## Smallest Lightest Compact

 Basic Cylinders BC CylindersPossible to create all assembly processes with just BC cylinders Wide renge of variations from $\phi 6$ [0,236 in] to $\phi$ ( 125 [4.9 in]
NEW Heat resistant specification, clean room specification, with locating pin hole, and more!


## BASIC CYLINDERS

## Lightweight \& Compact



# Cross section is $25 \%$ smaller Total lengith is $30 \%$ shorter 40\% less mass <br> * Comparison of 10 mm [0.394 in] stroke 

## Direct mounting




Bracket can be mounted on the head side of $\phi 10$ [0.394] to $\phi 125$ [4.9] models (except when guide is attached)

Bracket material
$\phi 10$ [0.394] to $\phi 32$ [1.260]: Stainless steel $\phi 40$ [1.575] to $\phi 125$ [4.9]: Aluminum alloy

Excellent series ranging from $\phi 6$ to $\phi 125$ [0.236 to 4.9$]$ (Double acting type and double rod cylinders)

## 

 (Compliant with H 1 grade food equipment specifications)
## Uses NSF H1 grade grease.


$\phi 6 \quad \phi 8 \quad \phi 10 \quad \phi 12$
ф16

[ 0.236 in$][0.315 \mathrm{in}][0.394 \mathrm{in]}[0.472 \mathrm{in}][0.630 \mathrm{in}] \quad[0.787 \mathrm{in}]$
[0.984 in]


Linear guide is mounted to save space and for non-rotating accuracy


NEW
With locating pin hole (option)
*Main unit three sides, table two sides os


NEW Scraper specification

Compatible with environments where dust and water droplets are
present.


Back side piping is possible


Back side piping is possible as standard for $\phi 8$ [0.315] to $\phi 25$ [0.984] models.


Back side piping is possible for $\phi 32$ [1.260] and $\phi 40$ [1.575] models by selecting back side piping block.

Note: Linear guides use low dust grease.

## NEW Clean system compatible cylinders

## Step 1 variations

## Double acting type 23 Page

$\phi 6$ [0.236] to $\phi 125$ [4.9] ( $\phi 6$ [0.236], $\phi 8$ [0.315], $\phi 10$ [0.394], $\phi 12$ [0.472], $\phi 16$ [0.630], $\phi 20$ [0.787], $\phi 25$ [0.984], $\phi 32$ [1.260], $\phi 40$ [1.575], $\phi 50$ [1.969], $\phi 63$ [2.480], $\phi 80$ [3.150], $\phi 100$ [3.9], $\phi 125$ [4.9]) *Double acting type has excellent low-speed operation (range of speeds: 10 to $500 \mathrm{~mm} / \mathrm{s}$ [0.394 to $19.7 \mathrm{in} / \mathrm{sec}]$ ).


Single acting push type 23 Page
$\phi 6$ [0.236] to $\phi 50$ [1.969]
( $\phi 6$ [0.236], $\phi 8$ [0.315], $\phi 10$ [0.394], $\phi 12$ [0.472], $\phi 16$ [0.630], $\phi 20$ [0.787], $\phi 25$ [0.984], $\phi 32$ [1.260], $\phi 40$ [1.575], $\phi 50$ [1.969])


## Single acting pull type $2^{23}$ Page

$\phi 6$ [0.236] to $\phi 50$ [1.969]
( $\phi 6$ [0.236], $\phi 8$ [0.315], $\phi 10$ [0.394], $\phi 12$ [0.472], $\phi 16$ [0.630], $\phi 20$ [0.787], $\phi 25$ [0.984], $\phi 32$ [1.260], $\phi 40$ [1.575], $\phi 50$ [1.969])


## Double rod end cylinders 77 Page

$\phi 6$ [0.236] to $\phi 125$ [4.9]
$(\phi 6$ [0.236], $\phi 8$ [0.315], $\phi 10$ [0.394], $\phi 12$ [0.472], $\phi 16$ [0.630], $\phi 20$ [0.787], $\phi 25$ [0.984], $\phi 32$ [1.260], $\phi 40$ [1.575], $\phi 50$ [1.969], $\phi 63$ [2.480], $\phi 80$ [3.150], $\phi 100$ [3.9], $\phi 125$ [4.9])


## Cylinder with guides 95 Page

$\phi 8$ [0.315] to $\phi 40$ [1.575] ( $\phi 8$ [0.315], $\phi 12$ [0.472], $\phi 16$ [0.630], $\phi 20$ [0.787], $\phi 25$ [0.984], $\phi 32$ [1.260], $\phi 40$ [1.575])


## NEW <br> Step2 variations

## Corrosion resistant specification

- Piston rod
- Snap ring: Electroless nickel plated
- Guide: H1 grease • Packing: NBR

Compatible cylinders
Double acting type $\phi 6$ [0.236] to $\phi 125$ [4.9] 23 Page
Single acting push type, single acting pull type $\phi 6$ [0.236] to $\phi 50$ [1.969] 23 Page
Double rod end cylinders $\phi 6$ [0.236] to $\phi 125$ [4.9] (7) Page
Cylinder with guide $\phi 6$ [0.236] to $\phi 40$ [1.575] 95 Page


Heat resistant specification
Up to a maximum of $150^{\circ} \mathrm{C}\left[302^{\circ} \mathrm{F}\right.$ ].

- Packing: fluoro rubber

Note: Sensor switch cannot be attached.
Compatible cylinders
Double acting type $\phi 6$ [0.236] to $\phi 125$ [4.9] 23 Page
Cylinder with guide $\phi 8$ [0.315] to $\phi 40$ [1.575] 95 Page


Double acting type


Cylinder with guide

## Scraper specification

Compatible with environments where dust and water droplets are present.

Compatible cylinders
Double acting type $\phi 10$ [0.394] to $\phi 125$ [4.9] (No $\phi 6$ [0.236] and $\phi 8[0.315]$ ) 23 Page


## Clean system compatible cylinders

With dust collection port: Class 5 equivalent
Without dust collection port: Class 6 equivalent


Compatible cylinders
Double acting type (With dust collection port) $\phi 6$ [0.236] to $\phi 63$ [2.480] (107) Page
Double acting type (Without dust collection port) $\phi 10$ [0.394] to $\phi 63$ [2.480] (107) Page
Cylinder with guide (Without dust collection port) $\phi 8$ [0.315] to $\phi 40$ [1.575] (121) Page


With locating pin hole (option)
Cylinder body: Pin holes in three sides
Table: Pin holes in two sides
Compatible cylinders
Cylinder with guide $\phi 8$ [0.315] to $\phi 40$ [1.575] (95) (121) Page


## F series solenoid valves (F10•F15•F18)

Low-current type and single/double dual-use valves offer energy savings and a low price.

Switch the manual override button to select single solenoid valve or double solenoid valve functions on the 2-position valve of the F series.

Different tube sizes for piping are possible with dual-use different size fittings.


## iB-Cyclone

High-speed cyclone type water separator!
Half the volume ratio and $99 \%$ higher moisture separation rate when compared with equivalent equipment.
No element used for maintenance-free operation.
Auto drain function (NC and NO) available.
OSpecifications for ozone resistance, NCU specifications (copper free) compatible as standard.


## Smaller size FRZB filter regulator

FRZB filter regulator with moisture and fluid removal function!

Compact size with short face-to-face dimensions.
With drain cock and easy to use moisture and fluid removal function.
Auto drain function (NC and NO) available.
Bowl guard available.


## FRZ Series Air filter•Oil mist filter•Micromist filter

## Downsized! Short face-to-face dimensions! Visible filter element! <br> Compact size with short face-to-face dimensions. <br> Olt is easy to check the state of the filter element. <br> Auto drain function (NC and NO) available.



## Two-color LED sensor switches

Two-color LED sensor switches that can be easily positioned and adjusted. Appropriate operation range can be determined by the color of the LED indicator!


## MTV Series water removal valves

Our answer to counteracting condensation! Prevent condensation from developing inside the piping to pneumatic grippers and small cylinders!

Simply connect it in the pipes! Easy mounting!


## IB-FlOW Digital flow controller

Constantly monitors cylinder tact times and adjusts automatically!

Digitally set cylinder tact times (operation cycle times).
Tact time controller is always monitoring and adjusting.
Safety mechanism prevents needle from loosening.
ONumeric setting of needle opening (0 to 100\%).


## Quick fitting series

Wide range of variations such as many types of quick fittings and speed controllers with quick fittings!

Standard types, mini types, and SUS specifications available.
ODiverse variations available such as quick fittings with stop valves, hand valves, check valves, throttle valves, and power reducers.


Before selecting and using the products, please read all the safety precautions carefully to ensure proper product use.
The safety precautions described below are to help you use the product safely and correctly, and to prevent injury or damage to you, other people, and assets. Always observe these safety precautions and the following safety regulations: ISO4414 (Pneumatic fluid power - General rules and safety requirements for systems and their components) and JIS B 8370 (General rules relating to systems).

## The directions are ranked according to degree of potential danger or damage: "DANGER", "WARNING!", "CAUTION!", and "ATTENTION!".

| DANGER | Indicates situations that can be clearly predicted as dangerous. <br> Death or serious injury may result if the situation is not avoided. <br> It could also result in damage or destruction of assets. |
| :--- | :--- |
| WARNINGIndicates situations that, while not immediately dangerous, could become dangerous. <br> Death or serious injury may result if the situation is not avoided. <br> It could also result in damage or destruction of assets. |  |
| CAUTIONIndicates situations that, while not immediately dangerous, could become dangerous. <br> Failure to avoid the situation creates the risk of minor or semi-serious injury. <br> It could also result in damage or destruction of assets. |  |
| ATTENTION | While there is no chance of injury, these points should be observed for appropriate use of the product. |

## -This product was designed and manufactured for use in general industrial machinery.

$\square$ When selecting and handling equipment, the system designer or another person with sufficient knowledge and experience should always read the safety precautions, catalog and other literature before commencing operation. Improper handling is dangerous.
$\square$ After reading the catalog, and other documentation, always place them in a location that allows easy availability for reference to users of this product.
Whenever transferring or lending the product to another person, always attach the catalog, and other information to the product where they are easily visible in order to ensure that the new user can use the product safely and properly.
■The danger, warning and caution items listed under these safety precautions do not cover all possible contingencies. Read the catalog carefully, and always keep safety first.

## 1. DANGER

Do not use the product for the purposes listed below:

1. Medical equipment related to maintenance or management of human lives or bodies
2. Machines or equipment designed for the purpose of moving or transporting people
3. Critical safety components in mechanical devices This product has not been planned or designed for purposes that require high levels of safety. Using the product in any of the ways described above creates the risk of loss of human life.
Do not use the product in locations with or near dangerous substances such as flammable or ignitable substances. This product is not explosion-proof. Doing so creates the risk of ignition and fire.
When mounting the product and workpiece, always make sure they are firmly supported and secured in place. Falling, dropping, or abnormal operation of the product creates the risk of personal injury.

- Persons using a pacemaker or other similar medical devices should maintain a distance of at least one meter [ 3.28 ft ] away from the product. Getting too close to the product creates the risk of malfunction of a pacemaker due to the strong magnet built into the product.
- Never attempt to modify the product in any way. Doing so creates the risk of injury, electric shock, fire, etc. due to abnormal operations.
- Never attempt inappropriate disassembly, assembly or repair of the product relating to basic construction, or to its performance or to functions. Doing so creates the risk of injury, electric shock, fire, etc.
Do not allow water to splash on the product. Water spraying on the product, washing the product, or using the product under water creates the risk of malfunction, leading to injury, electric shock, fire, etc.
While the product is in operation, avoid touching it with your hands or otherwise approaching too close. Also, do not attempt to make any adjustments to internal or attached mechanisms (sensor switch mounting location, disconnection of piping tubes or plugs, etc.) while the product is in operation. This may cause an unintended cylinder movement resulting in injury.
When operating the product, always install speed controllers, and gradually loosen the needle valve from a choked state to adjust the increase in speed.
Failure to make this adjustment could result in the air supply causing sudden movements, which may put human lives at risk.

Do not apply excess bending or buckling force to the piston rod. Doing so may cause abnormal wear or damage to the rod or tube and reduce the product's operating life.
Always link the direction of motion of the load with the axis of the piston rod. If they are not the same, the undue force on the tube and piston rod may cause abnormal wear or damage.

## \. WARNING

Do not use the product in excess of its specification ranges. Doing so creates the risk of product breakdown, loss of function, or damage. It could also drastically reduce the product's operating life.
Before supplying air or electricity to the device and before starting operation, always conduct a safety check of the area where the machine is operating. Unintentional supply of air or electricity creates the risk of electric shock or injury due to contact with moving parts.
Do not touch terminals or switches while power is turned on. Doing so creates the risk of electric shock and abnormal operation.

- Always check the catalog and other reference materials for correct product wiring and piping. Improper wiring and piping creates the risk of abnormal operation of the cylinder.
Do not allow the product to be thrown into fire.
Doing so creates the risk of explosion and the release of toxic gases.
Do not sit on the product, place your foot on it, or place other objects on it.
Doing so creates the risk of injury due to tripping or the product tipping over or falling, resulting in product damage, malfunction or runaway operation.
- Before conducting maintenance, inspection, repair, replacement, or any other similar procedure, always completely cut off all air supply and confirm that residual pressure inside the product or in piping connected to the product is zero. In particular, be aware that residual air will still be in the air compressor or storage tank. The cylinder may move abruptly, if residual air pressure remains inside the piping, causing injury.
Do not use the cylinder as a device to absorb the shock or vibration of machinery. Doing so may create the risk of injury or the breakdown of the machinery.
- Do not allow lead wires of sensor switches or other cords to become damaged.
Allowing a cord to become damaged, bent excessively, pulled, rolled up, placed under heavy objects, or squeezed between two objects creates the risk of current leaks or defective continuity that can lead to fire, electric shock, or abnormal operation.

Do not apply external magnetic field to sensor switches while the cylinder is in operation. Unintended operations could damage equipment or cause injury.

- Use the product within the recommended load and operating speed specifications. Using the cylinder in excess of the recommended load and operating speed specifications could damage the cylinder causing damage to equipment or injury.
- Use safety circuits or design a system that prevents damage to machinery and personal injury when the machine is shut down due to an emergency stop or electrical power failure, etc.
- Install relief valves or other devices to ensure that the cylinder does not exceed its rated pressure when the pressure is increased by external forces on the cylinder. Excessive pressure could lead to a breakdown and damage.
- When the product has been idle for over 48 hours or has been in storage, it is possible that the contacting parts may have become stuck leading to operating delays or sudden movements. Before initial operations, always run a test to check that operating performance is normal.
- Do not use the product near the ocean, in direct sunlight, near mercury vapor lamps, or near equipment that generates ozone. Deterioration of rubber parts caused by ozone may reduce performance and functions or stop functions.
- Because Koganei products may be used under a wide variety of conditions, decisions concerning conformance with a particular system should be made upon the careful evaluation by the person in charge of system design. Assurances concerning expected system performance and safety are the responsibility of the designer who decides system conformity. Be sure to use the latest catalogs and technical materials to study and evaluate specification details, to consider the possibility of machine breakdown, and to configure a system that ensures fail-safe safety and reliability.
Do not apply force to cylinder rods and tables outside the ranges of allowable lateral load, allowable kinetic energy, allowable moment, and other values shown in the catalog and other documentation. Doing so may cause wear or damage to the rod or tube and reduce the product's operating life.


## CAUTION

Do not use the product in locations subject to direct sunlight (ultraviolet radiation), in locations with dust, salt, or iron particles, or in locations with media and/or ambient atmosphere that include organic solvents, phosphate ester type hydraulic oil, sulfur dioxide gas, chlorine gas, acids, etc. Such uses could lead to loss of functions within a short period, sudden degradation in performance, or reduced operating life. For details on materials used in the product, refer to the description of materials used in major parts.

- When mounting the product, leave room for adequate working space around it. Failure to do so will make it more difficult to conduct daily inspections or maintenance, which could eventually lead to system shutdown or damage to the product.
When transporting or mounting a heavy product, firmly support the product using a lift or support, or use multiple people to ensure personal safety.
Do not bring any magnetic media or memory within one meter [3.28 ft] of the product. Doing so creates the risk of damage to data on the magnetic media due to magnetism.
- Do not use the sensor switch in locations subject to large electrical currents or strong magnetic fields. It could result in erratic operation.
Also avoid using magnetic material for any parts used for mounting. Doing so creates the risk of magnetism leakage that causes malfunctions.
Do not bring the product too close to magnetic material. The sensor switch may malfunction or operate erratically if the product is located near a magnet or where a magnetic field is generated.
- Never use another companies' sensor switches with these products.
Doing so may cause malfunctions or runaway operation.
Do not scratch, dent, or deform the actuator by sitting or standing on the product, or by placing objects on it. Doing so creates the risk of damage to or breakage of the product, resulting in operational shutdown or degraded performance.

Always post an "operations in progress" sign for installations adjustments, or other operations, to avoid unintentional supplying of air or electrical power, etc. Unintended power or air supply can cause electric shock and sudden cylinder movement, creating the risk of personal injury.
Do not subject any cords, such as the sensor switch lead wires, to excessive loads by pulling on them, lifting the product by them, or placing heavy objects on them. Doing so may cause current leakage or defective continuity leading to fire, electric shock, or abnormal operation.
Using extremely dry air with a dew point lower than $-20^{\circ} \mathrm{C}$ $\left[-4^{\circ} \mathrm{F}\right]$, may affect the quality of the lubricating oil used. This may cause loss of functions, shorter operating life, degraded performance or other problems.

- Be sure to wash your hands thoroughly after touching the heat resistant specification and clean room specification grease. Smoking a cigarette with hands soiled with grease creates the risk of emission of toxic gas when grease adhering to the cigarette burns. (Though the grease is very stable at normal temperature, it emits toxic gas when its temperature exceeds $260^{\circ} \mathrm{C}\left[500^{\circ} \mathrm{F}\right]$.)


## ATTENTION

Whenever considering use of this product in situations or environments not specifically noted in the catalog, or in applications where safety is an important requirement such as in aircraft facilities, combustion equipment, leisure equipment, safety equipment, and other places where human life or assets may be greatly affected, take adequate safety precautions such as allowing plenty of margin for ratings and performance, or fail-safe measures.
Be sure to contact Koganei before use in such applications.
Moving parts of machinery should be isolated with protective covers so as not to come into direct contact with human bodies.
Do not configure controls that would allow workpieces to fall if power fails.
Configure the control system to prevent workpieces or tables from falling if the machinery stops during an emergency stop or power outage.
When handling the product, wear protective gloves, safety glasses, safety shoes, and other protective clothing whenever necessary.
When the product can no longer be used or is no longer necessary, dispose of it appropriately as industrial waste.
Pneumatic equipment can exhibit degraded performance and function over its operating life. Always conduct daily inspections of the pneumatic equipment, and confirm that all requisite system functions are satisfied, to prevent accidents from happening.
For inquiries about the product, consult your nearest Koganei sales office or Koganei Overseas Department. The addresses and telephone numbers are shown on the back cover of this catalog.

## Other

Always observe the following items.

1. When using this product in pneumatic systems, always use genuine Koganei parts or compatible parts (recommended parts).
When conducting maintenance and repairs, always use genuine Koganei parts or compatible parts (recommended parts).
Always observe the prescribed methods and procedures.
2. Never attempt inappropriate disassembly or assembly of the product in relation to its basic construction, performance, or functions.

Koganei cannot be held responsible for any problems that occur as a result of these safety precautions not being properly observed.


