switch to be moved freely in the cylinder's axial direction.
- Tighten the mounting screw with a tightening torque of 0.3N·m [2.7in·lbf] or less.


Sensor Switch Mounting Surface

- Mounting on either 1 or 2 surfaces of the A, B, or C surfaces allows detection of the rod side and head side stroke end.
- Since 2 sensor holders and 2 mounting screws (one for the A, C surface and one for the B surface) are provided for each sensor switch, use in accordance with the required mounting surface.

Mounting Location of End of Stroke Detection Sensor Switch


• When the sensor switch is mounted in the locations shown below (the figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.


			mm [in.]
Mounting		Sensor sv	witch type
location	CS5T	CS11T	ZC130 , ZC153
x	23 [0.906]	19.5 [0.768]	22 [0.866]
Y	6 [0.236]	6.5 [0.256]	8 [0.315]

Remark: Mount the sensor switch so that the surface showing the model faces up.

Dimensions of Sensor Switch

Caution at mounting

In the ZC type sensor switches, the opposite side from the model marking surface is the sensing surface side. Mount it so that the cylinder magnet comes to the sensing surface side.

CS5T

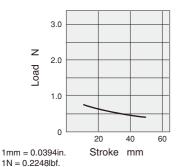
22 [0.866] 26 [1.024]

Code

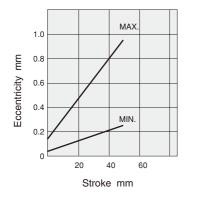
Α

CS11T ZC130

ZC153


25 [0.984]

Mounting and adjustment


Allowable lateral load

The lateral (side) load on the rod bearing should be at or below the graph values shown below.

Plate eccentricity

For the eccentricity of the plate without load, use the graph values shown below as guides.

1mm = 0.0394in.

Mounting

- While any mounting direction is allowed, the mounting surface should always be flat. Twisting or bending during mounting may disturb the accuracy and may also result in air leaks or improper operation.
- 2. Care should be taken that scratches or dents on the cylinder's mounting surface may damage its flatness.
- 3. The hexagon socket head bolt on the rod end square plate has been mounted with a conical washer. Always confirm that the rod end square plate and hexagon socket head bolts are secured before using the cylinder.

Stroke adjustment

On the Twin Rod cylinder, stroke adjusting is easy within a range of $-5 \sim 0$ mm [$-0.197 \sim$ 0 in.]. Turn the stopper to the left (counterclockwise) to shorten the stroke.

Use a lock nut to tighten and secure the stopper in place after adjustment. Do not tighten the bolt to the right (clockwise) beyond the standard position. The stroke at shipping is set to the standard stroke. Do not adjust it to larger than the standard stroke.

Cylinder speed

Use the cylinder at or below a speed of 500mm/s [19.7in./sec.] (use a speed controller for adjustment). For high speeds (500mm/s [19.7in./sec.]), install an external stopper, etc., to prevent direct shocks to the cylinder. Consult us if the situation will not permit installation of an external stopper, etc.

 In the standard cylinder, the magnet for sensor switch is built-in. Mounting a sensor switch will enable use in sensor switch applications

2. When placing cylinders with 2 or more sensors in close for installation, the proximity of the magnetic fields may interfere with each other resulting in erratic operation.

For this type of mounting configuration, consult us.

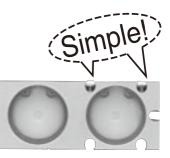
KOGANEI

ACTUATORS GENERAL CATALOG

NPT Threaded port TWIN ROD CYLINDERS

CONTENTS

Features	755
Cylinder Thrust	757
Double Acting Type	-759
Double Acting Long Bushing Type	-764
Single Acting Push Type	-769
Handling Instructions and Precautions	-773


KOGANEI TWIN ROD CYLINDERS **BSERIES**

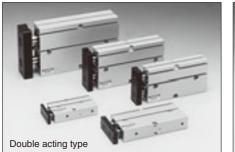
SQUARE A slender, square form offering direct mounting,

a compact design that eliminates the need for guides, and a sensor switch magnet as standard!

FLAT

This horizontal lead wire type compact sensor switch does not protrude from the body, promoting further space-saving of the mechanical device. In addition, 5 mounting locations on 3 different surfaces facilitate detection of various applications.


10.0


POWERFUL

Excellent non-rotating accuracy, while a double piston structure

doubles the cylinder's thrust. In addition, the Twin Rod cylinder B series helps save space and man-hours, plus it lowers costs.

	Selection chart		
	Cylinder bore size mm	Strokes mm	Sensor switch Solid state type Reed switch type
Double acting type	10 16 20 25 32	¢10 \$\overline{\phi}\$16,\$\overline{\phi}\$20,\$\overline{\phi}\$32 \$\overline{\phi}\$10 \$\	ZE135 ZE101 ZE255 ZE102 ZE255 ZE201 ZE175 ZE202
Doble acting long bushing type	10 16 20 25 32	φ10 φ16, φ20, φ25, φ32 10 20 30 40 50 60 70 80 90 100	ZE135 ZE101 ZE255 ZE102 ZE255 ZE201 ZE175 ZE202
Single acting push type	10 16 20 25	φ 10, φ 16, φ 20, φ 25 10 20 30 40 50 60	ZE135 ZE101 ZE235 ZE102 ZE255 ZE201 ZE175 ZE202

Cylinder Thrust

Select a suitable cylinder bore size considering the load and air pressure to obtain the required thrust. Load Since the figures in the table are calculated values, select a bore size that results in a load ratio (load ratio = $\frac{Load}{Calculated value}$) of 70% or less (50% or less for high speed application).

N [lbf.]

