
Koganei Clean System products provide complete support for the maintenance of a clean environment inside the cleanroom.

Koganei Clean System products meet the needs of the ultra-clean production environment. In everything from actuators and valves to air preparation and auxiliary equipment, anti-corrosion materials processing and other Koganei-developed design concepts serve to prevent particle contamination within the cleanroom. These perfectly designed mechanisms, which resolve even the slightest leaks to the outside during operations, have already won a high level of reliability.

Koganei Cleanliness

KOGANG

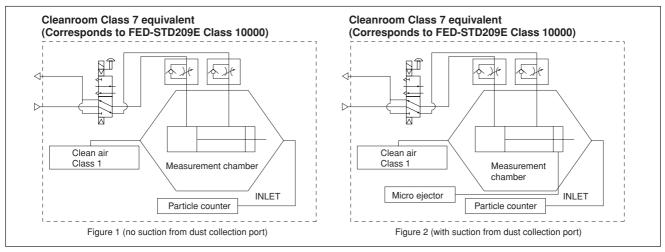
There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specifications. Therefore, to measure the effects of cleanroom contamination by pneumatic equipment, Koganei has decided to use "number of particles generated per 10 operations," rather than particle density. Koganei has also developed classifications for application classes in cleanroom, based on JIS and other upper limit density tables, and on the company's own experience.

Remarks: 1. In the above table, product performance in terms of the number of particles generated per 10 operations is expressed as the upper limit of particles corresponding to the equivalent JIS or ISO class.

- 2. In the above table, values in the JIS, ISO, and FED-STD upper limit density tables are calculated as upper density per liter.
- 3. The classes shown are clean levels as classified in JIS and ISO.

From the above definitions, the Koganei clean level classes can be viewed as the level of average contamination per liter of surrounding air over a period of 10 operations in cleanroom. Air ventilation in cleanrooms is usually faster than 1 cycle per minute, and clean volumetric capacity is usually larger than 1 liter, which should provide a sufficient safety margin in practice.

Caution: The above conclusions are based on an ideal situation in which air ventilation is being implemented. For specific cases where air ventilation is not ensured, caution is needed since the clean classes cannot be maintained.


The clean system diagrams shown here are for Class 5 equivalent products. For Class 4 or Class 3 equivalent products, consult us.

Koganei has therefore specified its in-house measurement methods, to conduct evaluations on the cleanroom rating.

The number of particles of the Air Cylinder Cleanroom Specification is measured as shown in the method below.

1. Measurement conditions

1-1 Test circuit: Figure 1 (no suction), Figure 2 (with suction)

1-2 Operating conditions of tested cylinder

Operating frequency: 1Hz

Average speed: 500mm/s [20in./sec.] Applied pressure: 0.5MPa [73psi.] Suction condition: Microejector ME05, Primary side: 0.5MPa [73psi.] applied, Tube: ϕ 6 [0.236in.] Mounting direction: Vertical Chamber volume: 8.3 ℓ [0.293ft³]

2. Particle counter

Manufacturer/model: RION/KM20 Suction flow rate: 28.3 ℓ /min [1ft³/min.] Particle diameter: 0.1 μ m, 0.2 μ m, 0.3 μ m, 0.5 μ m, 0.7 μ m, 1.0 μ m

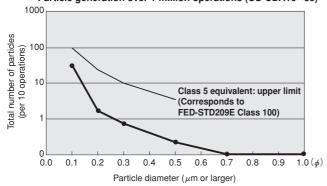
3. Measurement method

3-1 Confirmation of number of particles in the measurement system

Under the conditions in the above 1 and 2, using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.

3-2 Measurement under operation

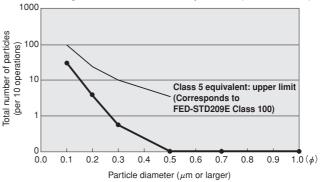
Under the conditions in the above1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.


3-3 Reconfirmation

Performed the measurement in 3-1 again, to reconfirm the number of particles in the measurement system.

4. Measurement results

Cleanroom specification Jig Cylinder (no suction from dust collection port)


Particle generation over 1 million operations (CS-CDA16×30)

Cleanroom specification

Slim Cylinder (with suction from dust collection port)

For "safety precautions" listed in the Clean System Product Drawings, see the materials below.