## Design and selection

## WARNING

1. Check the specifications.

Read the specifications carefully to ensure correct use within the product's specified voltage, current, temperature, and shock ranges, failure to do so could result in a breakdown or defective operation.
2. Be careful when mounting cylinders in close proximity to each other.
Refer to page 94 if you are mounting more than two cylinders, with sensor switches, in parallel. The magnetic field interference may cause the sensor switches to malfunction.
3. Be careful of how long the sensor switch is on when detecting the position in mid-stroke.
Be aware that, when the sensor switch is mounted at an intermediate point of the cylinder stroke to detect the passing of the piston, if the piston is moving too fast, the length of time the sensor switch operates is too short to delete the piston passing (so loads such as programmable controllers are not operated). The highest detectable cylinder speed is

$$
\mathrm{V} \mathrm{~mm} / \mathrm{s}[\mathrm{in} / \mathrm{sec}]=\frac{\text { Sensor switch operating range } \mathrm{mm}[\mathrm{in}]}{\text { Time required for load operation }[\mathrm{ms}]} \times 1000
$$

## 4. Keep wiring as short as possible.

Lead wires for solid state sensor switches should be within 30 $\mathrm{m}[98 \mathrm{ft}]$ as stipulated by EN standards. For reed sensor switches, longer wiring ( $10 \mathrm{~m}[33 \mathrm{ft}]$ or longer) will lead to a larger capacitive surge, which reduces the operating life of sensor switches. When longer wiring cannot be avoided, provide the protective circuit described in the catalog. For details, see page ${ }^{33}$.
If the load is inductive or capacitive, provide the appropriate protective circuit as described in the catalog. For details, see page ${ }^{3}$.
5. Avoid repeated bending or excessive pulling of lead wires.
Applying repeated bending stress or tension force on the lead wires could break them.
6. Check for leakage current.

With 2-lead wire solid-state sensor switches, current (leakage current) flows to the load to activate the internal circuit even when turned off. Ensure that the circuit satisfies the following inequality.

Input off current of programmable controller > Leakage current If the above inequality cannot be satisfied, select a 3 -lead wire solid state sensor switch. And, if n sensor switches are connected in parallel, the leakage current increases by $n$ times.
7. Do not use reed sensor switches at low speeds below $30 \mathrm{~mm} / \mathrm{s}$ [ $1.2 \mathrm{in} / \mathrm{sec}]$. Doing so may cause erratic operation or loss of functions.

## CAUTION

1. Check for internal voltage drop of sensor switches.

Connecting reed sensor switches with indicator lamps, or 2 -lead wire solid state sensor switches, in series causes increasing internal voltage drop and the load may fail to activate. Connecting n switches will drop the internal voltage by n times as much.
Ensure that the circuit satisfies the following inequality:
Supply voltage - Internal voltage drop x $\mathrm{n}>$ Minimum operating voltage of the load In relays with rated voltage of less than 24 VDC , check that the above inequality is satisfied even when $n=1$.
If the above inequality cannot be satisfied, select a reed sensor switch without an indicator lamp.
2. Do not use Koganei sensor switches with other companies' cylinders.
The sensor switches are designed for use with Koganei cylinders only. They may not function correctly if used with other companies' cylinders.

## Installation and adjustment

## WARNING

1. Do not apply an external magnetic field to the sensor switch while the cylinder is in operation.
This may cause unintended operation, thereby damaging the device or causing injury.

## CAUTION

1. Be aware of the environment in which you install the sensors and cylinders.
Do not use the sensor switch in locations subject to large electrical currents or strong magnetic fields. It could result in erratic operation.
Also avoid using magnetic material for any parts used for mounting. It could result in erratic operation.
2. Install sensor switches in the center of their operating range.
Adjust the mounting position of a sensor switch so that the piston stops in the center of its operating range (the range while the sensor is ON ). Operations will be unstable if mounted at the end of the operating range (at the boundary near on and off). Also be aware that the operating range will vary with changes in temperature.
3. Follow the tightening torque guidelines for mounting sensor switches.
Over-tightening beyond the allowed tightening torque may damage the mounting threads, mounting brackets, sensor switches and other components. However, insufficient tightening torque may cause the sensor switch position to change, resulting in unstable operation. Follow the instructions on page (11) concerning the tightening torque.
4. Do not carry the cylinder by its mounted sensor switch's lead wires.
After mounting a sensor switch on the cylinder, do not carry the cylinder by grabbing the lead wires. Never do this, as it may damage not only the lead wires but may also apply stress to the inside of the sensor switch that may damage internal elements.
5. Do not drop the sensor switches or bump them against other objects.
While handling sensor switches, do not subject them to excessive shock ( $294.2 \mathrm{~m} / \mathrm{s}^{2}$ [ 30 G ] or larger) by hitting, dropping or bumping them.
In the case of reed sensor switches, such behavior may cause the contact to malfunction, thereby giving a signal output or turning off the signal instantaneously. And, this may change the contact interval, thereby deteriorating the sensor switch's sensitivity. As such, this may cause the device to malfunction. Even if the sensor switch case is not damaged, the inside of the sensor switch may be damaged, causing erratic operation.


## Wiring

## DANGER

1. Prevent nearby moving objects from coming into contact with sensor switches.
When cylinders equipped with sensor switches are moving or when moving objects are nearby, do not let them come into contact with each other. In particular, lead wires may become worn or damaged causing unstable operation of the sensor switch. In the worst case, this may result in current leaks or electrical shock.
2. Always turn off the power before doing wiring work. Doing wiring work while the power is on may result in electric shock. Also, incorrect wiring could damage the sensor switch in an instant. Turn on the power only after the wiring work is complete.

## WARNING

1. Check the catalog and other materials to ensure that the sensor switch is wired correctly. Incorrect wiring may result in abnormal operation.
2. Do not share wiring with power or high voltage lines. Avoid wiring in parallel to or in the same conduit with power lines and high-voltage lines. Noise from such wiring could cause the sensor switch and control circuit to operate erratically.
3. Avoid repeated bending or excessive pulling of lead wires.
Applying repeated bending stress or tension force on the lead wires could break them.
4. Check the wiring polarity.

Be sure that the wiring connections are correct for sensor switches that specify polarity (,+- , output). Incorrect polarity could result in damage to sensor switches.

## CAUTION

1. Avoid short circuiting loads.

Turning on the sensor switch while the load is short-circuited causes overcurrent, which will damage the sensor switch in an instant.
Example of short-circuit load: Sensor switch's output lead wire is directly connected to the power supply.
2. Position sensor switches in the center of their operating range.
Operating output may be unstable, depending on the operating environment, if positioned at the edge of the operating range.
3. Solid state sensor switches that are compliant with the EMC standards (EN61000-6-2 and EN60947-5-2) are not resistant to surges from lightning. Use countermeasures on the machine to protect them from lightning surges.
4. Use an internal element to absorb surges for direct activation of loads that generate surges.

## Handling Instructions and Precautions



## General precautions

## Piping

Before installing piping to the cylinder, thoroughly flush the inside of the pipes (with compressed air). Machining chips, sealing tape, rust and other debris remaining from the piping work may result in air leaks and malfunctions.

## Air supply

1. Use air as the medium. For the use of any other medium, consult your nearest Koganei sales office.
2. Air used for the cylinder should be clean air that contains no degraded compressor oil, etc. Install an air filter (filtration of $40 \mu \mathrm{~m}$ or less) near the cylinder or valve to remove dust and accumulated liquid. Also drain the air filter periodically. If liquid or dust gets into the cylinder, it may cause defective operation.

## Lubrication

The cylinder can be used without lubrication, however, if lubrication, such as a lubricator, is used, use turbine oil type 1 (ISO VG32) or an equivalent. Avoid using spindle oil or machine oil.

## Environment

1. Cover the unit when using it in locations where it might be subject to excessive dust, dripping water, dripping oil, etc.
2. Do not use the cylinder in environments which may be corrosive. Using the cylinder in these types of environments may result in damage or defective operation
3. Do not use it in excessively dry conditions.
4. Do not use the cylinder if the ambient temperature is over $60^{\circ} \mathrm{C}\left[140^{\circ} \mathrm{F}\right.$ ], doing so may result in damage or defective operation. Also, consider anti-freezing measures if the temperature is less than $5^{\circ} \mathrm{C}$ [ $41^{\circ} \mathrm{F}$ ], because moisture may freeze and result in damage or defective operation.

## Handling

1. Do not place your hands in the way of the cylinder when it is operating.
2. Be careful that no part of your body is pinched between the end plate and the cylinder body when the cylinder is retracting.
3. Confirm that there is no pressurized air in the cylinder before starting maintenance work.
4. Use the cylinder within its operating speed range. Even if the speed is within the allowable range, install an external stopper to prevent directly impacting the cylinder, if the load is large or the allowable kinetic energy is exceeded.
5. Use a separate cushioning device, such as a shock absorber, if noise or vibration is an issue.

## Warranty and General Disclaimer

1. Warranty Period

The warranty period for Koganei products is 180 days from the date of delivery.
2. Scope of Warranty and General Disclaimer
(1) The Koganei product warranty covers individual products. When a product purchased from Koganei or from an authorized Koganei distributor malfunctions during the warranty period in a way that is attributable to Koganei responsibility, Koganei will repair or replace the product free of charge. Even if a product is still within the warranty period, its durability is determined by its operation cycles and other factors. Contact your nearest Koganei sales office or the Koganei overseas department for details.
(2) Koganei shall not be held responsible for any losses or for any damage to other machinery caused by breakdown, loss of function, or loss of performance of Koganei products
(3) Koganei shall not be held responsible for any losses due to use or storage of the product in a way that is outside of the product specifications prescribed in Koganei catalogs and instruction manuals, and/or due to actions that violate the mounting, installation, adjustment, maintenance or other safety precautions.
(4) Koganei shall not be held responsible for any losses caused by breakdown of the product due to factors outside the responsibility of Koganei, including but not limited to fire, natural disaster, the actions of third parties, and intentional actions or errors by you.


## General precautions

## Other

The piston of the single acting type may not retract (return) even when the air is exhausted if air is continuously supplied to the piping port so that its spring is left compressed for a long period (more than 48 hours). Use a double acting cylinder if it will be left unused for long periods such as this.

## About the circuit to prevent rod pop-out

Rod pop-out prevention circuit
Using the cylinder in combination with the speed controller shown in the following diagram is effective for controlling speed and preventing rod pop-out.


Note: Install the speed controller as close as possible to the cylinder.


## Mounting

## Mounting

1. The cylinder can be mounted in any orientation, but the mounting surface must be flat. If the cylinder twists or bends when mounted, not only will it be inaccurate, but there may be air leaks and defective operation.
2. Note that a mounting surface that is scratched or dented can adversely affect flatness.
3. If the cylinder is subject to large impacts, use a support structure, such as brackets, to hold the cylinder body in addition to the mounting bolts.
4. Be sure that the cylinder body and the mounting bolts are of sufficient strength.
5. In cases where loosening of screws due to impact and/or vibration may be a factor, consider looseness prevention measures.
6. Do not scratch or dent the sliding parts of the piston rod. Doing so could damage the packing and cause air leaks.
7. The piston rod and linear guides are coated with grease, do not wipe it off. Doing so may cause defective operation. If you cannot see the lubricant, apply some grease.
The grease to be used depends on the specification. Contact Koganei for details.
8. Note that you cannot use the tapped holes on the front-surface (rod side) of the cylinder if you mount it using the counterbored holes on the cylinder body.
(Double acting type, single acting push type, single acting pull type, and double acting double rod end type from $\phi 10$ [0.394 in] to $\phi 32$ [ 1.260 in$]$ )
9. If you are using a combination of a cylinder and guide, use cylinder joints for flexible connections.

## Mounting with brackets

We recommend using brackets for mounting if you are using the cylinder in the following conditions. (BCZ-BK $\square$ or -BK )
OStroke : If using a cylinder with a longer than standard stroke.

- Mounting : If using a vertical or ceiling mount for a cylinder with a long stroke (guideline: Products with bore of $\phi 20$ [ 0.787 in ] or greater and stroke of 50 mm [1.97 in] or longer).
-Process : If using a cylinder for large static loads, such as for pressing processes.
OOther : If using a cylinder in a location subject to extreme vibrations.



## Tightening torque lists

| Fittings |  | Workpiece mounting (Cylinder with guide) |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{N} \cdot \mathrm{m}$ [in•lbf] |  | $\mathrm{N} \cdot \mathrm{m}$ [in•lbf] |
| Thread size | Tightening torque | Thread size | Tightening torque |
| M $3 \times 0.5$ | 0.7 [6.196] | M3 $\times 0.5$ | 0.63 [5.576] |
| M $5 \times 0.8$ | 1.0 to 1.5 [8.851 to 13.277] | $\mathrm{M} 4 \times 0.7$ | 1.5 [13.277] |
| R1/8 | 7 to 9 [61.957 to 79.659] | M $5 \times 0.8$ | 3.0 [26.553] |
| R1/4 | 12 to 14 [106.212 to 123.914] | M6×1 | 5.2 [46.025] |
| R3/8 | 22 to 24 [194.722 to 212.424 ] |  |  |


| OPlugs(Cylinder with guide) <br> $\mathrm{N} \cdot \mathrm{m}$ [in••bf] |  |
| :---: | :---: |
| Thread size | Tightening torque |
| $\mathrm{M} 3 \times 0.5$ | $0.3[2.655]$ |
| $\mathrm{M} 5 \times 0.8$ | $0.4[3.540]$ |

- Cylinder \& bracket mounting

| Thread size | $\mathrm{N} \cdot \mathrm{m}$ Tightening torque lbf |  |
| :--- | :---: | :---: |
|  | Cylinder | Bracket |
| $\mathrm{M} 3 \times 0.5$ | $1.2[10.621]$ |  |
| $\mathrm{M} 4 \times 0.7$ | $2.7[23.898]$ |  |
| $\mathrm{M} 5 \times 0.8$ | $5.4[47.795]$ |  |
| $\mathrm{M} 6 \times 1$ | $9.2[81.429]$ |  |
| $\mathrm{M} 8 \times 1.25$ | $22[194.722]$ |  |
| $\mathrm{M} 10 \times 1.5$ | $44[389.444]$ |  |
| $\mathrm{M} 12 \times 1.75$ | $76[672.676]$ |  |
| $\mathrm{M} 16 \times 2$ | $190[1681.7]$ |  |
| $\mathrm{M} 20 \times 2.5$ | $370[3274.9]$ |  |

*For both mounting to cylinder or to a mating surface.
-Sensor switch mounting
Screw tightening torque: $0.1 \mathrm{~N} \cdot \mathrm{~m}$ to $0.2 \mathrm{~N} \cdot \mathrm{~m}[0.885 \mathrm{in} \cdot \mathrm{lbf}$ to $1.770 \mathrm{in} \cdot \mathrm{lbf}]$

## Mounting workpiece to cylinder with guide

1. The table is supported by the linear guide, so be careful to avoid strong impact and excess moment when mounting workpieces.
2. Hold the table when securing the workpiece to the table with bolts. If you hold the body when tightening the bolts, it reduces the precision by applying too large moment on the guide.


## List of recommended mounting bolts



Base-surface mounting
Double acting type Single acting type (push, pull) Double rod With guide

| Cylinder bore mm [in] | Recommended mounting bolts |
| :---: | :---: |
| 6 [0.236] | M $3 \times 12$ [0.472] |
| 8 [0.315] | $\mathrm{M} 3 \times 12$ [0.472] |
| 10 [0.394] | $\mathrm{M} 3 \times 16$ [0.630] |
| 12 [0.472] | $\mathrm{M} 4 \times 16$ [0.630] |
| 16 [0.630] | M $4 \times 20$ [0.787] |
| 20 [0.787] | M5 $\times 25$ [0.984] |
| 25 [0.984] | M $5 \times 30$ [1.181] |
| 32 [1.260] | M6×35 [1.378] |
| 40 [1.575] | M8×45 [1.772] |
| 50 [1.969] | M10 $\times 55$ [2.165] |
| 63 [2.480] | M12 $\times 65$ [2.559] |
| 80 [3.150] | M12 $\times 80$ [3.150] |
| 100 [3.937] | M16 $\times 110$ [4.331] |
| 125 [4.921] | $\mathrm{M} 20 \times 130$ [5.118] |

Use bolts longer than those in the table above when fastening the cylinder.

| Front-surface mounting |  |  |  |
| :---: | :---: | :---: | :---: |
| Double acting type Single acting type (push, pull) Double rod |  |  |  |
| Cylinder bore mm [in] | Recommended mounting bolts |  |  |
|  | Double acting type | Single acting type | Double rod |
| 50 [1.969] | M6×35 [1.378] + stroke | M6X55 [2.165] + stroke | M6×45 [1.772] + stroke |
| 63 [2.480] | M8×40 [1.575] + stroke | - | M8×50 [1.969] + stroke |
| 80 [3.150] | M10X45 [1.772] + stroke | - | M10×55 [2.165] + stroke |
| 100 [3.937] | M10×55 [2.165] + stroke | - | M10×55 [2.165] + stroke |
| 125 [4.921] | M12×55 [2.165] + stroke | - | M12X55 [2.165] + stroke |

[^0]
## Allowable kinetic energy (except cylinder with guide)

Use less kinetic energy on the cylinder than indicated in the table below.

| Cylinder bore <br> $\mathrm{mm}[\mathrm{in}]$ | Allowable kinetic energy J [ft•lbf] |  |
| :---: | :---: | :---: |
|  | Double acting, double rod | Single acting (push \& pull) |
| $\mathbf{6}[\mathbf{0 . 2 3 6 ]}$ | $0.008[0.006]$ | $0.004[0.003]$ |
| $\mathbf{8}[\mathbf{0 . 3 1 5 ]}$ | $0.014[0.010]$ | $0.007[0.005]$ |
| $\mathbf{1 0}[\mathbf{0 . 3 9 4 ]}$ | $0.022[0.016]$ | $0.012[0.009]$ |
| $\mathbf{1 2}[\mathbf{0 . 4 7 2 ]}$ | $0.032[0.024]$ | $0.017[0.013]$ |
| $\mathbf{1 6}[\mathbf{0 . 6 3 0}]$ | $0.057[0.042]$ | $0.03[0.022]$ |
| $\mathbf{2 0}[\mathbf{0 . 7 8 7 ]}$ | $0.09[0.066]$ | $0.05[0.037]$ |
| $\mathbf{2 5}[\mathbf{0 . 9 8 4}]$ | $0.14[0.103]$ | $0.08[0.059]$ |
| $\mathbf{3 2}[\mathbf{1 . 2 6 0}]$ | $0.23[0.170]$ | $0.13[0.096]$ |
| $\mathbf{4 0}[\mathbf{1 . 5 7 5 ]}$ | $0.36[0.266]$ | $0.21[0.155]$ |
| $\mathbf{5 0}[\mathbf{1 . 9 6 9}]$ | $0.56[0.413]$ | $0.32[0.236]$ |
| $\mathbf{6 3}[\mathbf{2 . 4 8 0}]$ | $0.89[0.656]$ | - |
| $\mathbf{8 0}[\mathbf{3 . 1 5 0 ]}$ | $1.4[1.033]$ | - |
| $\mathbf{1 0 0}[\mathbf{3 . 9 3 7}]$ | $2.2[1.623]$ | - |
| $\mathbf{1 2 5}[\mathbf{4 . 9 2 1 ]}$ | $3.5[2.582]$ |  |

Use the following equation to calculate the kinetic energy of loads.

$$
\begin{array}{ll}
\text { Ex }=\frac{m}{2} v^{2} & E^{\prime} x=\frac{w^{\prime}}{2 g^{\prime}} v^{\prime 2} \\
\text { Ex: Kinetic energy }(\mathrm{J}) & \mathrm{E}^{\prime} \mathrm{x}: \text { Kinetic energy }[\mathrm{ft} \cdot \mathrm{lbf}] \\
m: \text { Mass of load }(\mathrm{kg}) & \mathrm{w}^{\prime}: \text { Load weight }[\mathrm{lb}] \\
v: \text { Piston speed }(\mathrm{m} / \mathrm{s}) & \mathrm{v}^{\prime}: \text { Piston speed }[\mathrm{ft} / \mathrm{sec}] \\
& \mathrm{g}^{\prime}: \text { Gravity acceleration } 32.2\left[\mathrm{tt} / \mathrm{sec}^{2}\right]
\end{array}
$$

## Allowable lateral load (except cylinder with guide)

Apply less than the maximum lateral load to the cylinder than indicated in the table below.

