Sensor switches

Two-color LED solid state type

-Robot cable is standard equipment

Lead wire flexibility is excellent because the conductor used is the same as for robot cables.

Specifications

Two-color LED solid state type

Item Model	ZE137 \square	ZE157 \square	ZE177 \square	ZE237 \square	ZE257 \square	ZE277 \square
Wiring method	2-lead wire	3 -lead wire with NPN output	3 -lead wire with PNP output	2-lead wire	3-lead wire with NPN output	3 -ead wire with PNP output
Lead wire direction	Horizontal			Vertical		
Power supply voltage	-	4.5 to 28 VDC		-	4.5 to 28 VDC	
Load voltage	10 to 28 VDC	4.5 to 28 VDC		10 to 28 VDC	4.5 to 28 VDC	
Load current	2.5 to 20 mA (at250 ${ }^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$], and $10 \mathrm{~mA} \mathrm{at} 60^{\circ} \mathrm{C}$ [$440^{\circ} \mathrm{F}$])	40 mA max.		$2.51020 \mathrm{~mA}\left(\right.$ at $25^{\circ} \mathrm{C}$ [77 $\left.{ }^{\circ} \mathrm{F}\right]$, and $10 \mathrm{~mA} \mathrm{a} 60^{\circ} \mathrm{C}$ [$140^{\circ} \mathrm{F}$])	40 mA max.	
Consumption current	-	$8 \mathrm{~mA} \mathrm{max}$. (24 VDC)	$10 \mathrm{~mA} \mathrm{max}$. (24 VDC)	-	$8 \mathrm{~mA} \mathrm{max}$. (24VDC)	10 mA max. $(24 \mathrm{VDC})$
Internal voltage drop ${ }^{\text {Note } 1}$	4 V max.	2 V max. (0.8 V max if load is less than 10 mA)		4 V max.	2 V max. (0.8V max if load is less than 10 mA)	
Leakage current	0.7 mA max. ($\left.24 \mathrm{VDC}, 25^{\circ} \mathrm{C}\left[77^{\circ} \mathrm{F}\right]\right)$	$50 \mu \mathrm{~A}$ max. (24 VDC)		0.7 mA max. ($24 \mathrm{VDC}, 25^{\circ} \mathrm{C}\left[77^{\circ} \mathrm{F}\right.$])	$50 \mu \mathrm{~A}$ max. (24 VDC)	
Response time	1 ms max.					
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC megger, between case and lead wire terminal)					
Dielectric strength	500 VAC ($50 / 60 \mathrm{~Hz}$) 1 minute (between case and lead wire terminal)					
Shock resistance ${ }^{\text {Note } 2}$	$294.2 \mathrm{~m} / \mathrm{s}^{2}$ [30 G] (non-repeated)					
Vibration resistance ${ }^{\text {Note } 2}$	$88.3 \mathrm{~m} / \mathrm{s}^{2}$ [9 G] (total amplitude of 1.5 mm [0.059 in], 10 to 55 Hz)					
Protection from environment	IP67 (IEC standard), JIS C0920 (water-proof type)					
Operation indicators	Appropriate operation range: Green LED indicator lit when on, operation range: Red LED indicator lit when on					
Lead wires	PCCVO.2SQ x 2-lead (brown and blue) x $\ell^{\text {Noie } 3}$	PCCVO. $155 Q \times 3$-lead (brow	vow, bue, and black) x \& mes 3	PCCVO.2SQ x 2-lead (brown and blue) x \& ${ }^{\text {Noe3 }}$	PCCV0. $155 Q \times 3$-lead (brow, bue, and black) × \& Nide 3	
Ambient temperature	0 to $60^{\circ} \mathrm{C}$ [32 to $140^{\circ} \mathrm{F}$]					
Storage temperature range	-10 to $70^{\circ} \mathrm{C}$ [14 to $158^{\circ} \mathrm{F}$]					
Mass	$15 \mathrm{~g}[0.53 \mathrm{oz}]$ (for lead wire length A: 1000 mm [39 in], 35 g [1.23 oz$]$ (for lead wire length B: 3000 mm [118 in]), $15 \mathrm{~g}[0.53 \mathrm{oz}]$ (for lead wire length 300 mm [11.8 in] with M8 connector)					

Note 1: Internal voltage drop changes with the load current.
2: According to Koganei test standards.
3: Lead wire length $\ell:$ A; 1000 mm [39 in], B; $3000 \mathrm{~mm}[118 \mathrm{in}$], G; $300 \mathrm{~mm}[11.8 \mathrm{in}$] with M 8 connector only on the ZE177 \square and ZE277 \square

Operation

Explanation of operation of two-color LED solid state type
ZE137 \square, ZE157 \square, ZE177 \square, ZE237 \square, ZE257 \square, ZE277 \square

Note: The operating output may become unstable, due to the effects of the operating and installation environments, even if the appropriate operating range (green LED indicator lit) is fixed.