Bore size	Rod dia.	0		Pressure			Air p	pressure MPa [osi.]		[]
mm [in.]	mm [in.]	Opera	ation	area mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
		Double	Push side	157 [0.243]	. <u> </u>	31.4 [7.06]	47.1 [10.59]	62.8 [14.12]	78.5 [17.65]	94.2 [21.18]	109.9 [24.71]
10 [0.394]	6 [0.236]	acting type	Pull side	100 [0.155]		20 [4.5]	30 [6.7]	40 [9.0]	50 [11.2]	60 [13.5]	70 [15.7]
		Single Acting	Push Type	157 [0.243]			5.5 [1.24]	21.2 [4.77]	36.9 [8.30]	52.6 [11.82]	68.3 [15.35]
		Double	Push side	402 [0.623]	40.2 [9.04]	80.4 [18.07]	120.6 [27.11]	160.8 [36.15]	201 [45.18]	241.2 [54.22]	281.4 [63.26]
16 [0.630]	8 [0.315]	acting type	Pull side	301 [0.467]	30.1 [6.77]	60.2 [13.53]	90.3 [20.30]	120.4 [27.07]	150.5 [33.83]	180.6 [40.60]	210.7 [47.37]
		Single Acting	Push Type	402 [0.623]		39.3 [8.83]	79.5 [17.87]	119.7 [26.91]	159.9 [35.95]	200.1 [44.98]	240.3 [54.02]
		Double	Push side	628 [0.973]	62.8 [14.12]	125.6 [28.23]	188.4 [42.35]	251.2 [56.47]	314 [70.59]	376.8 [84.70]	439.6 [98.82]
20 [0.787]	10 [0.394]	acting type	Pull side	471 [0.730]	47.1 [10.59]	94.2 [21.18]	141.3 [31.76]	188.4 [42.35]	235.5 [52.94]	282.6 [63.53]	329.7 [74.12]
		Single Acting	Push Type	628 [0.973]		78.2 [17.58]	141 [31.70]	203.8 [45.81]	266.6 [59.93]	329.4 [74.05]	392.2 [88.17]
		Double	Push side	981 [1.521]	98.1 [22.05]	196.2 [44.11]	294.3 [66.16]	392.4 [88.21]	490.5 [110.26]	588.6 [132.32]	686.7 [154.37]
25 [0.984]	12 [0.472]	acting type	Pull side	755 [1.170]	75.5 [16.97]	151 [33.94]	226.5 [50.92]	302 [67.89]	377.5 [84.86]	453 [101.83]	528.5 [118.81]
		Single Acting	Push Type	981 [1.521]		115.8 [26.03]	213.9 [48.08]	312 [70.14]	410.1 [92.19]	508.2 [114.24]	606.3 [136.30]
20 [1 000]	10 00 0001	Double	Push side	1607 [2.491]	160.7 [36.13]	321.4 [72.25]	482.1 [108.38]	642.8 [144.50]	803.5 [180.63]	964.2 [216.75]	1124.9 [252.88]
32 [1.260]	16 [0.630]	acting type	Pull side	1205 [1.868]	120.5 [27.09]	241 [54.18]	361.5 [81.27]	482 [108.35]	602.5 [135.44]	723 [162.53]	843.5 [189.62]

Note: The values of the single acting push type show the thrust at the end of the 60mm stroke.

The Spring Return Force (Only for the Single Acting Type)

			N [lbf.]
Bore size mm [in.]	Stroke mm	At zero stroke	At the end of stroke
	10	16.5 [3.71]	
	20	12.4 [2.79]	20.6 [4.63]
10 [0.394]	30	8.2 [1.84]	
10 [0.394]	40	25.1 [5.64]	
	50	21.0 [4.72]	41.6 [9.35]
	60	16.9 [3.80]	
	10	15.9 [3.57]	
	20	11.1 [2.50]	20.4 [4.59]
10 00 0001	30	6.3 [1.42]	
16 [0.630]	40	22.3 [5.01]	
	50	17.6 [3.96]	41.1 [9.24]
	60	12.8 [2.88]	
	10	19.6 [4.41]	
	20	15.7 [3.53]	23.5 [5.28]
20 [0.787]	30	11.8 [2.65]	
20 [0.787]	40	31.7 [7.13]	
	50	27.8 [6.25]	47.4 [10.66]
	60	23.8 [5.35]	
	10	32.9 [7.40]	
	20	26.2 [5.89]	39.5 [8.88]
05 [0 004]	30	19.5 [4.38]	
25 [0.984]	40	53.7 [12.07]	
	50	47.1 [10.59]	80.4 [18.07]
	60	40.4 [9.08]	

Notes: 1. The values are for 2 springs. 2. Avoid application that applies a load on the spring return side.

While the Twin Rod cylinder's air flow rate and air consumption can be found through the following calculations, the quick reference chart to the right provides the answers more conveniently.

Air flow rate
$$Q_1 = \frac{\pi D^2}{4} \times L \times \frac{60}{t} \times \frac{P + 0.101}{0.101} \times 10^{-6} \times 2$$

Air consumption
$$Q_2 = \frac{\pi D^2}{4} \times L \times 2 \times n \times \frac{P + 0.101}{0.101} \times 10^{-6} \times 2$$

Q1: Required air flow rate for cylinder	ℓ /min (ANR)
Q2: Air consumption of cylinder	ℓ /min (ANR)
D: Cylinder bore diameter	mm
L: Cylinder stroke	mm
t: Time required for cylinder to travel 1 stroke	S
n: Number of cylinder reciprocations per minute	times/min
P: Air pressure	MPa

Air flow rate

 $Q_{1}' = \frac{\pi D'^{2}}{4} \times L' \times \frac{60}{t} \times \frac{P' + 14.7}{14.7} \times \frac{1}{1728} \times 2$

ft.3/min. (ANR)*

ft.3/min. (ANR)*

in.

in.

sec

psi.

times/min.

Air consumption $Q_{2'} = \frac{\pi D'^2}{4} \times L' \times 2 \times n \times \frac{P'+14.7}{14.7} \times \frac{1}{1728} \times 2$

Q1': Required air flow rate for cylinder

t: Time required for cylinder to travel 1 stroke

* Refer to p.54 for an explanation of ANR.

n: Number of cylinder reciprocations

Q2': Air consumption of cylinder

D': Cylinder bore diameter

L': Cylinder stroke

per minute P': Air pressure

Air consı	umption f	or each 1	mm [0.03		r oke cm³ [in.3]/Recipro	cation (ANR)
Bore size			Air p	pressure MF	Pa [psi.]		
mm	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
10	(0.620	0.924	1.228	1.534	1.838	2.146	2.450
	[0.03783])	[0.05639]	[0.07494]	[0.09361]	[0.11216]	[0.13096]	[0.14951]
16	1.584	2.364	3.146	3.926	4.704	5.486	6.266
	[0.09666]	[0.14426]	[0.19198]	[0.23958]	[0.28706]	[0.33478]	[0.38238]
20	2.48	3.72	4.90	6.14	7.36	8.58	9.80
	[0.1513]	[0.2270]	[0.2990]	[0.3747]	[0.4491]	[0.5236]	[0.5980]
25	3.88	5.78	7.66	9.58	11.50	13.42	15.34
	[0.2368]	[0.3527]	[0.4674]	[0.5846]	[0.7018]	[0.8189]	[0.9361]
32	6.36	9.46	12.56	15.70	18.82	21.96	25.10
	[0.3881]	[0.5773]	[0.7665]	[0.9581]	[1.1485]	[1.3401]	[1.5317]

The figures in the table show the air flow rate and air consumption when an air cylinder makes 1 reciprocation with stroke of 1mm [0.0394in.].