## Equation

$\phi 6$ [0.236] to $\phi 12$ [0.472], $\phi 50$ [1.969] to $\phi 125$ [4.9]

$$
\text { Maximum allowable lateral load } \mathrm{W} \leqq \frac{\ell_{2}-\mathrm{A}}{\ell_{1}+\ell_{2}+\mathrm{St}} \cdot \mathrm{R}
$$

$\phi 16$ [0.630] to $\phi 40$ [1.575]
Maximum allowable lateral load $\mathrm{W} \leqq \frac{\ell_{2}}{\ell 1+\ell_{2}+S t} \cdot R$


| Cylinder bore mm [in] | $\qquad$ | $\begin{gathered} \ell 1 \\ \mathrm{~mm}[\mathrm{in}] \end{gathered}$ | $\begin{gathered} \ell_{2} \\ \mathrm{~mm}[\mathrm{in}] \end{gathered}$ | $\begin{gathered} \mathrm{A} \\ \mathrm{~mm}[\mathrm{in}] \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 6 [0.236] | 1.0 [0.225] | 4.0 [0.157] | 13.8 [0.543] | 3.8 [0.150] |
| 8 [0.315] | 1.8 [0.405] | 4.0 [0.157] | 14.3 [0.563] | 4.3 [0.169] |
| 10 [0.394] | 2.7 [0.607] | 4.0 [0.157] | 14.4 [0.567] | 4.3 [0.169] |
| 12 [0.472] | 4.0 [0.899] | 5.0 [0.197] | 14.0 [0.551] | 3.5 [0.138] |
| 16 [0.630] | 7.0 [1.574] | 5.0 [0.197] | 15.0 [0.591] | - |
| 20 [0.787] | 11.0 [2.473] | 6.0 [0.236] | 17.5 [0.689] | - |
| 25 [0.984] | 17.2 [3.867] | 6.0 [0.236] | 18.0 [0.709] | - |
| 32 [1.260] | 28.1 [6.317] | 7.0 [0.276] | 18.5 [0.728] | - |
| 40 [1.575] | 44.0 [9.892] | 7.0 [0.276] | 23.0 [0.906] | - |
| 50 [1.969] | 68.7 [15.444] | 8.0 [0.315] | 27.3 [1.075] | 8.0 [0.315] |
| 63 [2.480] | 109.1 [24.5] | 8.0 [0.315] | 33.0 [1.299] | 8.0 [0.315] |
| 80 [3.150] | 175.9 [39.5] | 10.0 [0.394] | 32.5 [1.280] | 8.0 [0.315] |
| 100 [3.937] | 274.9 [61.8] | 12.0 [0.472] | 44.5 [1.752] | 9.0 [0.354] |
| 125 [4.921] | 429.5 [96.6] | 16.0 [0.630] | 50.0 [1.969] | 9.0 [0.354] |

Cylinder with guide, allowable kinetic energy

| (1) $\phi 8$ [0.315] to $\phi 20$ [0.787] |  |  |  | J [f. $\cdot \mathrm{bf}$ ] |
| :---: | :---: | :---: | :---: | :---: |
| Model | BCG $\square \mathbf{8}$ | BCG $\square 12$ | BCG $\square 16$ | BCG $\square 20$ |
| Allowable kinetic energy [ [t-bof] | 0.0084 [0.006] | 0.0084 [0.006] | 0.020 [0.015] | 0.044 [0.032] |


$1 \mathrm{v}(\mathrm{m} / \mathrm{s})=3.28 \mathrm{ft} / \mathrm{sec}$

| (2) $\phi 25[0.984]$ to $\phi 40[1.575]$ | $\mathrm{J}[\mathrm{ft} \cdot \mathrm{lbf}]$ |  |  |
| :--- | :---: | :---: | :---: |
| Model | BCG $\square \mathbf{2 5}$ | BCG $\square \mathbf{3 2}$ | BCG $\square \mathbf{4 0}$ |
| Alowable kineitic energy $J[\mathrm{t}$-bf] | $0.051[0.038]$ | $0.082[0.060]$ | $0.134[0.099]$ |



## Allowable bending moment for cylinder with guide

Applying more than the allowable bending moment causes the guide to rattle, reduces precision, and has a bad effect on operating life.


- Use the center of the guide as shown in the diagram as the reference for the center of moment.
Dimensions of center of guide mm [in]
M

| Model | Stroke | X | Y |
| :---: | :---: | :---: | :---: |
|  | 5 | 31.5 |  |
|  | 10 | $[1.240]$ |  |
|  | 15 | 41.5 |  |
|  | 20 | $[1.634]$ |  |
|  | 25 | 51.5 |  |
| $\mathbf{B C G} \square \mathbf{8}$ | 30 | $[2.028]$ | 6 |
|  | 35 | 61.5 | $[0.236]$ |
|  | 40 | $[2.421]$ |  |
|  |  |  |  |




Allowable bending moment

| Model | Mp (pitching) | Mr (rolling) | My (yawing) |
| :---: | :---: | :--- | :---: |
| BCG $\square \mathbf{8 ,}$ BCG $\square \mathbf{1 2}$ | $0.12[1.062]$ | $0.12[1.062]$ | $0.21[1.859]$ |
| BCG $\square \mathbf{1 6}$ | $0.4[3.540]$ | $0.4[3.540]$ | $0.68[6.019]$ |
| BCG $\square \mathbf{2 0}$ | $1.5[13.277]$ | $1.8[15.932]$ | $2.2[19.472]$ |
| BCG $\square \mathbf{2 5}$ | $2.18[19.295]$ | $2.18[19.295]$ | $4.18[36.997]$ |
| BCG $\square \mathbf{3 2}$ | $4.46[39.475]$ | $4.46[39.475]$ | $7.31[64.701]$ |
| BCG $\square \mathbf{4 0}$ | $6.7[59.302]$ | $8[70.808]$ | $13.7[121.259]$ |

Heat resistant specification
$\mathrm{N} \cdot \mathrm{m}$ [in•lbf]

| Model | Mp (pitching) | Mr (rolling) | My (yawing) |
| :---: | :---: | :---: | :---: |
| BCGF8, BCGF12 | $0.11[0.974]$ | $0.11[0.974]$ | $0.18[1.593]$ |
| BCGF16 | $0.35[3.098]$ | $0.35[3.098]$ | $0.60[5.311]$ |
| BCGF20 | $0.88[7.789]$ | $0.88[7.789]$ | $1.25[11.064]$ |
| BCGF25 | $1.37[12.126]$ | $1.21[10.710]$ | $2.30[20.357]$ |
| BCGF32 | $3.56[31.510]$ | $2.99[26.464]$ | $6.00[53.106]$ |
| BCGF40 | $6.32[55.938]$ | $5.30[46.910]$ | $11.04[97.715]$ |

Displacement of table due to bending moment for cylinder with guide (reference values) For heat resistant specification graphs, refer to page (8).

- Pitching (Mp)

Displacement of edge of table (arrow) when load W is applied at arrow
(Precaution: There may be a large increase in the displacement after a large impact load is applied to the table)



-BCG $\square 32$




OBCG $\square 25$

$1 \mathrm{~N} \cdot \mathrm{~m}=8.85 \mathrm{in} \cdot \mathrm{lbf}$
OBCG $\square 40$

$1 \mathrm{~mm}=0.0394 \mathrm{in}$
$1 \mathrm{~N} \cdot \mathrm{~m}=8.85 \mathrm{in} \cdot \mathrm{lbf}$

Displacement of table due to bending moment for cylinder with guide (reference values) For heat resistant specification graphs, refer to page (19) .

## - Yawing (My)

Displacement of edge of table (arrow) when load W is applied at arrow
(Precaution: There may be a large increase in the displacement after a large impact load is applied to the table)


OBCG $\square 12$


OBCG $\square 20$

-BCG $\square 32$

$1 \mathrm{~mm}=0.0394 \mathrm{in}$
$1 \mathrm{~N} \cdot \mathrm{~m}=8.85 \mathrm{i} \cdot \mathrm{lbf}$


OBCG $\square 16$


OBCG $\square 25$


OBCG $\square 40$


Displacement of table due to bending moment for cylinder with guide (reference values) For heat resistant specification graphs, refer to page (20 .

- Rolling (Mr)

Displacement of edge of table (arrow A) when load W is applied at arrow
(Precaution: There may be a large increase in the displacement after a large impact load is applied to the table)


OBCG $\square 12$

-BCG $\square 20$

-BCG $\square 32$


OBCG $\square 8$


OBCG $\square 16$

-BCG $\square 25$

-BCG $\square 40$


Displacement of table due to bending moment for heat resistant specification cylinder with guide (reference values)

- Pitching (Mp)

Displacement of edge of table (arrow) when load W is applied at arrow
(Precaution: There may be a large increase in the displacement after a large impact load is applied to the table)


-BCGF16


## OBCGF25



OBCGF40


Displacement of table due to bending moment for heat resistant specification cylinder with guide (reference values)

## - Yawing (My)

Displacement of edge of table (arrow) when load W is applied at arrow
(Precaution: There may be a large increase in the displacement after a large impact load is applied to the table)


-BCGF16

-BCGF25


## -BCGF40



Displacement of table due to bending moment for heat resistant specification cylinder with guide (reference values)

- Rolling (Mr)

Displacement of edge of table (arrow A) when load W is applied at arrow
(Precaution: There may be a large increase in the displacement after a large impact load is applied to the table)


## -BCGF12


-BCGF20


## OBCGF32



-BCGF16


## OBCGF25



## ObCGF40



## Thrust

- Double acting type
unit: $N$

| Cylinder bore mm | Piston rod diameter mm | Operation | Pressure area $\mathrm{mm}^{2}$ | Air pressure MPa |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| 6 | 4 | Push side | 28.3 | 2.8 | 5.7 | 8.5 | 11.3 | 14.2 | 17.0 | 19.8 |
|  |  | Pull side | 15.7 | 1.6 | 3.1 | 4.7 | 6.3 | 7.9 | 9.4 | 11.0 |
| 8 | 5 | Push side | 50.3 | 5.0 | 10.1 | 15.1 | 20.1 | 25.2 | 30.2 | 35.2 |
|  |  | Pull side | 30.6 | 3.1 | 6.1 | 9.2 | 12.2 | 15.3 | 18.4 | 21.4 |
| 10 | 5 | Push side | 78.5 | 7.9 | 15.7 | 23.6 | 31.4 | 39.3 | 47.1 | 55.0 |
|  |  | Pull side | 58.9 | 5.9 | 11.8 | 17.7 | 23.6 | 29.5 | 35.3 | 41.2 |
| 12 | 6 | Push side | 113.0 | 11.3 | 22.6 | 33.9 | 45.2 | 56.5 | 67.8 | 79.1 |
|  |  | Pull side | 84.8 | 8.5 | 17.0 | 25.4 | 33.9 | 42.4 | 50.9 | 59.4 |
| 16 | 8 | Push side | 201.0 | 20.1 | 40.2 | 60.3 | 80.4 | 100.5 | 120.6 | 140.7 |
|  |  | Pull side | 150.0 | 15.0 | 30.0 | 45.0 | 60.0 | 75.0 | 90.0 | 105.0 |
| 20 | 10 | Push side | 314.0 | 31.4 | 62.8 | 94.2 | 125.6 | 157.0 | 188.4 | 219.8 |
|  |  | Pull side | 235.5 | 23.6 | 47.1 | 70.7 | 94.2 | 117.8 | 141.3 | 164.9 |
| 25 | 12 | Push side | 490.6 | 49.1 | 98.1 | 147.2 | 196.2 | 245.3 | 294.4 | 343.4 |
|  |  | Pull side | 377.6 | 37.8 | 75.5 | 113.3 | 151.0 | 188.8 | 226.6 | 264.3 |
| 32 | 16 | Push side | 803.8 | 80.4 | 160.8 | 241.1 | 321.5 | 401.9 | 482.3 | 562.7 |
|  |  | Pull side | 602.9 | 60.3 | 120.6 | 180.9 | 241.2 | 301.5 | 361.7 | 422.0 |
| 40 | 16 | Push side | 1256.0 | 125.6 | 251.2 | 376.8 | 502.4 | 628.0 | 753.6 | 879.2 |
|  |  | Pull side | 1055.0 | 105.5 | 211.0 | 316.5 | 422.0 | 527.5 | 633.0 | 738.5 |
| 50 | 20 | Push side | 1962.5 | 196.3 | 392.5 | 588.8 | 785.0 | 981.3 | 1177.5 | 1373.8 |
|  |  | Pull side | 1648.5 | 164.9 | 329.7 | 494.6 | 659.4 | 824.3 | 989.1 | 1154.0 |
| 63 | 20 | Push side | 3115.7 | 311.6 | 623.1 | 934.7 | 1246.3 | 1557.9 | 1869.4 | 2181.0 |
|  |  | Pull side | 2801.7 | 280.2 | 560.3 | 840.5 | 1120.7 | 1400.9 | 1681.0 | 1961.2 |
| 80 | 25 | Push side | 5024.0 | 502.4 | 1004.8 | 1507.2 | 2009.6 | 2512.0 | 3014.4 | 3516.8 |
|  |  | Pull side | 4533.4 | 453.3 | 906.7 | 1360.0 | 1813.4 | 2266.7 | 2720.0 | 3173.4 |
| 100 | 30 | Push side | 7850.0 | 785.0 | 1570.0 | 2355.0 | 3140.0 | 3925.0 | 4710.0 | 5495.0 |
|  |  | Pull side | 7143.5 | 714.4 | 1428.7 | 2143.1 | 2857.4 | 3571.8 | 4286.1 | 5000.5 |
| 125 | 35 | Push side | 12265.6 | 1226.6 | 2453.1 | 3679.7 | 4906.3 | 6132.8 | 7359.4 | 8585.9 |
|  |  | Pull side | 11304.0 | 1130.4 | 2260.8 | 3391.2 | 4521.6 | 5652.0 | 6782.4 | 7912.8 |

Single acting type
unit: N

| Operating type | Cylinder bore mm | Piston rod diameter mm | Pressure area $\mathrm{mm}^{2}$ | Air pressure MPa |  |  |  |  |  | Spring return force (at end of stroke) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |  |
| Single acting push type | 6 | 4 | 28.3 | 2.5 | 5.3 | 8.1 | 11.0 | 13.8 | 16.6 | 3.16 |
|  | 8 | 5 | 50.3 | 3.6 | 8.6 | 13.6 | 18.7 | 23.7 | 28.7 | 6.5 |
|  | 10 | 5 | 78.5 | 8.5 | 16.4 | 24.2 | 32.1 | 39.9 | 47.8 | 7.17 |
|  | 12 | 6 | 113.0 | 12.7 | 24.0 | 35.3 | 46.6 | 57.9 | 69.2 | 9.9 |
|  | 16 | 8 | 201.0 | 23.8 | 43.9 | 64.0 | 84.1 | 104.2 | 124.3 | 16.4 |
|  | 20 | 10 | 314.0 | 46.4 | 77.8 | 109.2 | 140.6 | 172.0 | 203.4 | 16.4 |
|  | 25 | 12 | 490.6 | 77.8 | 126.9 | 175.9 | 225.0 | 274.1 | 323.1 | 20.3 |
|  | 32 | 16 | 803.8 | 127.8 | 208.1 | 288.5 | 368.9 | 449.3 | 529.7 | 33 |
|  | 40 | 16 | 1256.0 | 211.7 | 337.3 | 462.9 | 588.5 | 714.1 | 839.7 | 39.5 |
|  | 50 | 20 | 1962.5 | 338.8 | 535.1 | 731.3 | 927.6 | 1123.8 | 1320.1 | 53.7 |
| Single acting pull type | 6 | 4 | 15.7 | - | 1.3 | 2.8 | 4.4 | 6.0 | 7.5 | 3.45 |
|  | 8 | 5 | 30.6 | - | 2.0 | 5.1 | 8.1 | 11.2 | 14.3 | 7.17 |
|  | 10 | 5 | 58.9 | 4.6 | 10.5 | 16.4 | 22.3 | 35.3 | 34.2 | 7.17 |
|  | 12 | 6 | 84.8 | 7.1 | 15.5 | 24.0 | 32.5 | 41.0 | 49.5 | 9.9 |
|  | 16 | 8 | 150.0 | 13.6 | 28.6 | 43.6 | 58.6 | 73.6 | 88.6 | 16.4 |
|  | 20 | 10 | 235.5 | 30.7 | 54.3 | 77.8 | 101.4 | 124.9 | 148.5 | 16.4 |
|  | 25 | 12 | 377.6 | 55.2 | 93.0 | 130.7 | 168.5 | 206.3 | 244.0 | 20.3 |
|  | 32 | 16 | 602.9 | 87.6 | 147.9 | 208.2 | 268.5 | 328.7 | 389.0 | 33 |
|  | 40 | 16 | 1055.0 | 171.5 | 277.0 | 382.5 | 488.0 | 593.5 | 699.0 | 39.5 |
|  | 50 | 20 | 1648.5 | 276.0 | 440.9 | 605.7 | 770.6 | 935.4 | 1100.3 | 53.7 |