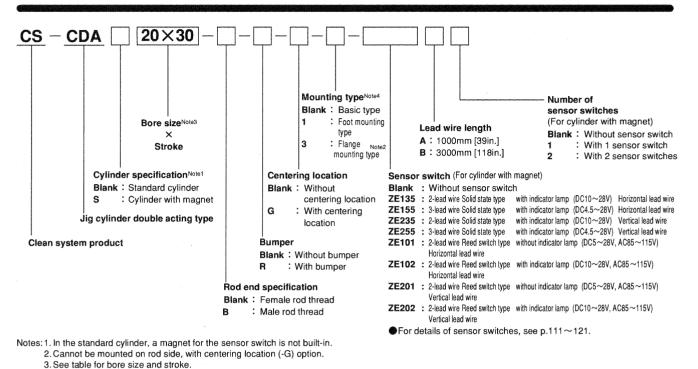
- \bullet For actuators, see "Safety Precautions" on p. 45 of the Actuators General Catalog .
- For valves, see "Safety Precautions" on p. 31 of the Valves General Catalog.
- For air treatment and auxiliary equipment, see "Safety Precautions" on p.31 of the General Catalog of Air Treatment, Auxiliary, Vacuum.

KOGANEI **EM** JIG CYLINDERS C SERIES

Double Acting Type

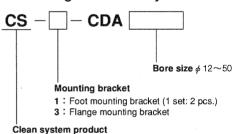
Symbol

Specifications


Item	Bore size mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]		
Operating type	ating type Double acting type									
Media		Air								
Operating pressure range	MPa [psi.]		0.1~1.0 [15~145] 0.05~ [7~1]							
Proof pressure	MPa [psi.]				1.5 [218]					
Operating temperature range	• °C [°F]				0~60 [32~140]				
Operating speed range	mm/s [in./sec.]			30~500 [1.2~19.7]			30~300 [1.2~11.8]		
Cushion		Rubber bumper (Optional)								
Lubrication		Not required								
Port size		M5×0.8 Rc1/8 Rc1/								

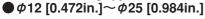
Bore Size and Stroke

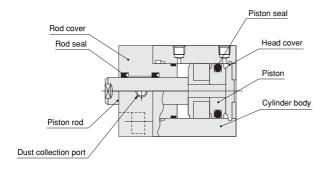
			mm [in.]					
Operating type	Bore size	Standard strokes						
Operating type	Dore Size	Standard cylinder	Cylinder with magnet					
	12 [0.472]	E 10 1E 00 0E 00	E 10 1E 00 0E 00					
	16 [0.630]	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30					
5.11	20 [0.787]		5 10 15 00 05 00 05 40 45 50					
Double acting type	25 [0.984]	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50					
acting type	32 [1.260]							
	40 [1.575]	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100					
	50 [1.969]	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100					


Remarks: 1. Stroke tolerance ⁺¹₀ [^{+0.039}₀]
 2. In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for strokes of 5mm [0.197in.] or less for φ 12 [0.472]~ φ 40 [1.575], and strokes of 10mm [0.394in.] or less for φ 50 [1.969]. The collar packed is used for these cases.

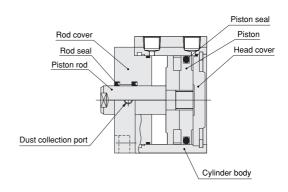
Order Codes

Order Codes of Additional Parts (To be ordered separately)