The air flow rate and air consumption actually required is found by the following calculations.

Example 1. When operating a Twin Rod cylinder with bore size of 20mm [0.787in.] at speed of 300mm/s [11.8in./sec.] and under air pressure of 0.5MPa [73psi.]

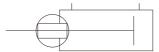
 $7.36 \times \frac{1}{2} \times 300 \times 10^{-3} = 1.10 \ \ell \ /s \ [0.0388 ft.^3/sec.] \ (ANR)$

(At this time, the flow rate per minute is $7.36 \times \frac{1}{2} \times 300 \times 60 \times 10^{-3} = 66.24 \ \ell$ /min [2.338ft.³/min.] (ANR))

Finding the air consumption

Example 1. When operating a Twin Rod cylinder with bore size of 20mm [0.787in.], stroke of 50mm [1.97in.], and under air pressure of 0.5Mpa [73psi.], for 1 reciprocation.

7.36×50×10⁻³=0.368 ℓ /Reciprocation [0.0130ft.³/Reciprocation] (ANR)


Example 2. When operating a Twin Rod cylinder with a bore size of 20mm [0.787in.], a stroke of 50mm [1.97in.], and under air pressure of 0.5MPa [73psi], for 10 reciprocations per minute.

7.36×50×10×10⁻³=3.68 ℓ /min [0.130ft.³/min.] (ANR)

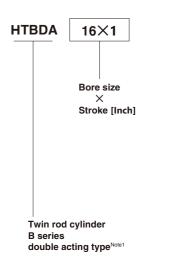
TWIN ROD CYLINDERS B SERIES

Double Acting Type

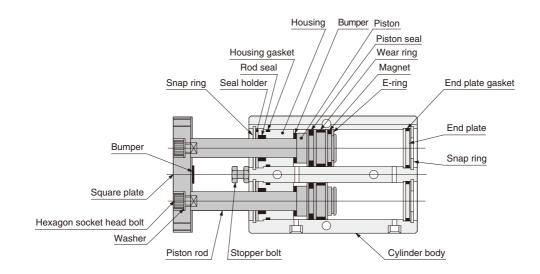
Symbol

Specifications

Bore size mm [in.]	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
Operation type		Dou	ble acting	type	
Media			Air		
Mounting type			Side mour	nt	
Operating pressure range MPa [psi.]	0.15~0.7 [22~102]	$0.1 \sim 0.7 (115 \sim 102)$			
Proof pressure MPa [psi.]	1.05 [152]				
Operating temperature range °C [°F]	0~60 [32~140]				
Operating speed range mm/s [in./sec.]	100~500 [3.9~19.7]				
Cushion		R	ubber burr	nper	
Lubrication	Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent				2] or equivalent.)
Non-rotating accuracy	$\pm 0.4^{\circ}$ $\pm 0.3^{\circ}$				
Stroke adjusting range mm [in.]	$-5\sim0$ [-0.197 \sim 0] (To the specification stroke)				
Port size		10-3	2 UNF		NPT1/8



Bore Size and Stroke


		Inch
Bore size	Standard strokes	Pull side stroke adjusting range
10	1/2, 3/4, 1, 1 1/2, 2, 2 1/2, 3	
16 20	1/2, 3/4, 1, 1 1/2, 2, 2 1/2,	
	3, 3 1/2, 4	
	1/2, 3/4, 1, 1 1/2, 2, 2 1/2,	-0.2~0
20	3, 3 1/2, 4	0.2. 0
25	1/2, 3/4, 1, 1 1/2, 2, 2 1/2,	
25	3, 3 1/2, 4	
32	1/2, 3/4, 1, 1 1/2, 2, 2 1/2,	
32	3, 3 1/2, 4	

Note: Consult us for delivery of strokes that exceed the standard strokes.

Order Codes

Notes: 1. In the standard cylinder, the magnet for sensor switch is built-in.

Major Parts and Materials

Seals

Item

10

16

20

25

32

Quantity

Rod seal

2

PIU-6

PIU-8

PIU-10

PIU-12

PIU-16

Piston seal

2

COP-10L

COP-16L

COP-20

COP-25

COP-32

End plate gasket

2

1.5×9

1.5×14.5

1.5×18

1.5×23

2×31.5

Housing gasket

2

1.5×9

1.5×13

1.5×17

1.5×22

2×28.5

Dauta	Materials
Parts	For standard specification
Cylinder body	Aluminum alloy (anodized)
Piston	Aluminum alloy (chromic acid anodic oxide coating)
Wear ring	Plastic (non-teflon type Note)
Piston rod	Steel (chrome plated)
Gasket	Synthetic rubber (NBR)
Seal holder	Mild steel (nickel plated)
Housing	Aluminum alloy (special wear-resistant treatment)
End plate	Plastic (aluminum (anodized) for only ϕ 32 [1.260in.])
Seal	Synthetic rubber (NBR)
Snap ring	Steel (nickel plated)
Magnet	Plastic magnet
E-ring	Stainless steel
Washer	Steel (nickel plated)
Square plate	Mild steel (nickel plated)
Bumper	Synthetic rubber (NBR)
Stopper bolt	Mild steel (zinc plated)

Note: For ϕ 25 [0.984in.] and ϕ 32 [1.260in.] non-ion specification.