- Double acting type
unit: lbf

| Cylinder bore in | Piston rod diameter in | Operation | Pressure area $\mathrm{in}^{2}$ | Air pressure psi |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 15 | 29 | 44 | 58 | 73 | 87 | 102 |
| 0.236 | 0.157 | Push side | 0.044 | 0.629 | 1.281 | 1.911 | 2.540 | 3.192 | 3.822 | 4.451 |
|  |  | Pull side | 0.024 | 0.360 | 0.697 | 1.057 | 1.416 | 1.776 | 2.113 | 2.473 |
| 0.315 | 0.197 | Push side | 0.078 | 1.124 | 2.271 | 3.395 | 4.519 | 5.665 | 6.789 | 7.913 |
|  |  | Pull side | 0.047 | 0.697 | 1.371 | 2.068 | 2.743 | 3.440 | 4.136 | 4.811 |
| 0.394 | 0.197 | Push side | 0.122 | 1.776 | 3.530 | 5.305 | 7.059 | 8.835 | 10.589 | 12.364 |
|  |  | Pull side | 0.091 | 1.326 | 2.653 | 3.979 | 5.305 | 6.632 | 7.936 | 9.262 |
| 0.472 | 0.236 | Push side | 0.2 | 2.540 | 5.081 | 7.621 | 10.161 | 12.702 | 15.242 | 17.782 |
|  |  | Pull side | 0.131 | 1.911 | 3.822 | 5.710 | 7.621 | 9.532 | 11.443 | 13.354 |
| 0.630 | 0.315 | Push side | 0.3 | 4.519 | 9.037 | 13.556 | 18.075 | 22.6 | 27.1 | 31.6 |
|  |  | Pull side | 0.2 | 3.372 | 6.744 | 10.116 | 13.489 | 16.861 | 20.233 | 23.6 |
| 0.787 | 0.394 | Push side | 0.5 | 7.059 | 14.118 | 21.177 | 28.2 | 35.3 | 42.4 | 49.4 |
|  |  | Pull side | 0.4 | 5.305 | 10.589 | 15.894 | 21.177 | 26.5 | 31.8 | 37.1 |
| 0.984 | 0.472 | Push side | 0.8 | 11.038 | 22.054 | 33.1 | 44.1 | 55.1 | 66.2 | 77.2 |
|  |  | Pull side | 0.6 | 8.498 | 16.973 | 25.5 | 33.9 | 42.4 | 50.9 | 59.4 |
| 1.260 | 0.630 | Push side | 1.2 | 18.075 | 36.1 | 54.2 | 72.3 | 90.4 | 108.4 | 126.5 |
|  |  | Pull side | 0.9 | 13.556 | 27.1 | 40.7 | 54.2 | 67.8 | 81.3 | 94.9 |
| 1.575 | 0.630 | Push side | 2 | 28.2 | 56.5 | 84.7 | 112.9 | 141.2 | 169.4 | 197.7 |
|  |  | Pull side | 2 | 23.7 | 47.4 | 71.2 | 94.9 | 118.6 | 142.3 | 166.0 |
| 1.969 | 0.787 | Push side | 3 | 44.1 | 88.2 | 132.4 | 176.5 | 220.6 | 265 | 309 |
|  |  | Pull side | 3 | 37.1 | 74.1 | 111.2 | 148.2 | 185.3 | 222.4 | 259 |
| 2.480 | 0.787 | Push side | 5 | 70.1 | 140.1 | 210.1 | 280 | 350 | 420 | 490 |
|  |  | Pull side | 4 | 63.0 | 126.0 | 189.0 | 252 | 315 | 378 | 441 |
| 3.150 | 0.984 | Push side | 8 | 112.9 | 226 | 339 | 452 | 565 | 678 | 791 |
|  |  | Pull side | 7 | 101.9 | 203.8 | 306 | 408 | 510 | 611 | 713 |
| 3.9 | 1.181 | Push side | 12 | 176.5 | 353 | 529 | 706 | 882 | 1059 | 1235 |
|  |  | Pull side | 11 | 160.6 | 321 | 482 | 642 | 803 | 964 | 1124 |
| 4.9 | 1.378 | Push side | 19 | 276 | 551 | 827 | 1103 | 1379 | 1654 | 1930 |
|  |  | Pull side | 18 | 254 | 508 | 762 | 1016 | 1271 | 1525 | 1779 |

Single acting type
unit: Ibf

| Operating type | Cylinder bore in | Piston rod diameter in | Pressure area $\mathrm{in}^{2}$ | Air pressure psi |  |  |  |  |  | Spring return force (at end of stroke) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 29 | 44 | 58 | 73 | 87 | 102 |  |
| Single acting push type | 0.236 | 0.157 | 0.044 | 0.562 | 1.191 | 1.821 | 2.473 | 3.102 | 3.732 | 0.710 |
|  | 0.315 | 0.197 | 0.078 | 0.809 | 1.933 | 3.057 | 4.204 | 5.328 | 6.452 | 1.461 |
|  | 0.394 | 0.197 | 0.122 | 1.911 | 3.687 | 5.440 | 7.216 | 8.970 | 10.746 | 1.612 |
|  | 0.472 | 0.236 | 0.2 | 2.855 | 5.395 | 7.936 | 10.476 | 13.016 | 15.557 | 2.226 |
|  | 0.630 | 0.315 | 0.3 | 5.350 | 9.869 | 14.388 | 18.906 | 23.4 | 27.9 | 3.687 |
|  | 0.787 | 0.394 | 0.5 | 10.431 | 17.490 | 24.5 | 31.6 | 38.7 | 45.7 | 3.687 |
|  | 0.984 | 0.472 | 0.8 | 17.490 | 28.5 | 39.5 | 50.6 | 61.6 | 72.6 | 4.564 |
|  | 1.260 | 0.630 | 1.2 | 28.7 | 46.8 | 64.9 | 82.9 | 101.0 | 119.1 | 7.419 |
|  | 1.575 | 0.630 | 2 | 47.6 | 75.8 | 104.1 | 132.3 | 160.5 | 188.8 | 8.880 |
|  | 1.969 | 0.787 | 3 | 76.2 | 120.3 | 164.4 | 208.5 | 253 | 297 | 12.072 |
| Single acting pull type | 0.236 | 0.157 | 0.024 | - | 0.292 | 0.629 | 0.989 | 1.349 | 1.686 | 0.776 |
|  | 0.315 | 0.197 | 0.047 | - | 0.450 | 1.147 | 1.821 | 2.518 | 3.215 | 1.612 |
|  | 0.394 | 0.197 | 0.091 | 1.034 | 2.360 | 3.687 | 5.013 | 7.936 | 7.688 | 1.612 |
|  | 0.472 | 0.236 | 0.131 | 1.596 | 3.485 | 5.395 | 7.306 | 9.217 | 11.128 | 2.226 |
|  | 0.630 | 0.315 | 0.2 | 3.057 | 6.430 | 9.802 | 13.174 | 16.546 | 19.918 | 3.687 |
|  | 0.787 | 0.394 | 0.4 | 6.902 | 12.207 | 17.490 | 22.8 | 28.1 | 33.4 | 3.687 |
|  | 0.984 | 0.472 | 0.6 | 12.409 | 20.907 | 29.4 | 37.9 | 46.4 | 54.9 | 4.564 |
|  | 1.260 | 0.630 | 0.9 | 19.693 | 33.2 | 46.8 | 60.4 | 73.9 | 87.5 | 7.419 |
|  | 1.575 | 0.630 | 2 | 38.6 | 62.3 | 86.0 | 109.7 | 133.4 | 157.1 | 8.880 |
|  | 1.969 | 0.787 | 3 | 62.0 | 99.1 | 136.2 | 173.2 | 210.3 | 247 | 12.072 |

## Basic Cylinders

## Clean system compatible cylinders

 Cylinder with guide
## Symbol



Specifications (clean room specification)

| Item Cylinder bore |  | 8 [0.315] | 12 [0.472] | 16 [0.630] | 20 [0.787] | 25 [0.984] | 32 [1.260] | 40 [1.575] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating type |  | Double acting type |  |  |  |  |  |  |
| Medium |  | Air |  |  |  |  |  |  |
| Operating pressure range $\mathrm{MPa}[\mathrm{psi}]$ |  | 0.2 to 0.7 [29 to 102] | 0.1 to 0.7 [15 to 102] |  | 0.08 to 0.7 [12 to 102] |  |  |  |
| Proof pressure $\mathrm{MPa}[\mathrm{psi}]$ |  | 1.05 [152] |  |  |  |  |  |  |
| Operating temperature range ${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$ |  | 0 to 60 [32 to 140] |  |  |  |  |  |  |
| Operating speed range $\mathrm{mm} / \mathrm{s}[\mathrm{i} / \mathrm{sec}]$ |  | 50 to 300 [1.969 to 11.8] |  |  |  |  |  |  |
| Cushion |  | Rubber bumper |  |  |  |  |  |  |
| Lubrication |  | No |  |  |  |  |  |  |
| Port size |  | M $3 \times 0.5$ | M5 $\times 0.8$ |  |  |  | Rc1/8 |  |
| Running parallelism | mm [in] | 0.1 [0.004] or less |  |  |  |  |  |  |
| Allowable moment $\mathrm{N} \cdot \mathrm{m}$ [in•lbf] | Pitching | 0.12 [1.062] |  | 0.40 [3.540] | 1.50 [13.277] | 2.18 [19.295] | 4.46 [39.475] | 6.70 [59.302] |
|  | Rolling | 0.12 [1.062] |  | 0.40 [3.540] | 1.80 [15.932] | 2.18 [19.295] | 4.46 [39.475] | 8.00 [70.808] |
|  | Yawing | 0.21 [1.859] |  | 0.68 [6.019] | 2.20 [19.472] | 4.18 [36.997] | 7.31 [64.701] | 13.70 [121.259] |
| Clean room rating ${ }^{\text {Note } 1}$ |  | Class 6 equivalent (FED-STD Class 1000 equivalent) ${ }^{\text {Note } 2}$ |  |  |  |  |  |  |

Note 1: Koganei standard. Dust collection port not available
2: FED-STD was abolished as of November 2001, and it is designed here for reference purposed.

Linear guide being used

| Cylinder bore | Rail width | Manufacturer |
| :---: | :---: | :---: |
| $\phi 8$ [0.315], $\phi 12$ [0.472] | 5 [0.197] | THK |
| ¢ 16 [0.630] | 7 [0.276] |  |
| $\phi 20$ [0.787] | 9 [0.354] |  |
| ¢ 25 [0.984] | 12 [0.472] |  |
| ¢ 32 [1.260] | 15 [0.591] |  |
| ¢ 40 [1.575] | 20 [0.787] |  |

## Cylinder bore and stroke

| Cylinder bore | Standard stroke |
| :---: | :--- |
| $\mathbf{8 , 1 2 , 1 6 , 2 0 , 2 5 [ 0 . 3 1 5 , 0 . 4 7 2 , 0 . 6 3 0 , 0 . 7 8 7 , ~ 0 . 9 8 4 ] ~}$ | $5^{\text {Note }}, 10,15^{\text {Note }}, 20,25^{\text {Note }}, 30,35^{\text {Note }}, 40,45^{\text {Note }}, 50,55^{\text {Note }}, 60$ |
| $\mathbf{3 2}[1.260]$ | $10,15^{\text {Note }}, 20,25^{\text {Note }}, 30,35^{\text {Note }}, 40,45^{\text {Note }}, 5055^{\text {Note }}, 60$ |
| $\mathbf{4 0}[1.575]$ | $10^{\text {Note }}, 15^{\text {Note }}, 20,25^{\text {Note }}, 30,35^{\text {Note }}, 40,45^{\text {Note }}, 50,55^{\text {Note }}, 60$ |

[^1]
## $\square$ Cylinder with guide



Clean system compatible cylinders
(Without dust collection port)

Note 1: Only $\phi 32$ [1.260] and $\phi 40$ [1.575] diameter bore cylinders can be mounted with back side piping blocks. Back side and side piping is possible as standard for $\phi 8$ [0.315] to $\phi 25$ [0.984] models.
2: Reed type sensor switches cannot be attached to cylinders that have $\phi 8$ [0.315] and $\phi$ 12 [0.472] cylinder bores.

## Mass

## Cylinder with guide

| Model | Stroke mm [in] |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 [0.197] | 10 [0.394] | 15 [0.591] | 20 [0.787] | 25 [0.984] | 30 [1.181] | 35 [1.378] | 40 [1.575] | 45 [1.772] | 50 [1.969] | 55 [2.165] | 60 [2.362] |
| CSL-BCG8 | 56 [1.975] | 54 [1.905] | 68 [2.399] | 66 [2.328] | 80 [2.822] | 78 [2.751] | 92 [3.245] | 90 [3.175] | 104 [3.7] | 102 [3.6] | 116 [4.1] | 114 [4.0] |
| CSL-BCG12 | 82 [2.892] | 81 [2.857] | 96 [3.386] | 95 [3.351] | 110 [3.9] | 109 [3.8] | 124 [4.4] | 123 [4.3] | 138 [4.9] | 137 [4.8] | 152 [5.4] | 151 [5.3] |
| CSL-BCG16 | 133 [4.7] | 131 [4.6] | 155 [5.5] | 153 [5.4] | 178 [6.3] | 176 [6.2] | 200 [7.1] | 198 [7.0] | 222 [7.8] | 220 [7.8] | 245 [8.6] | 243 [8.6] |
| CSL-BCG20 | 207 [7.3] | 205 [7.2] | 236 [8.3] | 234 [8.3] | 265 [9.3] | 263 [9.3] | 294 [10.4] | 292 [10.3] | 323 [11.4] | 321 [11.3] | 352 [12.4] | 350 [12.3] |
| CSL-BCG25 | 321 [11.3] | 317 [11.2] | 366 [12.9] | 362 [12.8] | 411 [14.5] | 407 [14.4] | 456 [16.1] | 452 [15.9] | 501 [17.7] | 497 [17.5] | 546 [19.3] | 542 [19.1] |
| CSL-BCG32 | - | 597 [21.1] | 675 [23.8] | 669 [23.6] | 746 [26.3] | 740 [26.1] | 818 [28.9] | 812 [28.6] | 889 [31.4] | 883 [31.1] | 961 [33.9] | 955 [33.7] |
| CSL-BCG40 | - | 1031 [36] | 1025 [36] | 1019 [36] | 1122 [40] | 1116 [39] | 1219 [43] | 1213 [43] | 1316 [46] | 1310 [46] | 1413 [50] | 1407 [50] |

In the case of back side piping specifications, mass is 76 g [2.68 oz] for a $\phi 32$ [1.260] cylinder bore and 108 g [3.8 oz] for a $\phi 40$ [1.575] cylinder bore.

## Additional mass of sensor switches

ZE $\square \square \square \mathbf{A}, \mathbf{Z E} \square \square \square \mathbf{G}: 15 \mathrm{~g}$ [0.53 oz] $\quad$ ZE $\square \square \square \mathbf{B}: 35 \mathrm{~g}[1.23 \mathrm{oz}]$


Major parts and materials (clean room specification)

| No. | Name | ¢ 8 [0.315] | ¢ 12 [0.472] | \$ 16 [0.630] | $\phi 20$ [0.787] | $\phi 25$ [0.984] | ¢ 32 [1.260] | ¢ 40 [1.575] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | Cylinder body | Aluminum alloy (special anti-abrasion treated) |  |  |  |  |  |  |
| (2) | Piston rod | Stainless steel |  |  |  |  |  |  |
| (3) | Piston | Stainless steel |  | Aluminum alloy (anodized) |  |  |  |  |
| (4) | Table | Aluminum alloy (anodized) |  |  |  |  |  |  |
| (5) | Head cover | Aluminum alloy (anodized) |  |  |  |  |  |  |
| (6) | Seal holder | Aluminum alloy (Anodized) | - | - | - | - | - | - |
| (7) | $\star$ Piston seal | Synthetic rubber (NBR) |  |  |  |  |  |  |
| (8) | $\star$ Rod seal | Synthetic rubber (NBR) |  |  |  |  |  |  |
| (9) | $\star$ O-ring | Synthetic rubber (NBR) |  |  |  |  |  |  |
| (10) | Bumper | Synthetic rubber (NBR) |  |  |  |  |  |  |
| (11) | End bolt | Stainless steel |  |  |  |  |  |  |
| (12) | Support | Aluminum alloy (anodized) |  |  |  |  |  |  |
| (13) | Magnet | Neodymium magnet |  |  |  |  | Plastic magnet |  |
| (14) | Bolt retainer | Stainless steel |  |  |  |  |  |  |
| (15) | $\star$ Retaining ring | Stainless steel |  | Stainless steel Steel (electroless nickel plated) |  |  |  |  |
| (16) | Linear guide | Stainless steel |  |  |  |  |  |  |
| (17) | Plug | - | - | - | - | - | Stain | steel |
| (18) | Collar | Aluminum alloy (anodized) |  |  |  |  |  |  |
| (19) | $\star$ Back side piping block | - | - | - | - | - | Aluminum | anodized) |
| (20) | Steel ball | Stainless steel |  |  |  |  |  |  |
| (21) | Bolt | Stainless steel |  |  |  |  |  |  |
| (22) | Bumper | Urethane rubber |  |  |  |  |  |  |

[^2]
## OCSL-BCG $\square 8$ (clean room specification)



| Stroke | A | B | C | D | E | F | O | P | S | T | U | V | W | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 , 1 0}$ | 47 | 42 | 36 | 16 | 15 | 14 | 10 | 2 | 5 | 4 | - | 12 | 15 | 10 |
| $\mathbf{1 5 , 2 0}$ | 57 | 52 | 46 | 26 | 20 | 19 | 14 | 4 | 8 | 4 | - | 12 | 15 | 15 |
| $\mathbf{2 5 , 3 0}$ | 67 | 62 | 56 | 36 | 30 | 19 | 14 | 4 | 8 | 6 | 2 | 24 | 25 | 15 |
| $\mathbf{3 5 , 4 0}$ | 77 | 72 | 66 | 46 | 40 | 19 | 14 | 4 | 8 | 8 | 3 | 24 | 25 | 25 |
| $\mathbf{4 5 , 5 0}$ | 87 | 82 | 76 | 56 | 50 | 19 | 14 | 4 | 8 | 10 | 4 | 36 | 35 | 35 |
| $\mathbf{5 5 , 6 0}$ | 97 | 92 | 86 | 66 | 60 | 19 | 14 | 4 | 8 | 12 | 5 | 36 | 35 | 45 |

Note 1: This product cannot use reed switch type sensor switches
Note 2: $5,15,25,35,45$, and 55 stroke has a collar stopper.
Note 3: Dimensions indicated by * are for strokes longer than 15.
Note 4: All piping ports are assembled with plugs, except those indicated by $\star$.
Note 5: Apply grease to o-rings when changing plug assemblies. Note 6: Pin holes indicated by are provided only when selected as an option ( N ).

## OCSL-BCG $\square 12$ (clean room specification)



| Stroke | A | B | C | D | E | F | O | P | S | T | U | V | W | X |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 , 1 0}$ | 50 | 43 | 38 | 15.5 | 15 | 18 | 10 | 2 | 5 | 4 | - | 12 | 15 | 13 |
| $\mathbf{1 5 , 2 0}$ | 60 | 53 | 48 | 25.5 | 20 | 23 | 14 | 4 | 8 | 4 | - | 12 | 15 | 18 |
| $\mathbf{2 5 , 3 0}$ | 70 | 63 | 58 | 35.5 | 30 | 23 | 14 | 4 | 8 | 6 | 2 | 24 | 25 | 28 |
| $\mathbf{3 5 , 4 0}$ | 80 | 73 | 68 | 45.5 | 40 | 23 | 14 | 4 | 8 | 8 | 3 | 24 | 25 | 38 |
| $\mathbf{4 5 , 5 0}$ | 90 | 83 | 78 | 55.5 | 50 | 23 | 14 | 4 | 8 | 10 | 4 | 36 | 35 | 48 |
| $\mathbf{5 5 , 6 0}$ | 100 | 93 | 88 | 65.5 | 60 | 23 | 14 | 4 | 8 | 12 | 5 | 36 | 35 | 58 |

Note 1: This product cannot use reed switch type sensor switches Note 2: $5,15,25,35,45$, and 55 stroke has a collar stopper.
Note 3: Dimensions indicated by * are for strokes longer than 15. Note 4: All piping ports are assembled with plugs, except those indicated by $\star$.
Note 5: Apply grease to o-rings when changing plug assemblies. Note 6: Pin holes indicated by are provided only when selected as an option (N).