OZE177 \square, ZE277 \square

Sensor Switch Dimensions

- Horizontal lead wire

Solidstate (ZE137 \square, ZE157 \square, ZE177 \square)

Solid state (ZE177G)

Vertical lead wire
-Solid state (ZE237 $\square, \mathrm{ZE} 257 \square, \mathrm{ZE} 277 \square$)

Solid state (ZE277G)
Connector pin layout

2-lead wire

- Basic connection

- Connection to relays

AND (series) connection and OR (parallel) connection

Connection to solenoid valve

Connection to programmable controller

-3-lead wire with NPN output type

- Basic connection

AND (series) connection and OR (parallel) connection

Connection to solenoid valve

Connection to programmable controller

3-lead wire with PNP output type

- Basic connection

- Connection to relays

AND (series) connection and OR (parallel) connection

Connection to solenoid valve

Connection to programmable controller

1. Connect the lead wires according to their color. Incorrect wiring will cause damage to the sensor switch.
2. The use of a surge protection diode is recommended with the inductive load such as an electromagnetic relay.
3. Avoid the use of AND (series) connections because the circuit voltage will drop in proportion to the number of sensor switches.
4. When using an OR (parallel) connection, it is possible to connect sensor switch outputs directly (ex: using corresponding black lead wires). Be aware of load return errors since current leakage increase with the number of switches.
5. Because the sensor switches are magnetically sensitive, avoid using them in locations subject to strong external magnetic fields or bringing them in close proximity to power lines and areas where large electric currents are present. Also avoid using magnetic material for any parts used for mounting. It could result in erratic operation.
6. Do not excessively pull on or bend the lead wires.
7. Avoid using the switches in environments where chemicals or gas are present.
8. Consult the nearest Koganei sales office for use in environments subject to water or oil

Moving Sensor Switch

Loosening the screw allows the sensor switch to be moved along the switch mounting groove of the cylinder tube.
The tightening torque for the screws is 0.1 to $0.2 \mathrm{~N} \cdot \mathrm{~m}$ [0.86 to $1.77 \mathrm{in} \cdot \mathrm{lbf}$].

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: ℓ
The range from where the piston turns the switch on and the point where the switch is turned off as the piston travels in the same direction.

- Response differential: C

The distance between the point where the piston turns the switch on and the point where the switch is turned off as the piston travels in the opposite direction.

When Mounting the Cylinders with Sensor Switches in Close Proximity

When using it connected to a cylinder, use under conditions using values greater than those shown in the table below.

Note: Install a shield plate (at least 1 mm [0.039 in] thick magnetic mm [0.039 in] thick magnetic
material) between two cylinders to use them in close proximity.
However, magnetic materials to use them in close proximity.
However, magnetic materials cannot be used in magnetized environments.

		unit
Cylinder bore	A	B
6	23	0
8		
10		
12		
16		
20		
25		
32		
40		
50		
63		
80		
100		
125		

For cylinder with guide

unit: mm		
Cylinder bore	A	B
8	15	0
12		
16		
20		
25		
32		
40		

Mounting the sensor switch in the locations shown (reference values in diagram), the sensor magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Double acting type Single acting push type Single acting pull type ${ }_{2}$

- Scraper specification
- Clean room specification (with dust collection port)

* When the Y dimension is negative, the sensor switch protrudes from the cylinder body.

Item Bore		6	8	10	12	16	20	25	32	40	50	63	80	100	125
Double acting type	X	10.5	11	11	11	12	15 (20)	16 (21)	17.5	22.5	27.5	33.5	34.5	46.5	53
	X_{2}	-	-	21	21	22	25 (30)	26 (31)	32.5	37.5	42.5	53.5	*54.5	*66.5	*73
	Y	0	-0.5	0.5	1.5	2.5	3.5	4.5	7	9	10	12	14	18	19.5
	Z	3.5	3	4	5	6	7	8	10.5	12.5	13.5	15.5	17.5	21.5	23
Push Single acting type	X	25.5	26	26	26	27	30	31	32.5	37.5	47.5	-	-	-	-
	Y	0	-0.5	0.5	1.5	2.5	3.5	4.5	7	9	10	-	-	-	-
	Z	3.5	3	4	5	6	7	8	10.5	12.5	13.5	-	-	-	-
Pull Single acting type	\mathbf{X}	25.5	26	26	26	27	30	31	32.5	37.5	47.5	-	-	-	-
	Y	0	-0.5	0.5	1.5	2.5	3.5	4.5	7	9	10	-	-	-	-
	Z	3.5	3	4	5	6	7	8	10.5	12.5	13.5	-	-	-	-

Note: Dimensions in () parentheses are for 5 mm dimensions for scraper specification only.

Double acting double rod end type

Item Bore		6	8	10	12	16	20	25	32	40	50	63	80	100	125
Double acting type	X	10.5	11	11	11	12	15	16	17.5	22.5	27.5	33.5	34.5	46.5	53
	Y	4	4.5	5.5	6.5	7.5	8.5	9.5	12	14	20	22	24	18	19.5
	Z	7.5	8	9	10	11	12	13	15.5	17.5	23.5	25.5	27.5	21.5	23

Double acting type with guide

Item Bore		8	12	16	20	25	32	40
Double acting type	X	11 (16)	11 (16)	12 (17)	15 (20)	16 (21)	17.5 (22.5)	22.5 (27.5) (32.5 for stroke 10 only)
	Y	-0.5	1.5	2.5	3.5	4.5	12	14
	Z	3	5	6	7	8	15.5	17.5

Note: Dimensions in () parentheses are for mid-stroke models (stroke 5, 15, 25, 35, 45, and 55).

[^0] switch protrudes from the cylinder body.

[^0]: * When the Y dimension is negative, the sensor