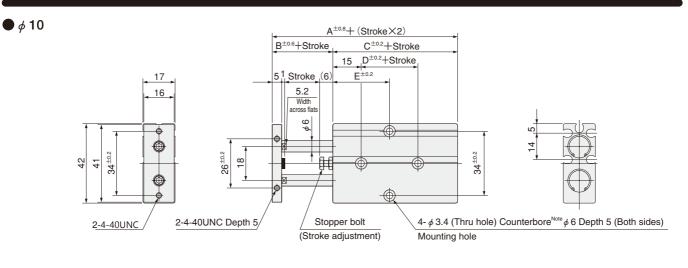
Remark: The standard specification for ϕ 10 [0.394in.], ϕ 16 [0.630in.], and ϕ 20 [0.787in.] can also be used as non-ion specification. Non-ion specification of ϕ 25 [0.984in.] and ϕ 32 [1.260in.] are made to order.

Mass

					g [oz.]				
			Additional mass						
	Bore size Zero stroke mass Note1		Additional mass for	Mass of 1 se	nsor switch Note2				
	mm [in.]		each 10mm [0.394in.] stroke	ZE	ZE				
10 [0.394]	Standard specification	100 [3.53]	18 [0.63]						
16 [0.630]	Standard specification	204 [7.20]	27 [0.95]						
20 [0.787]	Standard specification	335 [11.82]	36 [1.27]	15 [0.53]	35 [1.23]				
25 [0.984]	Standard specification	495 [17.46]	51 [1.80]						
32 [1.260]	Standard specification	1230 [43.39]	93 [3.28]						

Notes: 1. The above table is for the standard strokes.

2. There are 2 types of sensor switch lead wire lengths.

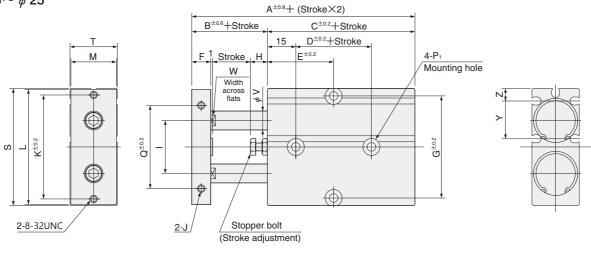

A: 1000mm [39in.], B: 3000mm [118in.]

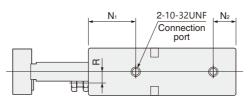
Calculation example: The mass for standard cylinder, bore size of 20mm, and stroke of 60mm, with 2 sensor switches (ZE135A),

 $335+(36\times6)+(15\times2)=581g$ [20.49oz.]

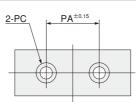
 $\rightarrow \frac{\text{Stroke}}{10}$

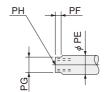
Dimensions of Double Acting Type (mm)


	22	► 2-10-32 UNF Connection port	10
Γ	2		
		Ψ	P


Stroke Code	Α	в	С	D	E							
Bore mm [in.]					10	20	30	40	50	60	70	
10 [0.394]	58	12	46	10	30	30	35	40	45	50	55	

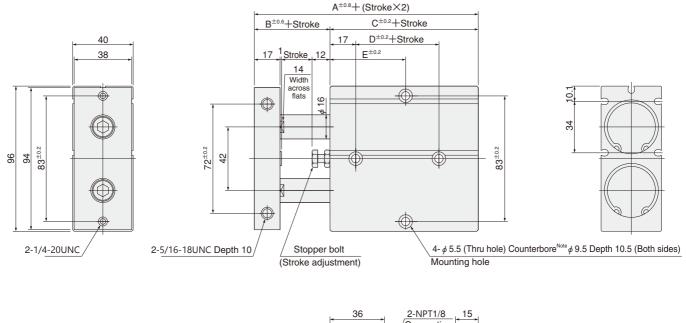
Note: The counterbore depth is measured from the upper surface of the body.

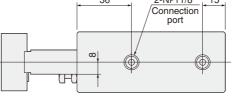



Stroke	Α	в	С	D					E	=					F	G	Н	I		J	к	L	М
Bore mm [in.]					10	20	30	40	50	60	70	80	90	100									
16 [0.630]	68	15	53	20	30	35	40	45	50	55	60	65	70	75	8	47	6	24	8-32UN	C Depth 5	47	53	20
20 [0.787]	78	20	58	20	35	35	40	45	50	55	60	65	70	75	10	55	9	28	8-32UN	C Depth 5	55	61	24
25 [0.984]	81	19	62	30	40	40	45	50	55	60	65	70	75	80	10	66	8	34	10-32UN	IF Depth 6	66	72	29
Bore Code	N1	1	N2			P1 Note					Q	R	s		т	v	w	Y		z			
16 [0 620]	22	1	0	445 (T	hru ho		unter		8 Der	th 5 5	(Both	sides) (24	4	5/	1	21	0	6.2	10	5	57

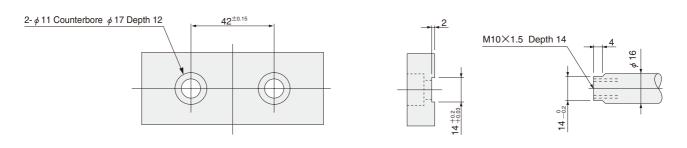
mm [in.]	IN I	112	FI	G	n	3	•	v	vv	•	<u> </u>
16 [0.630]	22	10	ϕ 4.5 (Thru hole) Counterbore ϕ 8 Depth 5.5 (Both sides)	34	4	54	21	8	6.2	18.5	5.7
20 [0.787]	25	12	ϕ 4.5 (Thru hole) Counterbore ϕ 8 Depth 5.5 (Both sides)	44	6	62	25	10	8.2	20	6.8
25 [0.984]	30	12	ϕ 4.5 (Thru hole) Counterbore ϕ 9 Depth 6 (Both sides)	56	7	73	30	12	10.2	22.5	8.3

Note: The counterbore depth is measured from the upper surface of the body.

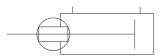




Bore Code mm [in.]	PA	РВ	PC	PD	PE	PF	PG	РН
16 [0.630]	24	1	ϕ 4.3 Counterbore ϕ 7.8 Depth 4.6	6.2 ^{+0.1}	8	3	$6.2 \ {}^{-0.05}_{-0.15}$	M4 ×0.7 Depth 6
20 [0.787]	28	1	ϕ 6.5 Counterbore ϕ 11 Depth 6.8	8.2 +0.1	10	3	$8.2 \ ^{-0.05}_{-0.15}$	M6 ×1 Depth 8
25 [0.984]	34	1	ϕ 6.5 Counterbore ϕ 11 Depth 6.8	$10.2^{+0.1}_{0}$	12	3	$10.2{}^{-0.05}_{-0.15}$	M6 ×1 Depth 8


• φ 32

Stroke	Α	в	С	D		E								
Bore mm [in.]					10	20	30	40	50	60	70	80	90	100
32 [1.260]	108	30	78	35	45	50	55	60	65	70	75	80	85	90


Note: The counterbore depth is measured from the upper surface of the body.