## -CSL-BCG $\square 8$ (clean room specification)



## OCSL-BCG $\square 16$ (clean room specification)



| Stroke | A | B | C | D | E | F | O | P | S | T | U | V | W | X |
| :---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 , 1 0}$ | 55 | 50 | 40 | 15 | 15 | 20 | 12 | 2 | 5 | 4 | - | 15 | 15 | 13 |
| $\mathbf{1 5 , 2 0}$ | 65 | 60 | 50 | 25 | 20 | 25 | 15 | 4 | 10 | 4 | - | 15 | 15 | 18 |
| $\mathbf{2 5 , 3 0}$ | 75 | 70 | 60 | 35 | 30 | 25 | 15 | 4 | 10 | 6 | 2 | 30 | 25 | 28 |
| $\mathbf{3 5 , 4 0}$ | 85 | 80 | 70 | 45 | 40 | 25 | 15 | 4 | 10 | 6 | 2 | 30 | 25 | 38 |
| $\mathbf{4 5 , 5 0}$ | 95 | 90 | 80 | 55 | 50 | 25 | 15 | 4 | 10 | 8 | 3 | 45 | 35 | 48 |
| $\mathbf{5 5 , 6 0}$ | 105 | 100 | 90 | 65 | 60 | 25 | 15 | 4 | 10 | 10 | 4 | 45 | 35 | 58 |

Note 1:5, 15, 25, 35, 45, and 55 stroke support collar stopper.
Note 2: Dimensions indicated by * are for strokes longer than 15
Note 3: All piping ports are assembled with plugs, except those indicated by $\star$.
Note 4: Apply grease to o-rings when changing plug assemblies.
Note 5: Pin holes indicated by are provided only when selected as an option ( N )

## OCSL-BCG $\square 20$ (clean room specification)



| Stroke | A | B | C | D | E | F | O | P | S | T | U | V | W | X |
| :---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: | :---: | :---: |
| $\mathbf{5 , 1 0}$ | 62 | 60 | 44 | 18 | 15 | 23 | 12 | 2 | 5 | 4 | - | 15 | 15 | 13 |
| $\mathbf{1 5 , 2 0}$ | 72 | 70 | 54 | 28 | 20 | 28 | 15 | 4 | 10 | 4 | - | 15 | 15 | 18 |
| $\mathbf{2 5 , 3 0}$ | 82 | 80 | 64 | 38 | 30 | 28 | 15 | 4 | 10 | 6 | 2 | 30 | 25 | 28 |
| $\mathbf{3 5 , 4 0}$ | 92 | 90 | 74 | 48 | 40 | 28 | 15 | 4 | 10 | 6 | 2 | 30 | 25 | 38 |
| $\mathbf{4 5 , 5 0}$ | 102 | 100 | 84 | 58 | 50 | 28 | 15 | 4 | 10 | 8 | 3 | 45 | 35 | 48 |
| $\mathbf{5 5 , 6 0}$ | 112 | 110 | 94 | 68 | 60 | 28 | 15 | 4 | 10 | 10 | 4 | 45 | 35 | 58 |

Note $1: 5,15,25,35,45$, and 55 stroke support collar stopper.
Note 2: Dimensions indicated by * are for strokes longer than 15.
Note 3: All piping ports are assembled with plugs, except those indicated by $\star$.
Note 4: Apply grease to o-rings when changing plug assemblies.
Note 5: Pin holes indicated by are provided only when selected as an option (N).

## OCSL-BCG $\square 16$ (clean room specification)

| Stroke | A | B | C | D | E | F | O | P | S | T | U | V | W | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{~mm}, 10 \mathrm{~mm}$ [0.197, 0.394] | 2.165 | 1.969 | 1.575 | 0.591 | 0.591 | 0.787 | 0.472 | 0.079 | 0.197 | 0.157 | - | 0.591 | 0.591 | 0.512 |
| $15 \mathrm{~mm}, 20 \mathrm{~mm}$ [0.591, 0.787] | 2.559 | 2.362 | 1.969 | 0.984 | 0.787 | 0.984 | 0.591 | 0.157 | 0.394 | 0.157 | - | 0.591 | 0.591 | 0.709 |
| $25 \mathrm{~mm}, 30 \mathrm{~mm}$ [0.984, 1.181] | 2.953 | 2.756 | 2.362 | 1.378 | 1.181 | 0.984 | 0.591 | 0.157 | 0.394 | 0.236 | 0.079 | 1.181 | 0.984 | 1.102 |
| $35 \mathrm{~mm}, 40 \mathrm{~mm}[1.378,1.575]$ | 3.346 | 3.150 | 2.756 | 1.772 | 1.575 | 0.984 | 0.591 | 0.157 | 0.394 | 0.236 | 0.079 | 1.181 | 0.984 | 1.496 |
| $45 \mathrm{~mm}, 50 \mathrm{~mm}[1.772,1.969]$ | 3.740 | 3.543 | 3.150 | 2.165 | 1.969 | 0.984 | 0.591 | 0.157 | 0.394 | 0.315 | 0.118 | 1.772 | 1.378 | 1.890 |
| $55 \mathrm{~mm}, 60 \mathrm{~mm}$ [2.165, 2.362] | 4.134 | 3.937 | 3.543 | 2.559 | 2.362 | 0.984 | 0.591 | 0.157 | 0.394 | 0.394 | 0.157 | 1.772 | 1.378 | 2.283 |

Note 1: $0.197,0.591,0.984,1.378,1.772$, and 2.165 stroke support collar stopper.
Note 2: Dimensions indicated by * are for strokes longer than 0.591 .
Note 3: All piping ports are assembled with plugs, except those indicated by $\star$.
Note 4: Apply grease to o-rings when changing plug assemblies.
Note 5: Pin holes indicated by $>$ are provided only when selected as an option (N).

OCSL-BCG $\square 20$ (clean room specification)


Note 1: $0.197,0.591,0.984,1.378,1.772$, and 2.165 stroke support collar stopper.

| Stroke | A | B | C | D | E | F | 0 | P | S | T | U | V | W | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{~mm}, 10 \mathrm{~mm}$ [0.197, 0.394] | 2.441 | 2.362 | 1.732 | 0.709 | 0.591 | 0.906 | 0.472 | 0.079 | 0.197 | 0.157 | - | 0.591 | 0.591 | 0.512 |
| $15 \mathrm{~mm}, 20 \mathrm{~mm}$ [0.591, 0.787] | 2.835 | 2.756 | 2.126 | 1.102 | 0.787 | 1.102 | 0.591 | 0.157 | 0.394 | 0.157 | - | 0.591 | 0.591 | 0.709 |
| $25 \mathrm{~mm}, 30 \mathrm{~mm}$ [0.984, 1.181] | 3.228 | 3.150 | 2.520 | 1.496 | 1.181 | 1.102 | 0.591 | 0.157 | 0.394 | 0.236 | 0.079 | 1.181 | 0.984 | 1.102 |
| $35 \mathrm{~mm}, 40 \mathrm{~mm}$ [1.378, 1.575] | 3.622 | 3.543 | 2.913 | 1.890 | 1.575 | 1.102 | 0.591 | 0.157 | 0.394 | 0.236 | 0.079 | 1.181 | 0.984 | 1.496 |
| $45 \mathrm{~mm}, 50 \mathrm{~mm}$ [1.772, 1.969] | 4.016 | 3.937 | 3.307 | 2.283 | 1.969 | 1.102 | 0.591 | 0.157 | 0.394 | 0.315 | 0.118 | 1.772 | 1.378 | 1.890 |
| $55 \mathrm{~mm}, 60 \mathrm{~mm}$ [2.165, 2.362] | 4.409 | 4.331 | 3.701 | 2.677 | 2.362 | 1.102 | 0.591 | 0.157 | 0.394 | 0.394 | 0.157 | 1.772 | 1.378 | 2.283 |

Note 2: Dimensions indicated by * are for strokes longer than 0.591 .
Note 3: All piping ports are assembled with plugs, except those indicated by $\star$.
Note 4: Apply grease to o-rings when changing plug assemblies.
Note 5: Pin holes indicated by $\quad$ are provided only when selected as an option (N).

## -CSL-BCG $\square 25$ (clean room specification)



| Stroke | A | B | C | D | E | F | O | P | S | T | U | V | W | X |
| :---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 , 1 0}$ | 66 | 65 | 46 | 17 | 15 | 25 | 12 | 2 | 5 | 4 | - | 15 | 15 | 15 |
| $\mathbf{1 5 , 2 0}$ | 76 | 75 | 56 | 27 | 20 | 30 | 18 | 4 | 10 | 4 | - | 15 | 15 | 18 |
| $\mathbf{2 5 , 3 0}$ | 86 | 85 | 66 | 37 | 30 | 30 | 18 | 4 | 10 | 6 | 2 | 30 | 25 | 28 |
| $\mathbf{3 5 , 4 0}$ | 96 | 95 | 76 | 47 | 40 | 30 | 18 | 4 | 10 | 6 | 2 | 30 | 25 | 38 |
| $\mathbf{4 5 , 5 0}$ | 106 | 105 | 86 | 57 | 50 | 30 | 18 | 4 | 10 | 8 | 3 | 45 | 35 | 48 |
| $\mathbf{5 5 , 6 0}$ | 116 | 115 | 96 | 67 | 60 | 30 | 18 | 4 | 10 | 10 | 4 | 45 | 35 | 58 |

Note $1: 5,15,25,35,45$, and 55 stroke support collar stopper.
Note 2: Dimensions indicated by * are for strokes longer than 15.
Note 3: All piping ports are assembled with plugs, except those indicated by

## $\star$.

Note 4: Apply grease to o-rings when changing plug assemblies.
Note 5: Pin holes indicated by are provided only when selected as an option (N).

## CSL-BCG $\square 32$ (clean room specification)



OCSL-BCG $\square 25$ (clean room specification)

Note 1: $0.197,0.591,0.984,1.378,1.772$ and 2.165 stroke support collar stopper.

| Stroke | A | B | C | D | E | F | O | P | S | T | U | V | W | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{~mm}, 10 \mathrm{~mm}$ [0.197, 0.394] | 2.598 | 2.559 | 1.811 | 0.669 | 0.591 | 0.984 | 0.472 | 0.079 | 0.197 | 0.157 | - | 0.591 | 0.591 | 0.591 |
| $15 \mathrm{~mm}, 20 \mathrm{~mm}$ [0.591, 0.787] | 2.992 | 2.953 | 2.205 | 1.063 | 0.787 | 1.18 | 0.709 | 0.157 | 0.394 | 0.157 | - | 0.591 | 0.591 | 0.709 |
| $25 \mathrm{~mm}, 30 \mathrm{~mm}$ [0.984, 1.181] | 3.386 | 3.346 | 2.598 | 1.457 | 1.181 | 1.181 | 0.709 | 0.157 | 0.394 | 0.236 | 0.079 | 1.181 | 0.984 | 1.102 |
| $35 \mathrm{~mm}, 40 \mathrm{~mm}$ [1.378, 1.575] | 3.780 | 3.740 | 2.992 | 1.850 | 1.575 | 1.181 | 0.709 | 0.157 | 0.394 | 0.236 | 0.079 | 1.181 | 0.984 | 1.496 |
| $45 \mathrm{~mm}, 50 \mathrm{~mm}$ [1.772, 1.969] | 4.173 | 4.134 | 3.386 | 2.244 | 1.969 | 1.181 | 0.709 | 0.157 | 0.394 | 0.315 | 0.118 | 1.772 | 1.378 | 1.890 |
| $55 \mathrm{~mm}, 60 \mathrm{~mm}$ [2.165, 2.362] | 4.567 | 4.528 | 3.780 | 2.638 | 2.362 | 1.181 | 0.709 | 0.157 | 0.394 | 0.394 | 0.157 | 1.772 | 1.378 | 2.283 |

Note 2: Dimensions indicated by * are for strokes longer than 0.591 .
Note 3: All piping ports are assembled with plugs, except those indicated by $\star$.
Note 4: Apply grease to o-rings when changing plug assemblies.
Note 5: Pin holes indicated by $>$ are provided only when selected as an option ( N ).

## -CSL-BCG $\square 32$ (clean room specification)



Note 1: $0.591,0.984,1.378,1.772$, and 2.165 stroke support collar stopper.
Note 2: Dimensions indicated by * are for strokes longer than 0.984.
Note 3: Plugs are included for specifications other than back side piping specifications. Assemble using sealant, etc
Note 4: Pin holes indicated by $\boldsymbol{r}$ are provided only when selected as an option (N).

| Stroke | A | B | C | D | E | O | P | S | T | U | V | W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 ~ m m ~ [ 0 . 3 9 4 ] ~}$ | 3.150 | 3.110 | 2.165 | 0.709 | 0.787 | 0.630 | 0.079 | 0.236 | 0.157 | - | 0.709 | 0.787 |
| $\mathbf{1 5 ~ m m}, \mathbf{2 0 ~ m m ~ [ 0 . 5 9 1 , ~ 0 . 7 8 7 ] ~}$ | 3.543 | 3.504 | 2.559 | 1.102 | 1.181 | 0.787 | 0.079 | 0.394 | 0.157 | - | 0.709 | 0.787 |
| $\mathbf{2 5 ~ m m}, \mathbf{3 0 ~ m m ~ [ 0 . 9 8 4 , ~ 1 . 1 8 1 ] ~}$ | 3.937 | 3.898 | 2.953 | 1.496 | 1.575 | 0.787 | 0.157 | 0.394 | 0.236 | 0.079 | 1.417 | 1.181 |
| $\mathbf{3 5 ~ m m}, \mathbf{4 0 ~ m m ~ [ 1 . 3 7 8 , ~ 1 . 5 7 5 ] ~}$ | 4.331 | 4.291 | 3.346 | 1.890 | 1.969 | 0.787 | 0.157 | 0.394 | 0.236 | 0.079 | 1.417 | 1.181 |
| $\mathbf{4 5 ~ m m}, \mathbf{5 0 ~ m m ~ [ 1 . 7 7 2 , ~ 1 . 9 6 9 ] ~}$ | 4.724 | 4.685 | 3.740 | 2.283 | 2.362 | 0.787 | 0.157 | 0.394 | 0.315 | 0.118 | 2.126 | 1.575 |
| $\mathbf{5 5 ~ m m}, \mathbf{6 0 ~ m m ~ [ 2 . 1 6 5 , ~ 2 . 3 6 2 ] ~}$ | 5.118 | 5.079 | 4.134 | 2.677 | 2.756 | 0.787 | 0.157 | 0.394 | 0.315 | 0.118 | 2.126 | 1.575 |

## -CSL-BCG $\square 40$ (clean room specification)



| Stroke | A | B | C | D | E | P | T | U | V | W | X |
| :---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 , 1 5 , \mathbf { 2 0 }}$ | 97 | 96 | 72 | 30 | 30 | 2 | 4 | - | 18 | 25 | 28 |
| $\mathbf{2 5 , 3 0}$ | 107 | 106 | 82 | 40 | 40 | 4 | 6 | 2 | 36 | 30 | 38 |
| $\mathbf{3 5 , 4 0}$ | 117 | 116 | 92 | 50 | 50 | 4 | 6 | 2 | 36 | 30 | 48 |
| $\mathbf{4 5 , 5 0}$ | 127 | 126 | 102 | 60 | 60 | 4 | 8 | 3 | 54 | 40 | 58 |
| $\mathbf{5 5 , 6 0}$ | 137 | 136 | 112 | 70 | 70 | 4 | 8 | 3 | 54 | 40 | 68 |

Note $1: 10,15,25,35,45$, and 55 stroke support collar stopper.
Note 2: Dimensions indicated by * are for strokes longer than 25
Note 3: Plugs are included for specifications other than back side piping specifications. Assemble using sealant, etc
Note 4: Pin holes indicated by are provided only when selected as an option (N).

## -CSL-BCG $\square 40$ (clean room specification)



| Stroke | A | B | C | D | E | P | T | U | V | W | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10 \mathrm{~mm}, 15 \mathrm{~mm}, 20 \mathrm{~mm}$ [0.394, 0.591, 0.7 | 3.819 | 3.780 | 2.835 | 1.181 | 1.181 | 0.079 | 0.157 | - | 0.709 | 0.984 | 1.102 |
| $25 \mathrm{~mm}, 30 \mathrm{~mm}$ [0.984, 1.181] | 4.213 | 4.173 | 3.228 | 1.575 | 1.575 | 0.157 | 0.236 | 0.079 | 1.417 | 1.181 | 1.496 |
| $35 \mathrm{~mm}, 40 \mathrm{~mm}$ [1.378, 1.575] | 4.606 | 4.567 | 3.622 | 1.969 | 1.969 | 0.157 | 0.236 | 0.079 | 1.417 | 1.181 | 1.890 |
| $45 \mathrm{~mm}, 50 \mathrm{~mm}$ [1.772, 1.969] | 5.000 | 4.961 | 4.016 | 2.362 | 2.362 | 0.157 | 0.315 | 0.118 | 2.126 | 1.575 | 2.283 |
| $55 \mathrm{~mm}, 60 \mathrm{~mm}$ [2.165, 2.362] | 5.394 | 5.354 | 4.409 | 2.756 | 2.756 | 0.157 | 0.315 | 0.118 | 2.126 | 1.575 | 2.677 |

```
BCZ-BK
\(\square\)
Cylinder bore
```

10:For $\phi 10$ [0.394]
12:For $\phi 12$ [0.472]
16:For $\phi 16$ [0.630]
20:For $\phi 20$ [0.787]
25:For $\phi 25$ [0.984]
32:For $\phi 32$ [1.260]

40:For $\phi 40$ [1.575]
50:For $\phi 50$ [1.969] 63:For $\phi 63$ [2.480] 80:For $\phi 80$ [3.150] 100:For $\phi 100$ [3.9] 125:For $\phi 125$ [4.9]

Note: Cannot be mounted on cylinders with guides (BCG $\square$ ).
Bracket dimensions mm [in]

- $\phi 10$ [0.394] to $\phi \mathbf{3 2}$ [1.260]
- $\phi 40$ [1.575] to $\phi 80$ [3.150]
- $\phi 100$ [3.9] to $\phi 125$ [4.9]