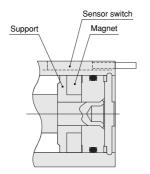

Mounting Brackets Only

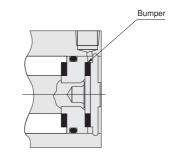


4. Mounting brackets are included at shipping.


36

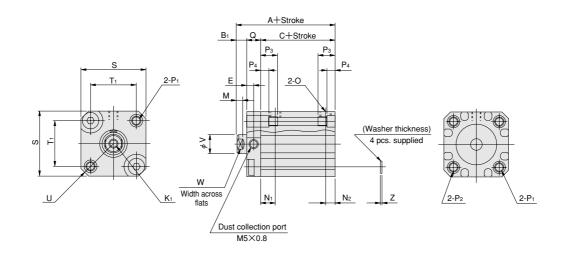
Double acting type





• Cylinder with magnet

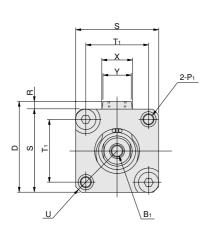
• With bumper

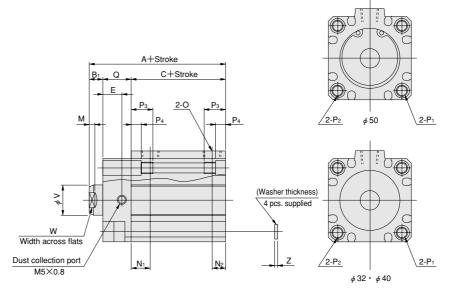

Major Parts and Materials

Parts	Materials
Cylinder body	Aluminum alloy (anodized)
Piston	Aluminum alloy (special rust prevention treatment)
Piston rod	Stainless steel (chrome plated)
Seal	Synthetic rubber (NBR)
Rod cover	Aluminum alloy (special wear-resistant treatment)
Head cover	Aluminum alloy (anodized)
Snap ring	Steel (nickel plated)
Spacer	Aluminum alloy (special rust prevention treatment)
Bumper	Synthetic rubber (NBR)
Magnet	Plastic magnet
Support	Aluminum alloy (special rust prevention treatment)

Seals

Parts	Rod seal	Piston seal	Tube g	gasket
Bore mm	(2 pcs.)	FISION Seal	Rod side	Head side
12	MYR-6	PSD-12	Y090260	None
16	MYR-8	PSD-16	Y090207	None
20	MYR-10	PSD-20	Y090216	None
25	MYR-12	PSD-25	Y090210	None
32	MYR-16	PSD-32	L090084	None
40	MYR-16	PSD-40	L090151	None
50	MYR-20	PSD-50	L090174	L090106



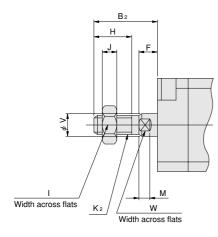


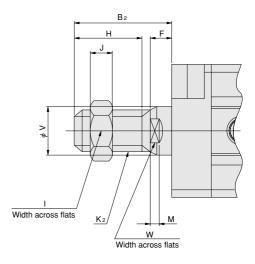
			d cylinde	r (CDA)	Cylinder v	with magne	et (CDAS)		rd cylind per (CD		Cylind and bur	er with n nper (C l		E	K1	М	N1	N2	0
Bore size	Code	А	B1	С	Α	B1	С	А	B1	С	А	B1	С						
12	[0.472]	32 [1.260]	5 [0.197]	17 [0.669]	37 [1.457]	5 [0.197]	22 [0.866]	37 [1.457]	5 [0.197]	22 [0.866]	42 [1.654]	5 [0.197]	27 [1.063]	5 [0.197]	M3×0.5 Depth 6 [0.236]	3 [0.118]	8 [0.315]	5 [0.197]	M5×0.8
16	[0.630]	32.5 [1.280]	5.5 [0.217]	17 [0.669]	37.5 [1.476]	5.5 [0.217]	22 [0.866]	37.5 [1.476]	5.5 [0.217]	22 [0.866]	42.5 [1.673]	5.5 [0.217]	27 [1.063]	5 [0.197]	M4×0.7 Depth8 [0.315]	3 [0.118]	8 [0.315]	5 [0.197]	M5×0.8
20	[0.787]	35 [1.378]	5.5 [0.217]	19.5 [0.768]	45 [1.772]	5.5 [0.217]	29.5 [1.161]	40 [1.575]	5.5 [0.217]	24.5 [0.965]	50 [1.969]	5.5 [0.217]	34.5 [1.358]	5 [0.197]	M5×0.8 Depth10 [0.394]	3 [0.118]	10.5 [0.413]	5 [0.197]	M5×0.8
25	[0.984]	42 [1.654]	6 [0.236]	21 [0.827]	52 [2.047]	6 [0.236]	31 [1.220]	47 [1.850]	6 [0.236]	26 [1.024]	57 [2.244]	6 [0.236]	36 [1.417]	10 [0.394]	M6×1 Depth10 [0.394]	3 [0.118]	10.5 [0.413]	5 [0.197]	M5×0.8