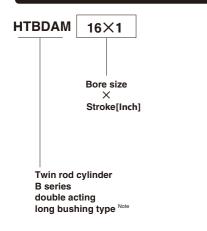
TWIN ROD CYLINDERS B SERIES


Double Acting Long Bushing Type

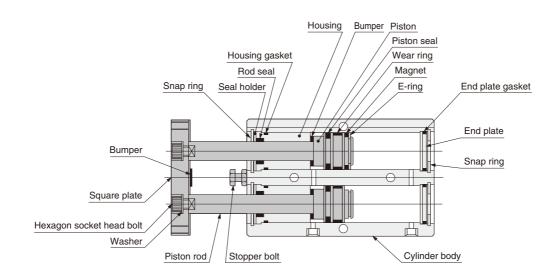
Symbol

Specifications

Bore size mm [in.]	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]			
Operation type		Double acting type						
Media			Air					
Mounting type			Side mour	nt				
Operating pressure range MPa [psi.]	0.2~0.7 [29~102]		0.15~0	0.7 [22~10	2]			
Proof pressure MPa [psi.]			1.05 [152]]				
Operating temperature range °C [°F]	0~60 [32~140]							
Operating speed range mm/s [in./sec.]	100~500 [3.9~19.7]							
Cushion	Rubber bumper							
Lubrication	(If lubrication i		Not require Turbine Oil Cla		2] or equivalent.)			
Non-rotating accuracy	±0.4°		±(0.3°				
Stroke adjusting range mm [in.]			~0 [-0.197 specificatio	-				
Port size		10-3	2UNF		NPT1/8			



Bore Size and Stroke


		Inch
Bore size	Standard strokes	Pull side stroke adjusting range
10	1/2, 3/4, 1, 1 1/2, 2, 2 1/2, 3	
16	1/2, 3/4, 1, 1 1/2, 2, 2 1/2, 3, 3 1/2, 4	
20	1/2, 3/4, 1, 1 1/2, 2, 2 1/2, 3, 3 1/2, 4	-0.2~0
25	1/2, 3/4, 1, 1 1/2, 2, 2 1/2, 3, 3 1/2, 4	
32	1/2, 3/4, 1, 1 1/2, 2, 2 1/2, 3, 3 1/2, 4	

Note: Consult us for delivery of strokes that exceed the standard strokes.

Order Codes

Note: In the double acting long bushing type, the magnet for sensor switch is built-in.

Major Parts and Materials

Seals

25

32

PIU-12

PIU-16

Materials					
For standard specification					
Aluminum alloy (anodized)					
Aluminum alloy (chromic acid anodic oxide coating)					
Plastic					
Steel (chrome plated)					
Synthetic rubber (NBR)					
Mild steel (nickel plated)					
Aluminum alloy (chromic acid anodic oxide coating)					
Plastic (alumInum alloy (anodized) for only ϕ 32 [1.260in.])					
Synthetic rubber (NBR)					
Steel (nickel plated)					
Plastic magnet					
Stainless steel					
Steel (nickel plated)					
Mild steel (nickel plated)					
Synthetic rubber (NBR)					
Mild steel (zinc plated)					

Item Rod seal Piston seal End plate gasket Housing gasket 2 2 2 Bore m 10 PIU-6 COP-10L 1.5×9 16 PIU-8 PWP-16 1.5×14.5 20 PIU-10 PWP-20 1.5×18

PWP-25

PWP-32

1.5×23

2×31.5

2

1.5×9

1.5×13

1.5×17

1.5×22

2×28.5

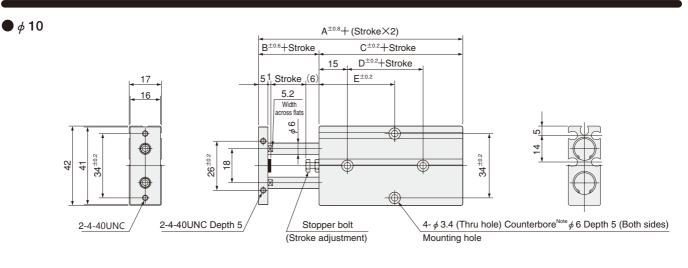
Note: Not available in a bore size of 10mm [0.394in.].

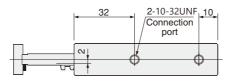
Mass

				g [oz.]				
		Additional mass						
Bore size mm [in.]	Zero stroke mass Note 1	Additional mass for	Mass of 1 sensor switch Note2					
		each 10mm [0.394in.] stroke	ZE	ZE				
10 [0.394]	119 [4.20]	18 [0.63]						
16 [0.630]	244 [8.61]	27 [0.95]						
20 [0.787]	388 [13.69]	36 [1.27]	15 [0.53]	35 [1.23]				
25 [0.984]	568 [20.04]	51 [1.80]						
32 [1.260]	1354 [47.76]	93 [3.28]]					

Notes: 1. The above table is for the standard strokes.

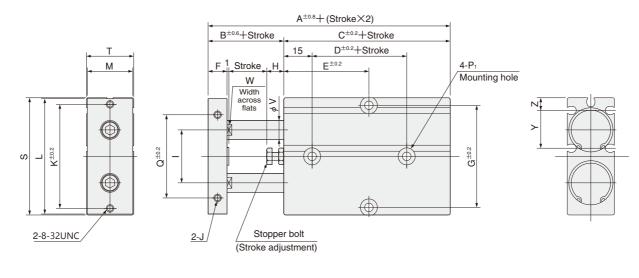
2. There are 2 types of sensor switch lead wire lengths.

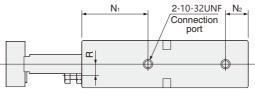

A : 1000mm [39in.], B : 3000mm [118in.]