## OMounting bolt (2 pieces)



Material: Stainless steel (only M16 is steel)

| Bore ${ }^{\text {Symbol }}$ | A | B | C | D | E | F | G | H | 1 | $J$ | K | L | M | N | 0 | P | Q | S | T | Materials | Mass g[oz] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 [0.394] | $\begin{gathered} 22 \\ {[0.866]} \end{gathered}$ | $\begin{gathered} \hline 16 \\ {[0.630]} \end{gathered}$ | $\begin{gathered} 3 \\ {[0.118]} \end{gathered}$ | $\begin{gathered} 10 \\ {[0.394]} \end{gathered}$ | $\begin{gathered} 3.8 \\ {[0.150]} \end{gathered}$ | $\begin{gathered} 1 \\ {[0.039]} \end{gathered}$ | $\begin{gathered} 16 \\ {[0.630]} \end{gathered}$ | $\begin{gathered} \hline 7 \\ {[0.276]} \end{gathered}$ | $\begin{gathered} 9.3 \\ {[0.366]} \end{gathered}$ | $\begin{gathered} 3.4 \\ {[0.134]} \end{gathered}$ | $\begin{gathered} 8 \\ {[0.315]} \end{gathered}$ | $\begin{gathered} \text { R5 } \\ {[0.197]} \end{gathered}$ | - | - | - | $\begin{gathered} 5 \\ {[0.197]} \end{gathered}$ | $\begin{gathered} \hline 3 \\ {[0.118]} \end{gathered}$ | $\begin{array}{c\|} \hline 4.5 \\ {[0.177]} \end{array}$ | M3 $\times 0.5$ | ainless <br> steel | 4 [0.141] |
| 12 [0.472] | $\begin{gathered} 26 \\ {[1.024]} \\ \hline \end{gathered}$ | $\begin{gathered} 14 \\ {[0.551]} \end{gathered}$ | $\begin{gathered} 4 \\ {[0.157]} \end{gathered}$ | $\begin{gathered} 13 \\ {[0.512]} \end{gathered}$ | $\begin{gathered} 4.8 \\ {[0.189]} \end{gathered}$ | $\begin{gathered} 1 \\ {[0.039]} \end{gathered}$ | $\begin{gathered} 19 \\ {[0.748]} \end{gathered}$ | $\begin{gathered} 8 \\ {[0.315]} \end{gathered}$ | $\begin{gathered} 11 \\ {[0.433]} \end{gathered}$ | $\begin{gathered} 4.5 \\ {[0.177]} \\ \hline \end{gathered}$ | $\begin{gathered} 8 \\ {[0.315]} \end{gathered}$ | $\begin{gathered} \text { R5 } \\ {[0.197]} \end{gathered}$ | - | - | - | $\begin{gathered} 4 \\ {[0.157]} \end{gathered}$ | $\begin{gathered} 4 \\ {[0.157]} \end{gathered}$ | $\left[\begin{array}{c} 5.5 \\ {[0.217]} \end{array}\right.$ | M4 × 0.7 | Stainless steel | [0.21 |
| 16 [0.630] | $\begin{array}{c\|} \hline 28 \\ {[1.102]} \\ \hline \end{array}$ | $\left[\begin{array}{c} 14 \\ {[0.551]} \end{array}\right.$ | $\begin{gathered} 4 \\ {[0.157]} \end{gathered}$ | $\begin{gathered} 13 \\ {[0.512]} \end{gathered}$ | $\begin{gathered} 4.8 \\ {[0.189]} \end{gathered}$ | $\left[\begin{array}{c} 1.5 \\ {[0.059]} \end{array}\right.$ | $\begin{gathered} 22 \\ {[0.866]} \end{gathered}$ | $\begin{gathered} 7 \\ {[0.276]} \end{gathered}$ | $\begin{gathered} 10 \\ {[0.394]} \end{gathered}$ | $\begin{gathered} 3.5 \\ {[0.138]} \end{gathered}$ | $\begin{gathered} 11 \\ {[0.433]} \end{gathered}$ | $\begin{gathered} \mathrm{R7} \\ {[0.276]} \end{gathered}$ | - | - | - | $\begin{gathered} 5 \\ {[0.197]} \end{gathered}$ | $\left.\begin{array}{c} 3 \\ {[0.118]} \end{array}\right]$ | $\left[\begin{array}{c} 5.5 \\ {[0.217]} \end{array}\right]$ | M3 $\times 0.5$ | Stainless steel | [0.24 |
| 20 [0.787] | $\begin{array}{c\|} \hline 34 \\ {[1.339]} \\ \hline \end{array}$ | $\begin{gathered} 14 \\ {[0.551]} \end{gathered}$ | $\begin{gathered} 4 \\ {[0.157]} \end{gathered}$ | $\begin{gathered} 13 \\ {[0.512]} \end{gathered}$ | $\begin{gathered} 4.8 \\ {[0.189]} \end{gathered}$ | $\begin{gathered} 2 \\ {[0.079]} \end{gathered}$ | $\begin{array}{c\|} \hline 26 \\ {[1.024]} \end{array}$ | $\begin{gathered} 8 \\ {[0.315]} \end{gathered}$ | $\begin{gathered} 12 \\ {[0.472]} \end{gathered}$ | $\begin{gathered} 4.5 \\ {[0.177]} \end{gathered}$ | $\begin{gathered} 13 \\ {[0.512]} \end{gathered}$ | $\begin{gathered} \text { R8 } \\ {[0.315]} \end{gathered}$ | - | - | - | $\begin{gathered} 8 \\ {[0.315]} \end{gathered}$ | $\begin{gathered} 4 \\ {[0.157]} \end{gathered}$ | $\left.\begin{array}{c} 7 \\ {[0.276]} \end{array}\right]$ | M4 × 0.7 | $\begin{gathered} \text { Stainless } \\ \text { steel } \end{gathered}$ | 12 [0.423] |
| 25 [0.984] | $\begin{array}{c\|} 38 \\ {[1.496]} \end{array}$ | $\begin{gathered} 18 \\ {[0.709]} \\ \hline \end{gathered}$ | $\begin{gathered} 5 \\ {[0.197]} \end{gathered}$ | $\begin{gathered} 14 \\ {[0.551]} \end{gathered}$ | $\left[\begin{array}{c} 4.8 \\ {[0.189]} \end{array}\right.$ | $\begin{gathered} 2 \\ {[0.079]} \end{gathered}$ | $\begin{gathered} 30 \\ {[1.181]} \end{gathered}$ | $\begin{gathered} 8 \\ {[0.315]} \end{gathered}$ | $\begin{gathered} 12 \\ {[0.472]} \end{gathered}$ | $\begin{gathered} 4.5 \\ {[0.177]} \end{gathered}$ | $\begin{gathered} 15 \\ {[0.591]} \end{gathered}$ | $\left[\begin{array}{c} R 10 \\ {[0.394]} \end{array}\right]$ | - | - | - | $\left[\begin{array}{c} 8 \\ {[0.315]} \end{array}\right]$ | $\begin{gathered} 4 \\ {[0.157]} \end{gathered}$ | $\left.\begin{array}{c} 7 \\ {[0.276]} \end{array}\right]$ | M4 × 0.7 | $\begin{array}{c\|} \hline \text { Stainless } \\ \text { steel } \end{array}$ | [0.494] |
| 32 [1.260] | $\begin{gathered} 48 \\ {[1.890]} \end{gathered}$ | $\begin{gathered} 22 \\ {[0.866]} \\ \hline \end{gathered}$ | $\left[\begin{array}{c} 6 \\ {[0.236]} \end{array}\right.$ | $\begin{gathered} 18 \\ {[0.709]} \end{gathered}$ | $\left[\begin{array}{c} 5.8 \\ {[0.228]} \end{array}\right.$ | $\begin{gathered} 2 \\ {[0.079]} \end{gathered}$ | $\begin{gathered} 38 \\ {[1.496]} \end{gathered}$ | $\begin{gathered} 8 \\ {[0.315]} \end{gathered}$ | $\begin{gathered} 13 \\ {[0.512]} \end{gathered}$ | $[0.217]$ | $\begin{gathered} 19 \\ {[0.748]} \end{gathered}$ | $\left[\begin{array}{c} \mathrm{R} 12 \\ {[0.472]} \end{array}\right.$ | - | - | - | $\left[\begin{array}{c} 8 \\ {[0.315]} \end{array}\right]$ | $\begin{gathered} 5 \\ {[0.197]} \end{gathered}$ | $\left[\begin{array}{c} 8.5 \\ {[0.335]} \end{array}\right]$ | M5 × 0.8 | $\begin{array}{\|c\|} \hline \text { Stainless } \\ \text { steel } \end{array}$ | 24 [0.847] |
| 40 [1.575] | $\left[\begin{array}{c} 52 \\ {[2.047]} \end{array}\right.$ | $\left[\begin{array}{c} 18 \\ {[0.709]} \end{array}\right.$ | $\left[\begin{array}{c} 6 \\ {[0.236]} \end{array}\right.$ | $\left[\begin{array}{c} 20 \\ {[0.787]} \end{array}\right]$ | $[0.268]$ | $\begin{gathered} 5 \\ {[0.197]} \end{gathered}$ | $\begin{gathered} 40 \\ {[1.575]} \end{gathered}$ | $\begin{gathered} 7 \\ {[0.276]} \end{gathered}$ | $\begin{gathered} 13 \\ {[0.512]} \end{gathered}$ | $\begin{gathered} 6.5 \\ {[0.256]} \end{gathered}$ | - | - | $\begin{gathered} 28 \\ {[1.102]} \\ \hline \end{gathered}$ | $\begin{gathered} 14 \\ {[0.551]} \end{gathered}$ | - | $\left[\begin{array}{c} 12 \\ {[0.472]} \end{array}\right.$ | $\left.\begin{array}{c} 6 \\ {[0.236]} \end{array}\right]$ | $\left[\begin{array}{c} 10 \\ {[0.394]} \end{array}\right]$ | M6 $\times 1$ | $\begin{gathered} \text { Aluminum } \\ \text { alloy } \end{gathered}$ | 25 [0.882] |
| 50 [1.969] | $\begin{gathered} 66 \\ {[2.598]} \end{gathered}$ | $\left[\begin{array}{c} 24 \\ {[0.945]} \end{array}\right.$ | $\begin{gathered} 7 \\ {[0.276]} \end{gathered}$ | $\left[\begin{array}{c} 24 \\ {[0.945]} \end{array}\right.$ | $\left[\begin{array}{c} 9.5 \\ {[0.374]} \end{array}\right]$ | $\begin{gathered} 5 \\ {[0.197]} \end{gathered}$ | $\begin{gathered} 52 \\ {[2.047]} \end{gathered}$ | $\begin{gathered} 7 \\ {[0.276]} \end{gathered}$ | $\begin{gathered} 15 \\ {[0.591]} \end{gathered}$ | $\begin{gathered} 9 \\ {[0.354]} \end{gathered}$ | - | - | $\begin{gathered} 37 \\ {[1.457]} \end{gathered}$ | $\left[\begin{array}{c} 18 \\ {[0.709]} \end{array}\right]$ | - | $\left[\begin{array}{c} 12 \\ {[0.472]} \end{array}\right.$ | $\left.\begin{array}{c} 8 \\ {[0.315]} \end{array}\right]$ | $\left[\begin{array}{c} 13 \\ {[0.512]} \end{array}\right]$ | M8 × 1.25 | $\begin{gathered} \text { Aluminum } \\ \text { alloy } \end{gathered}$ | 45 [1.587] |
| 63 [2.480] | $\left[\begin{array}{c} 78 \\ {[3.071]} \end{array}\right]$ | $\left[\begin{array}{c} 24 \\ {[0.945]} \end{array}\right.$ | $\begin{gathered} 9 \\ {[0.354]} \end{gathered}$ | $\begin{gathered} 28 \\ {[1.102]} \end{gathered}$ | $[0.453]$ | $\left[\begin{array}{c} 8 \\ {[0.315]} \end{array}\right]$ | [2.362] | $\left[\begin{array}{c} 9 \\ {[0.354]} \end{array}\right.$ | $\begin{gathered} 18 \\ {[0.709]} \end{gathered}$ | $\begin{gathered} 11 \\ {[0.433]} \end{gathered}$ | - | - | $\begin{gathered} 40 \\ {[1.575]} \end{gathered}$ | $\begin{gathered} 20 \\ {[0.787]} \end{gathered}$ | - | $\left.\begin{array}{c} 16 \\ {[0.630]} \end{array}\right]$ | $\left.\begin{array}{c} 10 \\ {[0.394]} \end{array}\right]$ | $\left[\begin{array}{c} 16 \\ {[0.630]} \end{array}\right]$ | M10 × 1.5 | $\begin{gathered} \text { Aluminum } \\ \text { alloy } \end{gathered}$ | 80 [2.822] |
| 80 [3.150] | $\begin{gathered} 90 \\ {[3.543]} \end{gathered}$ | $\begin{gathered} 30 \\ {[1.181]} \end{gathered}$ | $\begin{gathered} 10 \\ {[0.394]} \end{gathered}$ | $\begin{gathered} 36 \\ {[1.417]} \end{gathered}$ | $\begin{gathered} 14.5 \\ {[0.571]} \end{gathered}$ | $\left[\begin{array}{c} 8 \\ {[0.315]} \end{array}\right]$ | $\begin{gathered} 70 \\ {[2.756]} \\ \hline \end{gathered}$ | $\left[\begin{array}{c} 10 \\ {[0.394]} \end{array}\right.$ | $\begin{gathered} 20 \\ {[0.787]} \end{gathered}$ | $\begin{gathered} 14 \\ {[0.551]} \end{gathered}$ | - | - | $\begin{gathered} 48 \\ {[1.890]} \end{gathered}$ | $\begin{gathered} 28 \\ {[1.102]} \end{gathered}$ | - | $\begin{gathered} 20 \\ {[0.787]} \end{gathered}$ | $\begin{gathered} 12 \\ {[0.472]} \end{gathered}$ | $\left[\begin{array}{c} 18 \\ {[0.709]} \end{array}\right]$ | M12 $\times 1.75$ | Aluminum alloy | 128 [4.5] |
| 100 [3.9] | $\begin{gathered} 112 \\ {[4.4]} \end{gathered}$ | $\begin{gathered} 50 \\ {[1.969]} \end{gathered}$ | $\left[\begin{array}{c} 9 \\ {[0.354]} \end{array}\right.$ | $\begin{gathered} 30 \\ {[1.181]} \end{gathered}$ | $\begin{gathered} 14.5 \\ {[0.571]} \end{gathered}$ | $\begin{gathered} 10 \\ {[0.394]} \end{gathered}$ | $\begin{gathered} 90 \\ {[3.543]} \end{gathered}$ | $\begin{gathered} 11 \\ {[0.433]} \end{gathered}$ | $\begin{gathered} 22 \\ {[0.866]} \end{gathered}$ | $\begin{gathered} 14 \\ {[0.551]} \end{gathered}$ | - | - | $\begin{gathered} 68 \\ {[2.677]} \end{gathered}$ | $\begin{gathered} 20 \\ {[0.787]} \end{gathered}$ | $\begin{gathered} 28 \\ {[1.102]} \\ \hline \end{gathered}$ | $\left[\begin{array}{c} 20 \\ {[0.787]} \end{array}\right]$ | $\left[\begin{array}{c} 12 \\ {[0.472]} \end{array}\right.$ | $\left[\begin{array}{c} 18 \\ {[0.709]} \end{array}\right]$ | M12 × 1.75 | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Aluminum } \\ \text { alloy } \end{array} \\ \hline \end{array}$ | 167 [5.9] |
| 125 [4.9] | $\begin{gathered} 140 \\ {[5.5]} \\ \hline \end{gathered}$ | $\begin{gathered} 58 \\ {[2.283]} \end{gathered}$ | $\begin{gathered} 14 \\ {[0.551]} \end{gathered}$ | $\begin{gathered} 42 \\ {[1.654]} \end{gathered}$ | $\begin{gathered} 18.5 \\ {[0.728]} \end{gathered}$ | $\begin{gathered} 14 \\ {[0.551]} \end{gathered}$ | $\begin{gathered} 110 \\ {[4.331]} \end{gathered}$ | $\begin{gathered} 15 \\ {[0.591]} \end{gathered}$ | $\begin{gathered} 30 \\ {[1.181]} \end{gathered}$ | $\begin{gathered} 18 \\ {[0.709]} \end{gathered}$ | - | - | $\begin{gathered} 82 \\ {[3.228]} \end{gathered}$ | $\begin{gathered} 30 \\ {[1.181]} \end{gathered}$ | $\begin{gathered} 30 \\ {[1.181]} \end{gathered}$ | $\begin{gathered} 35 \\ {[1.378]} \end{gathered}$ | $\begin{gathered} 16 \\ {[0.630]} \end{gathered}$ | $\begin{gathered} 24 \\ {[0.945]} \end{gathered}$ | M16 $\times 2$ | Aluminum alloy | 410 [14.5] |

Note: Mass includes mass of 2 supplied bolts

There are seven patternized piston rod end shapes. A non-standard end shaped cylinder can be order made by simply filling in the items on the order that has the required shape drawn on it. This applies to all types of basic cylinders. Contact Koganei for order forms with pattern shaped drawn on them.

## Order code example



Note: For clean room specifications, CS- or CSL- is appended before BC. For details, see the pages for the corresponding order codes.

## Piston rod end shape pattern diagrams (7 types)



## Additional Parts

Note 1: $\phi 6$ [0.236], $\phi 8$ [0.315] and $\phi 10$ [0.394] cannot be disassembled.
2: Be careful that the steel balls do not fall out from the linear guide when doing maintenance on cylinders with guides.
-Packing set for double acting type (including models with guides)

| (For standard specification) |  |
| :---: | :---: |
|  |  |
| Cylinder bore | * 1 rod seal, 1 piston seal, 1 o-ring and retaining ring |
| 12: For BC12, BCG(N) 12 |  |
| 16: For BC16, BCG(N)16 |  |
| 20: For BC20, BCG(N)20 |  |
| 25: For BC25, BCG(N)25 |  |
| 32: For BC32, BCG(N)32 |  |
| 40: For BC40, BCG(N)40 |  |
| 50: For BC50 |  |
| 63: For BC63 |  |
| 80: For BC80 |  |
| 100: For BC100 |  |
| 125: For BC125 |  |

BCZ-PK-R- $\square$ (For corrosion resistant, clean room specifications)

Cylinder bore

* 1 rod seal, 1 piston seal, 1 o-ring and retaining ring

12: For BCR12, CS(L)-BC12, BCG(N)R12, CSL-BCG(N)12
16: For BCR16, CS(L)-BC16, BCG(N)R16, CSL-BCG(N)16 20: For BCR20, CS(L)-BC20, BCG(N)R20, CSL-BCG(N)20 25: For BCR25, CS(L)-BC25, BCG(N)R25, CSL-BCG(N)25 32: For BCR32, CS(L)-BC32, BCG(N)R32, CSL-BCG(N)32 40: For BCR40, CS(L)-BC40, BCG(N)R40, CSL-BCG(N)40 50: For BCR50, CS(L)-BC50
63: For BCR63, CS(L)-BC63
80: For BCR80
100: For BCR100
125: For BCR125

BCZ-PK-F- $\square$ (For heat resistant specification)
Cylinder bore
12: For BCF12, BCG(N)F12
16: For BCF16, BCG(N)F16 20: For BCF20, BCG(N)F20 25: For BCF25, BCG(N)F25 32: For BCF32, BCG(N)F32 40: For BCF40, BCG(N)F40
50: For BCF50
63: For BCF63
80: For BCF80
100: For BCF100
125: For BCF125

BCZ-PK-Y- $\square$ (For scraper specification)

Cylinder bore

* 1 rod seal, 1 piston seal, 1 o-ring, 1 scraper, 1 retaining ring

12: For BCY12
16: For BCY16
20: For BCY20
25: For BCY25
32: For BCY32
40: For BCY40 50: For BCY50 63: For BCY63
80: For BCY80
100: For BCY100
125: For BCY125

The grease used when you purchase a packing set for disassembly and re-assembly depends on the specification. Contact Koganei for details.

Products that have been disassembled and reassembled are not covered by the warranty.

## Additional Parts

Note: $\phi 6$ [0.236], $\phi 8$ [0.315] and $\phi 10$ [0.394] cannot be disassembled.

## Packing set for double acting double rod end type

| BCZ-PK-D $\square$ | (For standard specification) |
| :---: | :---: |
| BCZ-PK-R-D |  |
| Cylinder bore | (For corrosion resistant specification) |
| 12: For BCD12 | Cylinder bore |
| 16: For BCD16 | 12: For BCDR12 |
| 20: For BCD20 | 16: For BCDR16 seals, 1 piston seal, 1 o-ring and retaining ring |
| 25: For BCD25 | 20: For BCDR20 |
| 32: For BCD32 | 25: For BCDR25 |
| 40: For BCD40 | 32: For BCDR32 |
| 50: For BCD50 | 40: For BCDR40 |
| 63: For BCD63 | 50: For BCDR50 |
| 80: For BCD80 | 63: For BCDR63 |
| 100: For BCD100 | 80: For BCDR80 |
| 125: For BCD125 | 100: For BCDR100 |
|  | 125: For BCDR125 |

-Packing set for single acting push and pull type


OPiping port plugs for cylinders with guides
BCZ-PM $\square$ (For standard, corrosion resistant, clean room specifications)

Thread size
3: For M3(For BCG(N)8, BCG(N)R8, CSL-BCG(N)8)
5: For M5(For BCG(N)12, BCG(N)R12, CSL-BCG(N)12, BCG(N)16, BCG(N)R16, CSL-BCG(N)16, BCG $(N) 20, B C G(N) R 20, C S L-B C G(N) 20$, BCG(N)25, BCG(N)R25, CSL-BCG(N)25)

*4 plugs assembled with o-rings in each bag
BCZ-F-PM $\qquad$ (For heat resistant specification)

Thread size
3: For M3(For BCG(N)F8)
5: For M5(For BCG(N)F12, BCG(N)F16, BCG(N)F20, BCG(N)F25)

## OBack side piping block for cylinders with guides

BCZ-BP
 (For standard specification) (For corrosion resistant, clean room specifications)

Cylinder bore
32: For BCG(N)32
40: For BCG(N)40
$\qquad$
Cylinder bore
32: For BCG(N)R32, CSL-BCG(N)32
40: For BCG(N)R40, CSL-BCG(N)40

BCZ-F-BP $\square$ (For heat resistant specification)
Cylinder bore
32: For BCG(N)F32
40: For BCG(N)F40


* 1 back side piping block with press fitted steel balls
1 each of two types of o-rings, 2 mounting bolts


## Sensor switches

## Solid state type, reed switch type

## -Robot cable is standard equipment

Lead wire flexibility is excellent because the conductor used is the same as for robot cables.