Bore Code	P1	P ₂	Рз	P ₄	Q	S	T1	U	V	W	Z
12 [0.472]	ϕ 4.3 [0.169] (Thru hole) Counterbore ϕ 6.5 [0.256] (Both sides) and M5 \times 0.8 (Both sides)	Counterbore ∉ 6.5 [0.256] and M5×0.8	9.5 [0.374]	4.5 [0.177]	10 [0.394]	25 [0.984]	16.3 [0.642]	R16 [0.630]	6 [0.236]	5 [0.197]	1 [0.039]
16 [0.630]	ϕ 4.3 [0.169] (Thru hole) Counterbore ϕ 6.5 [0.256] (Both sides) and M5 \times 0.8 (Both sides)	Counterbore ∉ 6.5 [0.256] and M5×0.8	9.5 [0.374]	4.5 [0.177]	10 [0.394]	29 [1.142]	19.8 [0.780]	R19 [0.748]	8 [0.315]	6 [0.236]	1 [0.039]
20 [0.787]	ϕ 4.3 [0.169] (Thru hole) Counterbore ϕ 6.5 [0.256] (Both sides) and M5 \times 0.8 (Both sides)	Counterbore <i>¢</i> 6.5 [0.256] and M5×0.8	9.5 [0.374]	4.5 [0.177]	10 [0.394]	34 [1.339]	24 [0.945]	R22 [0.866]	10 [0.394]	8 [0.315]	1 [0.039]
25 [0.984]	ϕ 5.1 [0.201] (Thru hole) Counterbore ϕ 8 [0.315] (Both sides) and M6 \times 1 (Both sides)	Counterbore ϕ 8 [0.315] and M6×1	11.5 [0.453]	5.5 [0.217]	15 [0.591]	40 [1.575]	28 [1.102]	R25 [0.984]	12 [0.472]	10 [0.394]	1 [0.039]

• \$\phi 32 \sim \$\phi 50\$

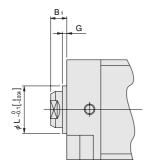
Туре	Standar	rd cylinde	er (CDA)	Cylinder v	with magne	et (CDAS)		rd cylind per (CD			er with n nper (Cl		D	Е	K1	м	N1	N2
Bore Code size	А	B1	С	A	B1	С	А	B1	С	А	B1	С						
32 [1.260]	45 [1.772]	7 [0.276]	23 [0.906]	55 [2.165]	7 [0.276]	33 [1.299]	50 [1.969]	7 [0.276]	28 [1.102]	55 [2.165]	7 [0.276]	33 [1.299]	48.5 [1.909]	10 [0.394]	M8×1.25 Depth12 [0.472]	3 [0.118]		7 [0.276] (6 [0.236])
40 [1.575]	48 [1.890]	7 [0.276]	26 [1.024]	58 [2.283]	7 [0.276]	36 [1.417]	48 [1.890]	7 [0.276]	26 [1.024]	58 [2.283]	7 [0.276]	36 [1.417]	56.5 [2.224]	10 [0.394]	M8×1.25 Depth12 [0.472]	3 [0.118]	10.5 [0.413]	7 [0.276]
50 [1.969]	52 [2.047]	9 [0.354]	28 [1.102]	62 [2.441]	9 [0.354]	38 [1.496]	52 [2.047]	9 [0.354]	28 [1.102]	62 [2.441]	9 [0.354]	38 [1.496]	70 [2.756]	10 [0.394]	M10×1.5 Depth15 [0.591]	3 [0.118]	11 [0.433]	9.5 [0.374]


Bore Code	0	P1	P ₂	P3	P4	Q	R	S	T1	U	V
32 [1.260]	Rc1/8	ϕ 5.1 [0.201] (Thru hole) Counterbore ϕ 8 [0.315] (Both sides) and M6×1 (Both sides)	Counterbore ϕ 8 [0.315] and M6 $ imes$ 1	11.5 [0.453]	5.5 [0.217]	15 [0.591]	4.5 [0.177]	44 [1.732]	34 [1.339]	R29.5 [1.161]	16 [0.630]
40 [1.575]	Rc1/8		Counterbore ϕ 9.5 [0.374] and M5×1.25	15.5 [0.610]	7.5 [0.295]	15 [0.591]	4.5 [0.177]	52 [2.047]	40 [1.575]	R35 [1.378]	16 [0.630]
50 [1.969]	Rc1/4		Counterbore ϕ 11 [0.433] and M5 \times 1.25	16.5 [0.650]	8.5 [0.335]	15 [0.591]	8 [0.315]	62 [2.441]	48 [1.890]	R41 [1.614]	20 [0.787]