Calculation example: The mass of bore size of 20mm, and stroke of 60mm, with 2 sensor switches (ZE135A),

388+(36×6)+(15×2)=634g [22.36oz.]

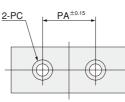
Dimensions of Double Acting Long Bushing Type (mm)

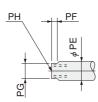

Stroke Code	Α	в	С	D	E								
Bore mm [in.]					10	20	30	40	50	60	70		
10 [0.394]	68	12	56	25	25	40	45	50	55	60	65		
Note: The count	erbore o	depth is	measur	ed from	the upp	er surfa	ce of the	e body.					


Dimensions of Rod End (mm)

TWIN ROD CYLINDERS B SERIES

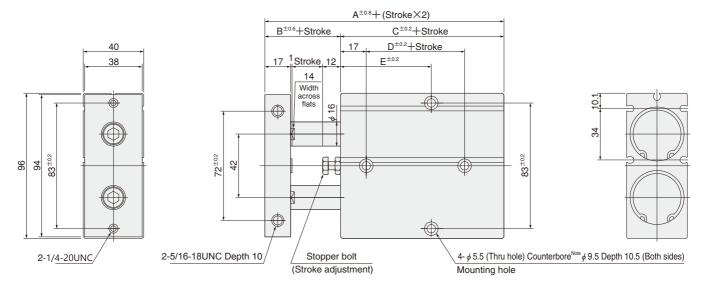
φ 16 ~ φ 25

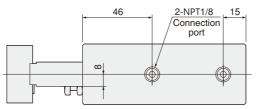



Code Stroke	Α	в	с	D					E	Ξ					F	G	н	Т	J	к	L	М
Bore mm [in.]					10	20	30	40	50	60	70	80	90	100								
16 [0.630]	78	15	63	30	40	45	50	55	60	65	70	75	80	85	8	47	6	24	8-32UNC Depth 5	47	53	20
20 [0.787]	88	20	68	30	45	45	45	50	55	60	65	70	75	80	10	55	9	28	8-32UNC Depth 5	55	61	24
25 [0.984]	91	19	72	40	50	50	50	55	60	65	70	75	80	85	10	66	8	34	10-32UNF Depth 6	66	72	29

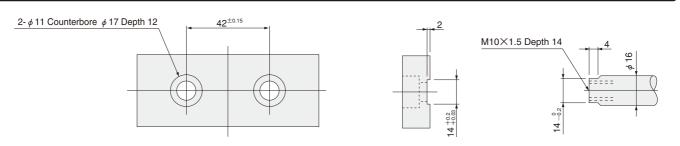
Bore Code	N 1	N ₂	P1 Note	Q	R	S	Т	v	W	Y	Z
16 [0.630]	32	10	ϕ 4.5 (Thru hole) Counterbore ϕ 8 Depth 5.5 (Both sides)	34	4	54	21	8	6.2	18.5	5.7
20 [0.787]	35	12	ϕ 4.5 (Thru hole) Counterbore ϕ 8 Depth 5.5 (Both sides)	44	6	62	25	10	8.2	20	6.8
25 [0.984]	40	12	ϕ 4.5 (Thru hole) Counterbore ϕ 9 Depth 6 (Both sides)	56	7	73	30	12	10.2	22.5	8.3

Note: The counterbore depth is measured from the upper surface of the body.

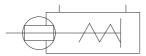




Bore Code	PA	РВ	PC	PD	PE	PF	PG	РН
16 [0.630]	24	1	ϕ 4.3 Counterbore ϕ 7.8 Depth 4.6	6.2 ^{+0.1}	8	3	6.2 ^{-0.05} -0.15	M4 \times 0.7 Depth 6
20 [0.787]	28	1	ϕ 6.5 Counterbore ϕ 11 Depth 6.8	8.2 +0.1	10	3	$8.2 \ ^{-0.05}_{-0.15}$	M6 ×1 Depth 8
25 [0.984]	34	1	ϕ 6.5 Counterbore ϕ 11 Depth 6.8	$10.2^{+0.1}_{0}$	12	3	$10.2{}^{-0.05}_{-0.15}$	M6 ×1 Depth 8


• φ 32

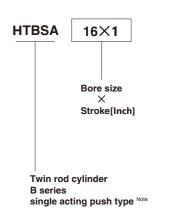
Stroke	Α	в	С	D	E												
Bore mm [in.]					10	20	30	40	50	60	70	80	90	100			
32 [1.260]	118	30	88	45	55	60	65	70	75	80	85	90	95	100			


Note: The counterbore depth is measured from the upper surface of the body.

TWIN ROD CYLINDERS B SERIES

Single Acting Push Type

Symbol

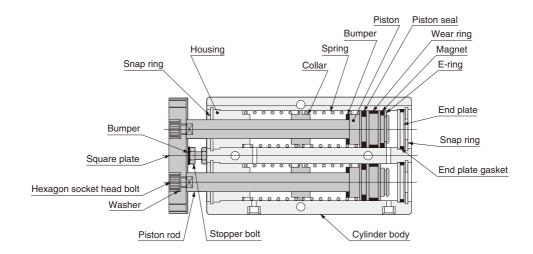



Specifications

Bore size mm [in.]	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]								
Operation type		Single actin	g push type									
Media		A	ir									
Mounting type		Side r	nount									
Operating pressure range MPa [psi.]	0.25~0.7 [36~102]	0.2~	~0.7 [29~10	2]								
Proof pressure MPa [psi.]		1.05 [152]										
Operating temperature range °C [°F]	0~60 [32~140]											
Operating speed range mm/s [in./sec.]	100~500 [3.9~19.7]											
Cushion		Rubber b	umper ^{Note}									
Lubrication	(If lubrication is rea	Not re quired, use Turbine		G32] or equivalent.)								
Non-rotating accuracy	±0.4°		±0.3°									
Stroke adjusting range mm [in.]	$-5\sim0$ [-0.197 \sim 0] (To the specification stroke)											
Port size	10-32 UNF											

Note: For the 10mm [0.394in.] bore size, rubber bumper is only installed at the pull side. Piston side bumper is not available.