## Specifications

## - Solid State Type

| Item Model | ZE135 $\square$ | ZE155 $\square$ | ZE175 $\square$ | ZE235 $\square$ | ZE255 $\square$ | ZE275 $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wiring method | 2-lead wire | 3 -lead wire with NPN output | 3-lead wire with PNP output | 2-lead wire | 3 -lead wire with NPN output | 3-1-ead wire with PNP output |
| Lead wire direction | Horizontal |  |  | Vertical |  |  |
| Power supply voltage | - | 4.5 to 28 VDC |  | - | 4.5 to 28 VDC |  |
| Load voltage | 10 to 28 VDC | 4.5 to 28 VDC |  | 10 to 28 VDC | 4.5 to 28 VDC |  |
| Load current | 2.5 to $20 \mathrm{~mA}\left(\right.$ at $25^{\circ} \mathrm{C}$ [ $\left.77^{\circ} \mathrm{F}\right]$, and $\left.10 \mathrm{mAat} 60^{\circ} \mathrm{C}\left[140^{\circ} \mathrm{F}\right]\right)$ | 40 mA max. |  | 2.5 to 20 mA (at $25^{\circ} \mathrm{C}$ [ $77^{\circ} \mathrm{F}$ ], and $\left.10 \mathrm{~mA} \mathrm{at} 60^{\circ} \mathrm{C}\left[140^{\circ} \mathrm{F}\right]\right)$ | 40 mA max. |  |
| Consumption current | - | $8 \mathrm{~mA} \mathrm{max}$. (24VDC) | 10 mA max (24 VDC) | - | 8 mA max. (24 VDC) | $10 \mathrm{~mA} \mathrm{max}$. (24VDC) |
| Internal voltage drop ${ }^{\text {Note } 1}$ | 4 V max. | 2 V max. ( 0.8 V max if load is less than 10 mA ) |  | 4 V max. | 2 V max. ( 0.8 V max if load is less than 10 mA ) |  |
| Leakage current | 0.7 mA max. (24 VDC, $25^{\circ} \mathrm{C}\left[77^{\circ} \mathrm{F}\right.$ ]) | $50 \mu \mathrm{~A}$ max. (24 VDC) |  | 0.7 mA max. (24 VDC, $25^{\circ} \mathrm{C}\left[77^{\circ} \mathrm{F}\right]$ ) | $50 \mu \mathrm{~A}$ max. (24 VDC) |  |
| Response time | 1 ms max . |  |  |  |  |  |
| Insulation resistance | $100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC megger, between case and lead wire terminal) |  |  |  |  |  |
| Dielectric strength | 500 VAC ( $50 / 60 \mathrm{~Hz}$ ) 1 minute (between case and lead wire terminal) |  |  |  |  |  |
| Shock resistance ${ }^{\text {Note } 2}$ | $294.2 \mathrm{~m} / \mathrm{s}^{2}$ [30 G] (non-repeated) |  |  |  |  |  |
| Vibration resistance ${ }^{\text {Note } 2}$ | $88.3 \mathrm{~m} / \mathrm{s}^{2}$ [9 G] (total amplitude of 1.5 mm [0.059 in], 10 to 55 Hz ) |  |  |  |  |  |
| Protection from environment | IP67 (IEC standard), JIS C0920 (watertight type) |  |  |  |  |  |
| Operation indicators | Red LED indicator lit when on |  |  |  |  |  |
| Lead wires | PCCVO.2SQ x 2-lead (brown and blue) $\times$ ¢ Note3 | PCCVO. 15 SQ 3 3-lead (brow | m, blue, and black) x \& Mues | PCCVO.2SQ $\times 2$-ead (brown and blue) $\times$ \& ${ }^{\text {Noie } 3}$ | PCCVO. 15 SQ $\times 3$-lead (brow, bue, and black) $\times$ \& ${ }^{\text {Wate } 3}$ |  |
| Ambient temperature | 0 to $60^{\circ} \mathrm{C}$ [ 32 to $140^{\circ} \mathrm{F}$ ] |  |  |  |  |  |
| Storage temperature range | -10 to $70^{\circ} \mathrm{C}$ [14 to $158^{\circ} \mathrm{F}$ ] |  |  |  |  |  |
| Mass | $15 \mathrm{~g}[0.53 \mathrm{oz}]$ (for lead wire length A: 1000 mm [39 in]]), $35 \mathrm{~g}[1.23 \mathrm{oz]}$ (for lead wire length B: 3000 mm [118 in]], $15 \mathrm{~g}[0.53 \mathrm{oz}]$ (for lead wire length 300 mm [11.8 in] with M8 connector) |  |  |  |  |  |

Note 1: Internal voltage drop changes with the load current.
2: According to Koganei test standards.
3: Lead wire length $\ell:$ A; $1000 \mathrm{~mm}[39 \mathrm{in}$ ], B; $3000 \mathrm{~mm}[118 \mathrm{in}$ ], G; 300 mm [11.8 in] with M8 connector only on the ZE175 $\square$ and ZE275 $\square$

- Reed Switch Type

| Item Model | ZE101 $\square$ |  | ZE102 $\square$ |  | ZE201 $\square$ |  | ZE202 $\square$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wiring method | 2-lead wire |  |  |  |  |  |  |  |
| Lead wire direction | Horizontal |  |  |  | Vertical |  |  |  |
| Load voltage | 5 to 28 VDC | 85 to 115 VAC (ms) | 10 to 28 VDC | 85 to 115 VAC (rms) | 5 to 28 VDC | 85 to 115 VAC (rms) | 10 to 28 VDC | 85 to 115 VAC (rms) |
| Load current | 40 mA max. | 20 mA max. | 5 to 40 mA | 5 to 20 mA | 40 mA max. | 20 mA max. | 5 to 40 mA | 5 to 20 mA |
| Internal voltage drop ${ }^{\text {Note } 1}$ | 0.1 V max. (for load current of 40 mA DC ) |  | 3.0 V max. |  | 0.1 V max. (for load current of 40 mA DC ) |  | 3.0 V max. |  |
| Leakage current | 0 mA |  |  |  |  |  |  |  |
| Response time | 1 ms max. |  |  |  |  |  |  |  |
| Insulation resistance | $100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC megger, between case and lead wire terminal) |  |  |  |  |  |  |  |
| Dielectric strength | 1500 VAC ( $50 / 60 \mathrm{~Hz}$ ) 1 minute (between case and lead wire terminal) |  |  |  |  |  |  |  |
| Shock resistance ${ }^{\text {Note } 2}$ | $294.2 \mathrm{~m} / \mathrm{s}^{2}$ [30 G] (non-repeated) |  |  |  |  |  |  |  |
| Vibration resistance ${ }^{\text {Note } 2}$ | $88.3 \mathrm{~m} / \mathrm{s}^{2}$ [9 G] (total amplitude of 1.5 mm [ 0.059 in ], 10 to 55 Hz ), resonance frequency $2570 \pm 250 \mathrm{~Hz}$ |  |  |  |  |  |  |  |
| Protection from environment | IP67 (IEC standard), JIS C0920 (watertight type) |  |  |  |  |  |  |  |
| Operation indicators | None |  | Red LED indicator lit when on |  | None |  | Red LED indicator lit when on |  |
| Lead wires | PCCV0.2SQ $\times 2$-lead (brown and blue) $\times \ell^{\text {Note } 3}$ |  |  |  |  |  |  |  |
| Ambient temperature | 0 to $60^{\circ} \mathrm{C}$ [32 to $140^{\circ} \mathrm{F}$ ] |  |  |  |  |  |  |  |
| Storage temperature range | -10 to $70^{\circ} \mathrm{C}$ [14 to $158^{\circ} \mathrm{F}$ ] |  |  |  |  |  |  |  |
| Contact protection measure | Required (see page (4) under contact protection.) |  |  |  |  |  |  |  |
| Mass | 15 g [ 0.53 oz ] (for lead wire length $\mathrm{A}: 1000 \mathrm{~mm}$ [ 39 in ]), 35 g [1.23 oz] (for lead wire length B: 3000 mm [118 in]) |  |  |  |  |  |  |  |

Note 1: Internal voltage drop changes with the load current.
2: According to Koganei test standards.
3: Lead wire length $\ell: A ; 1000 \mathrm{~mm}$ [ 39 in ], B; 3000mm [118 in]

## Sensor switches

## Two-color LED solid state type

## -Robot cable is standard equipment

Lead wire flexibility is excellent because the conductor used is the same as for robot cables.

## Specifications

## Two-color LED solid state type

| Item Model | ZE137 $\square$ | ZE157 $\square$ | ZE177 $\square$ | ZE237 $\square$ | ZE257 $\square$ | ZE277 $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wiring method | 2-lead wire | 3-lead wire with NPN output | 3-lead wire with PNP output | 2-lead wire | 3 -lead wire with NPN output | 3-lead wire with PNP output |
| Lead wire direction | Horizontal |  |  | Vertical |  |  |
| Power supply voltage | - | 4.5 to 28 VDC |  | - | 4.5 to 28 VDC |  |
| Load voltage | 10 to 28 VDC | 4.5 to 28 VDC |  | 10 to 28 VDC | 4.5 to 28 VDC |  |
| Load current | 2.5 to 20 mA (at $25^{\circ} \mathrm{C}$ [ $77^{\circ} \mathrm{F}$ ], and $10 \mathrm{~mA} \mathrm{at} 60^{\circ} \mathrm{C}$ [ $\left.\left.440^{\circ} \mathrm{F}\right]\right)$ | 40 mA max. |  | $2.51020 \mathrm{~mA}\left(\right.$ at $25^{\circ} \mathrm{C}$ [77 $\left.{ }^{\circ} \mathrm{F}\right]$, and $10 \mathrm{~mA} \mathrm{a} 60^{\circ} \mathrm{C}$ [ $140^{\circ} \mathrm{F}$ ]) | 40 mA max. |  |
| Consumption current | - | $8 \mathrm{~mA} \mathrm{max}$. (24VDC) | 10 mA max. $(24 \mathrm{VDC})$ | - | 8 mA max. (24 VDC) | $10 \mathrm{~mA} \mathrm{max}$. (24 VDC) |
| Internal voltage drop ${ }^{\text {Note } 1}$ | 4 V max. | 2 V max. ( 0.8 V max if load is less than 10 mA ) |  | 4 V max. | 2 V max. ( 0.8 V max if load is less than 10 mA ) |  |
| Leakage current | 0.7 mA max. ( $\left.24 \mathrm{VDC}, 25^{\circ} \mathrm{C}\left[77^{\circ} \mathrm{F}\right]\right)$ | $50 \mu \mathrm{~A}$ max. (24 VDC) |  | 0.7 mA max. ( $\left.24 \mathrm{VDC}, 25^{\circ} \mathrm{C}\left[77^{\circ} \mathrm{F}\right]\right)$ | $50 \mu \mathrm{~A}$ max. (24 VDC) |  |
| Response time | $1 \mathrm{~ms} \mathrm{max}$. |  |  |  |  |  |
| Insulation resistance | $100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC megger, between case and lead wire terminal) |  |  |  |  |  |
| Dielectric strength | 500 VAC ( $50 / 60 \mathrm{~Hz}$ ) 1 minute (between case and lead wire terminal) |  |  |  |  |  |
| Shock resistance ${ }^{\text {Note } 2}$ | $294.2 \mathrm{~m} / \mathrm{s}^{2}$ [30 G] (non-repeated) |  |  |  |  |  |
| Vibration resistance ${ }^{\text {Note } 2}$ | $88.3 \mathrm{~m} / \mathrm{s}^{2}$ [9 G] (total amplitude of 1.5 mm [ 0.059 in ], 10 to 55 Hz ) |  |  |  |  |  |
| Protection from environment | IP67 (IEC standard), JIS C0920 (water-proof type) |  |  |  |  |  |
| Operation indicators | Appropriate operation range: Green LED indicator lit when on, operation range: Red LED indicator lit when on |  |  |  |  |  |
| Lead wires | PCCVO.2SQ x 2 -lead (brown and blue) $\ell^{\text {Noes } 3}$ | PCCVO. $155 Q \times 3$-lead (brow | vo, blue, and black) x \& Nide | PCCVO.2SQ x 2-lead (brown and blue) $\times \ell^{\text {Noie } 3}$ | PCCVO.15SQ 3 3-lead (brown, blue, and black) $\times \ell^{\text {Nue3 }}$ |  |
| Ambient temperature | 0 to $60^{\circ} \mathrm{C}$ [ 32 to $140^{\circ} \mathrm{F}$ ] |  |  |  |  |  |
| Storage temperature range | -10 to $70^{\circ} \mathrm{C}$ [14 to $158^{\circ} \mathrm{F}$ ] |  |  |  |  |  |
| Mass | $15 \mathrm{~g}[0.53 \mathrm{ozz}$ ] (for lead wire length A: 1000 mm [ 39 in n$]$ ), $35 \mathrm{~g}[1.23 \mathrm{oz}]$ (for lead wire length B: 3000 mm [118 in]), $15 \mathrm{~g}[0.53 \mathrm{oz]}$ (for lead wire length 300 mm [11.8 in] with M8 connector) |  |  |  |  |  |

Note 1: Internal voltage drop changes with the load current.
2: According to Koganei test standards.
3: Lead wire length $\ell:$ A; 1000 mm [ 39 in ], B; $3000 \mathrm{~mm}[118 \mathrm{in}$ ], G; $300 \mathrm{~mm}[11.8 \mathrm{in}$ ] with M 8 connector only on the ZE177 $\square$ and ZE277 $\square$

## Operation

Explanation of operation of two-color LED solid state type
ZE137 $\square$, ZE157 $\square$, ZE177 $\square$, ZE237 $\square$, ZE257 $\square$, ZE277 $\square$


Note: The operating output may become unstable, due to the effects of the operating and installation environments, even if the appropriate operating range (green LED indicator lit) is fixed.

## Diagram of inner circuits

## Solid State Type



## 〇ZE175 $\square$, ZE275 $\square$



Two-color LED solid state type


Reed Switch Type
$\bigcirc Z E 101 \square$, ZE201 $\square$ ZE102 $\square$, ZE202 $\square$


## - Horizontal lead wire

Solid state (ZE135 $\square, \mathrm{ZE155} \square, \mathrm{ZE175} \square, \mathrm{ZE137} \square, \mathrm{ZE} 157 \square, \mathrm{ZE} 177 \square$ )
Reed switch (ZE101 $\square$, ZE102 $\square$ )


Solid state (ZE175G, ZE177G)


## - Vertical lead wire

Solid state (ZE235 $\square$, ZE255 $\square, \mathrm{ZE275} \square, \mathrm{ZE} 237 \square, \mathrm{ZE} 257 \square, \mathrm{ZE} 277 \square$ ) OReed switch (ZE201 $\square$, ZE202 $\square$ )


Solid state (ZE275G, ZE277G)
Connector pin layout


## - Horizontal lead wire

Solid state (ZE135 $\square, \mathrm{ZE155} \square, \mathrm{ZE175} \square, \mathrm{ZE137} \square, \mathrm{ZE} 157 \square, \mathrm{ZE} 177 \square$ )
Reed switch (ZE101 $\square$, ZE102 $\square$ )


Solid state (ZE175G, ZE177G)


Note: Not available with the ZE101 $\square$


## - Vertical lead wire

Solid state (ZE235 $\square$, ZE255 $\square$, ZE275 $\square, \mathrm{ZE} 237 \square, \mathrm{ZE} 257 \square, \mathrm{ZE} 277 \square$ ) $\quad$ Reed switch (ZE201 $\square$, ZE202 $\square$ )


Solid state (ZE275G, ZE277G)

Connector pin layout


In order to use the reed switch type sensor switch safely, take the contact protection measures listed below.
-For connecting an inductive load (electromagnetic relay)


OFor capacitive surges
(When the lead wire length exceeds 10 m [ 32.808 ft )


## Wiring instructions for the solid state sensor switches



1. Connect the lead wires according to their color. Incorrect wiring will cause damage to the sensor switch.
2. The use of a surge protection diode is recommended with the inductive load such as an electromagnetic relay.
3. Avoid the use of AND (series) connections because the circuit voltage will drop in proportion to the number of sensor switches.
4. When using an OR (parallel) connection, it is possible to connect sensor switch outputs directly (ex: using corresponding black lead wires). Be aware of load return errors since current leakage increases with the number of switches.
5. Because the sensor switches are magnetically sensitive, avoid using them in locations subject to strong external magnetic fields or bringing them in close proximity to power lines and areas where large electric currents are present. Also avoid using magnetic material for any parts used for mounting. It could result in erratic operation.
6. Do not excessively pull on or bend the lead wires.
7. Avoid using the switches in environments where chemicals or gas are present.
8. Consult the nearest Koganei sales office for use in environments subject to water or oil.

- Loosening the screw allows the sensor switch to be moved along the switch mounting groove of the cylinder tube.
- The tightening torque for the screws is 0.1 to $0.2 \mathrm{~N} \cdot \mathrm{~m}$ [ 0.86 to $1.77 \mathrm{in} \cdot \mathrm{lbf}]$.



## Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

## - Operating range: \&

The range from where the piston turns the switch on and the point where the switch is turned off as the piston travels in the same direction.