Order Codes



Bore Size and Stroke

		Inch
Bore size	Standard strokes	Pull side stroke adjusting range
10	1/2, 3/4, 1, 1 1/2, 2, 2 1/2	
16	1/2, 3/4, 1, 1 1/2, 2, 2 1/2	-0.2~0
20	1/2, 3/4, 1, 1 1/2, 2, 2 1/2	-0.2~0
25	1/2, 3/4, 1, 1 1/2, 2, 2 1/2	

Note: In the single acting push type, the magnet for sensor switch is built-in.

Major Parts and Materials

Parts	Materials
Cylinder body	Aluminum alloy (anodized)
Piston	Aluminum alloy (chromic acid anodic oxide coating)
Wear ring	Plastic
Piston rod	Steel (chrome plated)
Gasket	Synthetic rubber (NBR)
Housing	Aluminum alloy (special wear-resistant treatment)
End plate	Plastic
Seal	Synthetic rubber (NBR)
Snap ring	Steel (nickel plated)
Magnet	Plastic magnet
Spring	Piano wire
Collar	Plastic
E-ring	Stainless steel
Washer	Steel (nickel plated)
Square plate	Mild steel (nickel plated)
Bumper Note	Synthetic rubber (NBR)
Stopper bolt	Mild steel (zinc plated)

Note: For the 10mm [0.394in.] bore size, piston side bumper is not available.

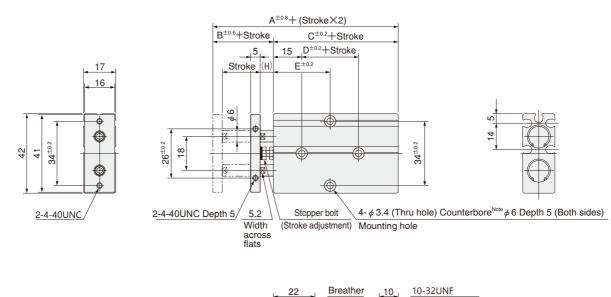
Mass

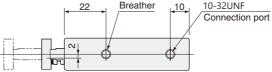
								g [oz.]
			Basic	mass ^{Note1}			Additio	nal mass
Bore size mm [in.]			Strok	e mm	Mass of 1 ser	nsor switch Note2		
	10	20	30	40	50	60	ZE	ZE
10 [0.394]	117 [4.13]	137 [4.83]	157 [5.54]	197 [6.95]	217 [7.65]	237 [8.36]		
16 [0.630]	230 [8.11]	257 [9.07]	288 [10.16]	344 [12.13]	369 [13.02]	394 [13.90]	15 [0 52]	05 [1 00]
20 [0.787]	372 [13.12]	407 [14.36]	442 [15.59]	521 [18.38]	556 [19.61]	591 [20.85]	15 [0.53]	35 [1.23]
25 [0.984]	557 [19.65]	603 [21.27]	649 [22.89]	760 [26.81]	814 [28.71]	868 [30.62]		

Notes: 1. The above table is for the standard strokes.

2. There are 2 types of sensor switch lead wire lengths.

A: 1000mm [39in.], B: 3000mm [118in.]

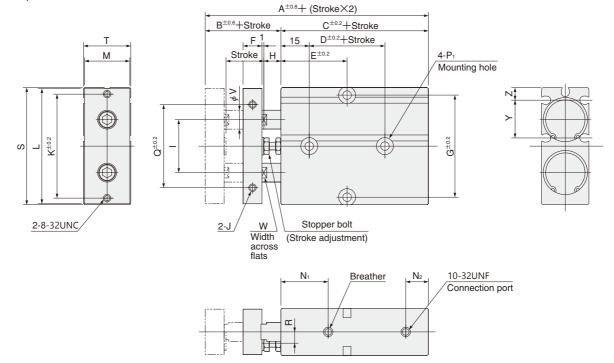

Calculation example: The mass for bore size of 20mm, and stroke of 60mm, with 2 sensor switches (ZE135A), $591+(15\times2){=}621g~[21.90oz.]$


Seals

Item	Piston seal	End plate gasket
Quantity Bore mm	2	2
10	COP-10L	1.5×9
16	PWP-16	1.5×14.5
20	PWP-20	1.5×18
25	PWP-25	1.5×23

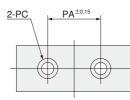
Dimensions of Single Acting Push Type (mm)

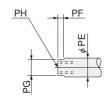
• φ 10



Stroke Code	ŀ	4	E	3	C	•	[E		Н				
Bore mm [in.]	10~30 40~60		10~30 40~60		10~30	40~60	10~30	40~60	10	20	30	40	50	60	10~30	40~60
10 [0.394]	58	66	12	10	46	56	10	20	30	30	35	45	50	55	7	5

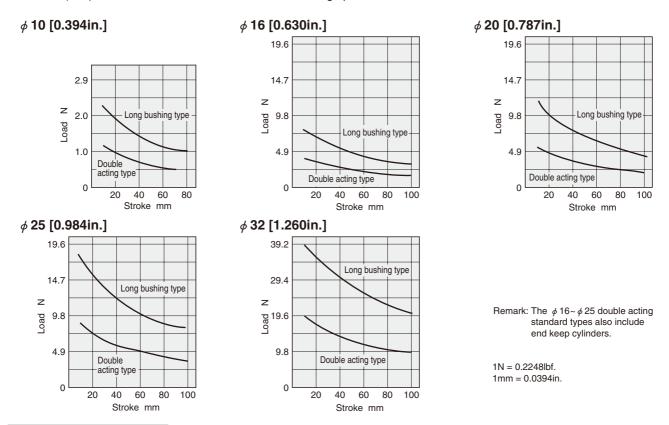
Note: The counterbore depth is measured from the upper surface of the body.


φ 16 ~ φ 25


Stroke	A	4	в	(С		D		E					F	G	н	Т	J
Bore mm [in.]	10~30	40~60		10~30	40~60	10~30	40~60	10	20	30	40	50	60					
16 [0.630]	68	78	15	53	63	20	30	30	35	40	50	55	60	8	47	6	24	8-32UNC Depth 5
20 [0.787]	78	88	20	58	68	20	30	35	35	40	50	55	60	10	55	9	28	8-32UNC Depth 5
25 [0.984]	81	91	19	62	72	30	40	40	40	45	55	60	65	10	66	8	34	10-32UNF Depth 6
						-												

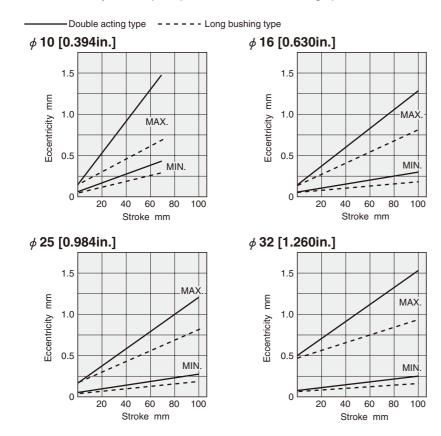
Bore Code	К	L	М	N1	N ₂	P1 ^{Note}	Q	R	S	т	v	W	Y	Z
16 [0.630]	47	53	20	22	10	ϕ 4.5 (Thru hole) Counterbore ϕ 8 Depth 5.5 (Both sides)	34	4	54	21	8	6.2	18.5	5.7
20 [0.787]	55	61	24	25	12	ϕ 4.5 (Thru hole) Counterbore ϕ 8 Depth 5.5 (Both sides)	44	6	62	25	10	8.2	20	6.8
25 [0.984]	66	72	29	30	12	ϕ 4.5 (Thru hole) Counterbore ϕ 9 Depth 6 (Both sides)	56	7	73	30	12	10.2	22.5	8.3

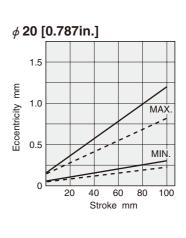
Note: The counterbore depth is measured from the upper surface of the body.



Bore Code mm [in.]	PA	PB	PC	PD	PE	PF	PG	РН
16 [0.630]	24	1	ϕ 4.3 Counterbore ϕ 7.8 Depth 4.6	6.2 +0.1	8	3	$6.2 \ {}^{-0.05}_{-0.15}$	M4 $ imes$ 0.7 Depth 6
20 [0.787]	28	1	ϕ 6.5 Counterbore ϕ 11 Depth 6.8	8.2 +0.1	10	3	$8.2 \ {}^{-0.05}_{-0.15}$	M6 ×1 Depth 8
25 [0.984]	34	1	ϕ 6.5 Counterbore ϕ 11 Depth 6.8	10.2 +0.1	12	3	$10.2{}^{-0.05}_{-0.15}$	M6 ×1 Depth 8

Mounting and adjustment


Allowable lateral load


The lateral (side) load on the rod end should be at or below the graph values listed below.

Square plate eccentricity

For the eccentricity of the square plate without load, use the graph values listed below as guides.

Remark: The ϕ 16~ ϕ 25 double acting standard types also include end keep cylinders.

1mm = 0.0394in.

Mounting and adjustment

Mounting

- 1. While any mounting direction is allowed, the mounting surface should always be flat. Twisting or bending during mounting may disturb the accuracy and may also result in air leaks or improper operation.
- Care should be taken that scratches or dents on the cylinder's mounting surface may damage its flatness.
- 3. The hexagon socket head bolt on the rod end square plate has been mounted with a conical washer. Always confirm that the rod end square plate and hexagon socket head bolts are secured before using the cylinder.

Stroke adjustment

On the cylinder, stroke adjust-ing is easy within a range of $-5 \sim 0$ mm [$-0.197 \sim$ 0in.]. Turn the stopper bolt to the left (counterclockwise) to shorten the stroke. Use a lock nut to tighten and secure the stopper in place after adjustment. Do not tighten the bolt to the right (clockwise) beyond the standard position. The stroke at shipping is set to the standard stroke. Do not adjust it to larger than the standard stroke.

Cylinder speed

Use the cylinder at a speed of 500mm/s [19.7in./sec.] or less (use a speed controller for adjustment). For high speeds (500mm/s [19.7in./sec.]), install an external stopper, etc., to prevent direct shocks to the cylinder. Consult us if the situation will not permit installation of an external stopper, etc.

Sensor switch

- In the standard cylinder, the magnet for sensor switch is built-in. Mounting a sensor switch will enable use in sensor switch applications.
- Do not use a sensor switch mounting screw to secure the sensor switch into the body mounting hole. The sensor switch mounting screw could fall out.

General precautions

Media

- Always thoroughly blow off (use compressed air) the tubing before piping. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.
- **2.** Use air for the media. For the use of any other media, consult us.
- 3. Air used for the cylinder should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum 40 μm) near the cylinder or valve to remove collected liquid or dust. In addition, drain the air filter periodically. Collected liquid or dust entering the cylinder may cause improper operation.

Lubrication

The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or equivalent. Avoid using spindle oil or machine oil.

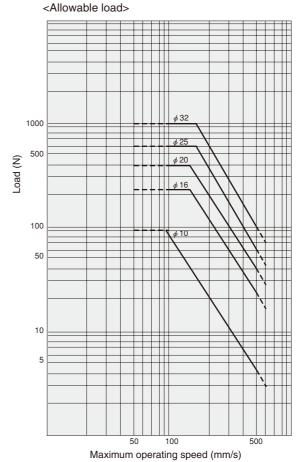
Atmosphere

- If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.
- 2. The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.

Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Criteria for selection

Select the cylinder bore according to the allowable load at the maximum cylinder operating speed.


<Precautions>

- Always use a speed controller for the cylinder, and control the speed to within a range of 100~500mm/s [3.9~19.7in./sec.].
- (2) When a lateral (side) load is applied to the piston rod, select a bore size within the allowable lateral load range (see the graphs on p.821).

When the load has exceeded the allowable value during use, always install an external stopper (shock absorber, etc.) to prevent direct shocks to the cylinder.

<Precautions>

- 1 For the external stopper (shock absorber, etc.), select a stopper with sufficient absorbing capacity.
- (2) Consult us if the situation will not permit the installation of an external stopper.
- (3) When a lateral (side) load is applied to the piston rod, limit within the allowable lateral load range (see the graphs on p.821).

<How to read the graph>

When a 59N [13.2lb.] load is carried with ϕ 20 [0.787in.], the maximum operating speed must be set to 400mm/s [15.7in./sec.] or less.

* The maximum load in the graph is when air pressure of 0.7MPa [102psi.] is applied to the cylinder push side. The load will decrease in applications such as retracted side operations and lower air pressure applications.

> 1N = 0.2248lbf. 1mm/s = 0.0394in./sec.