- Response differential: C

The distance between the point where the piston turns the switch on and the point where the switch is turned off as the piston travels in the opposite direction.

| - Solid State |  |  |  |  |  |  |  |  |  |  |  |  |  | t: mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item Diameter | 6 | 8 | 10 | 12 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| Operating range: $\ell$ | 1.5 to 5 |  | 2 to 5 |  |  | 2 to 6 |  |  | 3 to 7 | 3 to 11 |  |  |  |  |
| Response differential: C | 0.3 or less |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Maximun sensing loation lie | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note: The values in the table above are reference values. Note:The value from the opposite end
of the lead wire. (shown by arrow)

| Item Diameter | 0.236 0.315 | 0.394 | 0.472 | 0.630 | 0.787 | 0.984 | 1.260 | 1.575 | 1.969 | 2.480 | 3.150 | 3.9 | 4.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating range: $\ell$ | 0.059 to 0.197 | 0.07 | 9 to | . 197 | 0.07 | 9 to 0 | . 236 | $\begin{array}{\|c\|} \hline 0.118 \text { to } \\ 0.276 \end{array}$ |  | 0.118 to 0.433 |  |  |  |
| Response ifferential: C | 0.012 or less |  |  |  |  |  |  |  |  |  |  |  |  |
| Maximum sensinglocation ${ }^{\text {bide }}$ | 0.236 |  |  |  |  |  |  |  |  |  |  |  |  |

Note: The values in the table above are reference values. Note: The value from the opposite end of the lead wire. (shown by arrow)



Note: The values in the table above are reference values. Note: The value from the opposite end of the lead wire. (shown by arrow)

| Hem Diameter | 0.630 | 0.787 | 0.984 | 1.260 | 1.575 | 1.969 | 2.480 | 3.150 | 3.9 | 4.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating range: $\ell$ | $\begin{gathered} \hline 0.118 \text { to } \\ 0.354 \\ \hline \end{gathered}$ | 0.157 to 0.472 |  |  | $\begin{array}{\|c\|} \hline 0.236 \text { to } \\ \hline 0.551 \\ \hline \end{array}$ | 0.276 to 0.709 |  |  | $\begin{gathered} \hline 0.315 \text { to } \\ 0.748 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 0.315 \text { to } \\ 0.945 \\ \hline \end{array}$ |
| Response differential C | 0.012 or less |  |  |  |  |  |  |  |  |  |
| Maximun sensingloadion ${ }^{\text {lise }}$ | 0.394 |  |  |  |  |  |  |  |  |  |

Note: The values in the table above are reference values. Note: The value from the opposite end of the lead wire. (shown by arrow)

- Two-color LED solid state type

| Item Diameter | 6 | 8 | 10 | 12 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating range: $\ell$ | 1.5 to 5 |  | 2 to 6 |  |  |  | 3 to 8 |  |  | 4 to 12 |  |  |  | 5 to 12 |
| Response differential: | 0.5 or less |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Maximun sensingloationtide | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Note: The values in the table above are reference values. Note: The value from the opposite end of the lead wire. (shown by arrow) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Item Diameter | 0.236 | 0.315 | 0.394 | 0.472 | 0.630 | 0.787 | 0.984 | 1.260 | 1.575 | 1.969 | 2.480 | 3.150 | 3.9 | 4.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating range: $\ell$ | $\begin{array}{r} 0.05 \\ 0.15 \end{array}$ |  |  | 0.079 t | 0.236 |  | 0.11 | 8 to 0 | . 315 |  | 0.157 t | to 0.47 |  | $\begin{gathered} 0.197 \text { to } \\ 0.472 \end{gathered}$ |
| Response differential: | 0.020 or less |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Maximum sensingloadion ${ }^{\text {lue }}$ | 0.236 |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note: The values in the table above are reference values. Note: The value from the opposite end of the lead wire. (shown by arrow)

When using it connected to a cylinder, use under conditions using values greater than those shown in the table below.

|  | - Reed Swi | Type | unit: mm | - Solid Sta | Type | unit: mm | Two-colo | ED Sol | ate Type unit: mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cylinder bore | A | B | Cylinder bore | A | B | Cylinder bore | A | B |
| A | 16 |  |  | 6 |  |  | 6 |  |  |
|  | 20 |  |  | 8 |  |  | 8 |  |  |
| $\square$ - | 25 |  |  | 10 |  |  | 10 |  |  |
| $\bigcirc 0$ | 32 |  |  | 12 |  |  | 12 |  |  |
| ( | 40 | 12 | 0 | 16 |  |  | 16 |  |  |
|  | 50 | 12 | 0 | 20 |  |  | 20 |  |  |
|  | 63 |  |  | 25 | 14 | 0 | 25 | 23 | 0 |
|  | 80 |  |  | 32 | 14 | 0 | 32 | 23 | 0 |
|  | 100 |  |  | 40 |  |  | 40 |  |  |
|  | 125 |  |  | 50 |  |  | 50 |  |  |
| ${ }^{\text {B }}$ |  |  |  | 63 |  |  | 63 |  |  |
|  |  |  |  | 80 |  |  | 80 |  |  |
|  |  |  |  | 100 |  |  | 100 |  |  |
| 0 (0) |  |  |  | 125 |  |  | 125 |  |  |
|  |  |  | unit: in |  |  | unit: in |  |  | unit: in |
|  | Cylinder bore | A | B | Cylinder bore | A | B | Cylinder bore | A | B |
|  | 0.630 |  |  | 0.236 |  |  | 0.236 |  |  |
| mm [0.039 in] thick magnetic | 0.787 |  |  | 0.315 |  |  | 0.315 |  |  |
| material) between two cylinders | 0.984 |  |  | 0.394 |  |  | 0.394 |  |  |
| to use them in close proximity. | 1.260 |  |  | 0.472 |  |  | 0.472 |  |  |
| However, magnetic materials | 1.575 | 0.472 | 0 | 0.630 |  |  | 0.630 |  |  |
| cannot be used in magnetized | 1.969 |  |  | 0.787 |  |  | 0.787 |  |  |
| environments. | 2.480 |  |  | 0.984 | 0.551 | 0 | 0.984 |  | 0 |
|  | 3.150 |  |  | 1.260 | 0.551 | 0 | 1.260 | 0.906 | 0 |
|  | 3.9 |  |  | 1.575 |  |  | 1.575 |  |  |
|  | 4.9 |  |  | 1.969 |  |  | 1.969 |  |  |
|  |  |  |  | 2.480 |  |  | 2.480 |  |  |
|  |  |  |  | 3.150 |  |  | 3.150 |  |  |
|  |  |  |  | 3.9 |  |  | 3.9 |  |  |
|  |  |  |  | 4.9 |  |  | 4.9 |  |  |

- For cylinder with guide


Mounting the sensor switch in the locations shown (reference values in diagram), the sensor magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Double acting type Single acting push type Single acting pull type ${ }_{2}$.


- Scraper specification
- Clean room specification (with dust collection port)

* When the $Y$ dimension is negative, the sensor switch protrudes from the cylinder body.

Reed Switch Type unit: mm

| Item Bore |  | 6 | 8 | 10 | 12 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Double acting type | X | - | - | - | - | 8 | 11 | 12 | 13.5 | 18.5 | 23.5 | 29.5 | 30.5 | 42.5 | 49 |
|  | Y | - | - | - | - | 4.5 | 5.5 | 6.5 | 9 | 11 | 17 | 19 | 21 | 15 | 16.5 |
|  | Z | - | - | - | - | 7 | 8 | 9 | 11.5 | 13.5 | 19.5 | 21.5 | 23.5 | 17.5 | 19 |

## Double acting type with guide

Solid State Type
unit: mm

| Item Bore |  | 8 | 12 | 16 | 20 | 25 | 32 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Double acting type | $\mathbf{X}$ | 11 (16) | 11 (16) | 12 (17) | 15 (20) | 16 (21) | 17.5 (22.5) | 22.5 (27.5) (32.5 for stroke 10 only) |
|  | Y | -0.5 | 1.5 | 2.5 | 3.5 | 4.5 | 12 | 14 |
|  | Z | 3 | 5 | 6 | 7 | 8 | 15.5 | 17.5 |

Note: Dimensions in ( ) parentheses are for mid-stroke models (stroke 5, 15, 25, 35, 45, and 55).

| Reed Switch Type |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bore |  |  |  | $\mathbf{8}$ | $\mathbf{1 2}$ | $\mathbf{1 6}$ | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{3 2}$ | unit: mm |
| Dtem <br> Double <br> acting <br> type |  |  |  |  |  |  |  |  |  |  | $\mathbf{X}$

Note: Dimensions in () parentheses are for mid-stroke models (stroke 5, 15, 25, 35, 45, and 55).

* When the $Y$ dimension is negative, the sensor switch protrudes from the cylinder body.

Mounting the sensor switch in the locations shown (reference values in diagram), the sensor magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Double acting type Single acting push type Single acting pull type ${ }_{2}$


* When the Y dimension is negative, the sensor switch protrudes from the cylinder body.

* When the $Y$ dimension is negative, the sensor switch protrudes from the cylinder body.

| Solid state type (2-color LED included) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item Bore |  | 0.236 | 0.315 | 0.394 | 0.472 | 0.630 | 0.787 | 0.984 | 1.260 | 1.575 | 1.969 | 2.480 | 3.150 | 3.9 | 4.9 |
| Double acting type | X | 0.413 | 0.433 | 0.433 | 0.433 | 0.472 | $\begin{array}{\|c\|} \hline 0.591 \\ (0.787) \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 0.630 \\ (0.827) \\ \hline \end{array}$ | 0.689 | 0.886 | 1.083 | 1.319 | 1.358 | 1.831 | 2.087 |
|  | $\mathrm{X}_{2}$ | - | - | 0.827 | 0.827 | 0.866 | $\begin{array}{\|c} \hline 0.984 \\ (1.181) \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 1.024 \\ (1.220) \\ \hline \end{array}$ | 1.280 | 1.476 | 1.673 | 2.106 | *2.146 | *2.618 | *2.874 |
|  | Y | 0 | -0.020 | 0.020 | 0.059 | 0.098 | 0.138 | 0.177 | 0.276 | 0.354 | 0.394 | 0.472 | 0.551 | 0.709 | 0.768 |
|  | Z | 0.138 | 0.118 | 0.157 | 0.197 | 0.236 | 0.276 | 0.315 | 0.413 | 0.492 | 0.531 | 0.610 | 0.689 | 0.846 | 0.906 |
| Push <br> Single acting type | $\mathbf{X}$ | 1.004 | 1.024 | 1.024 | 1.024 | 1.063 | 1.181 | 1.220 | 1.280 | 1.476 | 1.870 | - | - | - | - |
|  | Y | 0 | -0.020 | 0.020 | 0.059 | 0.098 | 0.138 | 0.177 | 0.276 | 0.354 | 0.394 | - | - | - | - |
|  | Z | 0.138 | 0.118 | 0.157 | 0.197 | 0.236 | 0.276 | 0.315 | 0.413 | 0.492 | 0.531 | - | - | - | - |
| Pull <br> Single acting type | X | 1.004 | 1.024 | 1.024 | 1.024 | 1.063 | 1.181 | 1.220 | 1.280 | 1.476 | 1.870 | - | - | - | - |
|  | Y | 0 | -0.020 | 0.020 | 0.059 | 0.098 | 0.138 | 0.177 | 0.276 | 0.354 | 0.394 | - | - | - | - |
|  | Z | 0.138 | 0.118 | 0.157 | 0.197 | 0.236 | 0.276 | 0.315 | 0.413 | 0.492 | 0.531 | - | - | - | - |

Note: Dimensions in () parentheses are for 0.197 in stroke models. * Indicates dimensions for scraper specification only.

Reed Switch Type

| Item Bore |  | 0.236 | 0.315 | 0.394 | 0.472 | 0.630 | 0.787 | 0.984 | 1.260 | 1.575 | 1.969 | 2.480 | 3.150 | 3.9 | 4.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Double acting type | X | - | - | - | - | 0.315 | $\begin{array}{\|c\|} \hline 0.433 \\ (0.630) \\ \hline \end{array}$ | $\begin{gathered} \hline 0.472 \\ (0.669) \\ \hline \end{gathered}$ | 0.531 | 0.728 | 0.925 | 1.161 | 1.201 | 1.673 | 1.929 |
|  | X2 | - | - | - | - | 0.709 | $\begin{array}{\|c\|} \hline 0.827 \\ (1.024) \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 0.866 \\ (1.063) \\ \hline \end{array}$ | 1.122 | 1.319 | 1.516 | 1.949 | *1.988 | *2.461 | *2.717 |
|  | Y | - | - | - | - | -0.020 | 0.020 | 0.059 | 0.157 | 0.236 | 0.276 | 0.354 | 0.433 | 0.591 | 0.650 |
|  | Z | - | - | - | - | 0.079 | 0.118 | 0.157 | 0.256 | 0.335 | 0.374 | 0.453 | 0.531 | 0.689 | 0.748 |
| Push <br> Single acting type | $\mathbf{X}$ | - | - | - | - | 0.906 | 1.024 | 1.063 | 1.122 | 1.319 | 1.713 | - | - | - | - |
|  | $\mathbf{Y}$ | - | - | - | - | -0.020 | 0.020 | 0.059 | 0.157 | 0.236 | 0.276 | - | - | - | - |
|  | Z | - | - | - | - | 0.079 | 0.118 | 0.157 | 0.256 | 0.335 | 0.374 | - | - | - | - |
| Pull <br> Single acting type | $\mathbf{X}$ | - | - | - | - | 0.315 | 0.433 | 0.472 | 0.531 | 0.728 | 0.925 | - | - | - | - |
|  | Y | - | - | - | - | 0.571 | 0.413 | 0.453 | 0.551 | 0.630 | 1.063 | - | - | - | - |
|  | Z | - | - | - | - | 0.669 | 0.512 | 0.551 | 0.650 | 0.728 | 1.161 | - | - | - | - |

Note: Dimensions in ( ) parentheses are for 0.197 in stroke models.* * Indicates dimensions for scraper specification only.

## - Double acting double rod end type

Solid state type (2-color LED included) unit: in

| Item | Bore | 0.236 | 0.315 | 0.394 | 0.472 | 0.630 | 0.787 | 0.984 | 1.260 | 1.575 | 1.969 | 2.480 | 3.150 | 3.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Double | $\mathbf{X}$ | 0.413 | 0.433 | 0.433 | 0.433 | 0.47 | 0.59 | 0.630 | 0.689 | 0.88 | 1.083 | 1.319 | 1.358 | 1.831 | 2.087 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| acting | Y | 0.157 | 0.17 | 0.21 | 0.256 | 0.295 | 0.33 | 0.37 | 0.47 | 0.55 | 0.7 | 0.866 | 0.945 | 0.709 | 0.768 |
| type | Z | 0.295 | 0.315 | 0.354 | 0.394 | 0.433 | 0.472 | 0.512 | 0.610 | 0.689 | 0.925 | 1.004 | 1.083 | 0.846 | 0.906 |


| Reed Switch Type |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\frac{\text { unit: in }}{4.9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item Bore |  | 0.236 | 0.315 | 0.394 | 0.472 | 0.630 | 0.787 | 0.984 | 1.260 | 1.575 | 1.969 | 2.480 | 3.150 | 3.9 |  |
| Double | X | - | - | - | - | 0.315 | 0.433 | 0.472 | 0.531 | 0.728 | 0.925 | 1.161 | 1.201 | 1.673 | 1.929 |
| acting | Y | - | - | - | - | 0.177 | 0.217 | 0.256 | 0.354 | 0.433 | 0.669 | 0.748 | 0.827 | 0.591 | 0.650 |
| type | Z | - | - | - | - | 0.276 | 0.315 | 0.354 | 0.453 | 0.531 | 0.768 | 0.846 | 0.925 | 0.689 | 0.748 |

## - Double acting type with guide

Solid State Type

| Item | $\mathbf{0 . 3 1 5}$ | $\mathbf{0 . 4 7 2}$ | $\mathbf{0 . 6 3 0}$ | $\mathbf{0 . 7 8 7}$ | $\mathbf{0 . 9 8 4}$ | $\mathbf{1 . 2 6 0}$ | $\mathbf{1 . 5 7 5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{X}$ | 0.433 | 0.433 | 0.472 | 0.591 | 0.630 | 0.689 | $0.886(1.083)(1.280$ for stroke 0.394 only $)$ |
| acting | $(0.630)$ | $(0.630)$ | $(0.669)$ | $(0.787)$ | $(0.827)$ | $(0.886)$ | 0.551 |  |
| type | $\mathbf{Y}$ | -0.020 | 0.059 | 0.098 | 0.138 | 0.177 | 0.472 | 0.689 |
|  | $\mathbf{Z}$ | 0.118 | 0.197 | 0.236 | 0.276 | 0.315 | 0.610 | 0 |

Note: Dimensions in ( ) parentheses are for mid-stroke models (stroke 0.197, 0.591, 0.984, 1.378, 1.772, and 2.165).

| Reed Switch Type |
| :--- |
| Item Bore $\mathbf{0 . 3 1 5}$ $\mathbf{0 . 4 7 2}$ $\mathbf{0 . 6 3 0}$ $\mathbf{0 . 7 8 7}$ $\mathbf{0 . 9 8 4}$ $\mathbf{1 . 2 6 0}$ $\mathbf{1 . 5 7 5}$ <br> Double <br> acting <br> type $\mathbf{X}$ - - 0.315 0.433 0.472 0.531 $0.728(0.925)(1.122$ for stroke 0.394 only)  <br>  $\mathbf{Y}$ - - -0.020 0.020 0.059  0.433 |

Note: Dimensions in ( ) parentheses are for mid-stroke models (stroke 0.197, 0.591, 0.984, 1.378, 1.772, and 2.165).

## Limited Warranty

KOGANEI CORP. warrants its products to be free from defects in material and workmanship subject to the following provisions.

Warranty Period The warranty period is 180 days from the date of delivery.

Koganei
Responsibility
If a defect in material or workmanship is found during the warranty period, KOGANEI CORP. will replace any part proved defective under normal use free of charge and will provide the service necessary to replace such a part.

Limitations
This warranty is in lieu of all other warranties, expressed or implied, and is limited to the original cost of the product and shall not include any transportation fee, the cost of installation or any liability for direct, indirect or consequential damage or delay resulting from the defects.

- KOGANEI CORP. shall in no way be liable or responsible for injuries or damage to persons or property arising out of the use or operation of the manufacturer's product.
- This warranty shall be void if the engineered safety devices are removed, made inoperative or not periodically checked for proper functioning.
- Any operation beyond the rated capacity, any improper use or application, or any improper installation of the product, or any substitution upon it with parts not furnished or approved by KOGANEI CORP., shall void this warranty.
- This warranty covers only such items supplied by KOGANEI CORP. The products of other manufacturers are covered only by such warranties made by those original manufacturers, even though such items may have been included as the components.

The specifications are subject to change without notice.

## URL http://www.koganei.co.jp

E-mail: overseas@koganei.co.jp

## IKOGANEI CORPORATION

OVERSEAS DEPARTMENT
3-11-28, Midori-cho, Koganei City, Tokyo 184-8533, Japan
Tel: 81-42-383-7271 Fax: 81-42-383-7276
KOGANEI INTERNATIONAL AMERICA, INC.
39300 Civic Center Dr., Suite 280, Fremont, CA 94538, U.S.A.
Tel : 1-510-744-1626 Fax: 1-510-744-1676
SHANGHAI KOGANEI INTERNATIONAL TRADING CORPORATION
Room 2606-2607, Tongda Venture Building No.1, Lane 600, Tianshan Road,
Shanghai, 200051, China
Tel: 86-21-6145-7313 Fax: 86-21-6145-7323
TAIWAN KOGANEITRADING CO., LTD.
Rm. 2, 13F., No88, Sec. 2, Zhongxiao E. Rd., Zhongzheng Dist., Taipei City 100,
Taiwan (ROC)
Tel: 886-2-2393-2717 Fax: 886-2-2393-2719
KOGANEI KOREA CO., LTD.
6F-601, Tower Bldg., 1005, Yeongdeo-dong, Giheung-gu, Yongin-si, Gyeonggi-do,
446-908, Korea
Tel: 82-31-246-0414 Fax: 82-31-246-0415
KOGANEI (THAILAND) CO., LTD.
3300/90, Tower B, Elephant Tower, 16 th FI., Phaholyothin Road, Chomphon,
Chatuchak, Bangkok 10900, Thailand
Tel: 66-2-937-4250 Fax: 66-2-937-4254
KOGANEI ASIA PTE. LTD.
69 Ubi Road 1, \#05-18 Oxley Bizhub, Singapore 408731
Tel: 65-6293-4512 Fax: 65-6293-4513


[^0]:    Use bolts longer than those in the table above when fastening the cylinder.

[^1]:    Note: Collar stopper is used in this stroke.

[^2]:    Items indicated by a $\star$ are available as additional parts or in packing sets. For order codes, see page (134 and (135)