Bore Code	W	Х	Y	Z
32 [1.260]	14	15	13.6	1
	[0.551]	[0.591]	[0.535]	[0.039]
40 [1.575]	14	15	13.6	1.6
	[0.551]	[0.591]	[0.535]	[0.063]
50 [1.969]	17	21.6	19	1.6
	[0.669]	[0.850]	[0.748]	[0.063]

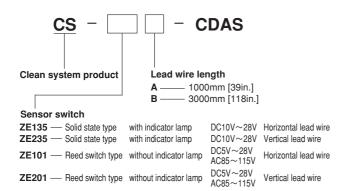
Note: Figures in parentheses () are for the cylinder with 5mm [0.197in.] stroke.

● Double acting type ● *φ*12 [0.472]~*φ*25 [0.984]


• ϕ 32 [1.260] ~ ϕ 50 [1.969]

Bore Code	B2	F	Н	I	J	K2	М	V	W
12 [0.472]	17 [0.669]	5 [0.197]	10 [0.394]	8 [0.315]	4 [0.157]	M5×0.8	3 [0.118]	6 [0.236]	5 [0.197]
16 [0.630]	20.5 [0.807]	5.5 [0.217]	13 [0.512]	10 [0.394]	5 [0.197]	M6×1	3 [0.118]	8 [0.315]	6 [0.236]
20 [0.787]	22.5 [0.886]	5.5 [0.217]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	3 [0.118]	10 [0.394]	8 [0.315]
25 [0.984]	24 [0.945]	6 [0.236]	15 [0.591]	14 [0.551]	6 [0.236]	M10×1.25	3 [0.118]	12 [0.472]	10 [0.394]
32 [1.260]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	3 [0.118]	16 [0.630]	14 [0.551]
40 [1.575]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	3 [0.118]	16 [0.630]	14 [0.551]
50 [1.969]	37 [1.457]	9 [0.354]	25 [0.984]	27 [1.063]	11 [0.433]	M18×1.5	3 [0.118]	20 [0.787]	17 [0.669]

Dimensions of Centering Location mm [in.]


Bore Code	Bı	G	L
16 [0.630]	5.5 [0.217]	1.5 [0.059]	9.4 [0.370]
20 [0.787]	5.5 [0.217]	1.5 [0.059]	12 [0.472]
25 [0.984]	6 [0.236]	2 [0.079]	15 [0.591]
32 [1.260]	7 [0.276]	2 [0.079]	21 [0.827]
40 [1.575]	7 [0.276]	2 [0.079]	29 [1.142]
50 [1.969]	9 [0.354]	2 [0.079]	38 [1.496]

• Not available for bore size ϕ 12 [0.472].

JIG CYLINDERS C SERIES

Sensor Switches

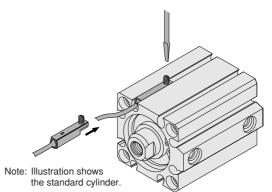
Order Codes (for Sensor Switches Only)

Minimum Cylinder Strokes When Mounting **Sensor Switches**

Solid state type mm [in.]									
Bore size	2 pcs. mo	1 pc. mounting							
DOI'E SIZE	1-surface mounting	r pc. mounting							
12 [0.472]	30 [1.181]	10 [0.394]	E [0 107]						
16~100 [0.630~3.937]	10 [0	5 [0.197]							

Note: Two pieces can be mounted with 5mm [0.197in.] stroke. Take note that overlapping may occur, however.

Reed switc	Reed switch type mm [in.								
Bore size	2 pcs. n	nounting	1 po mounting						
Dore Size	1-surface mounting	1 pc. mounting							
12 [0.472]	30 [1.181]	10 [0.394]	10 [0 204]						
16~100 [0.630~3.937]	10 [0	10 [0.394]							


ZE155 — Solid state type ZE255 — Solid state type	with indicator lamp with indicator lamp		Horizontal lead wire Vertical lead wire
ZE102 — Reed switch type	with indicator lamp	DC10V~28V AC85~115V	Horizontal lead wire
ZE202 — Reed switch type	with indicator lamp	DC10V~28V AC85~115V	Vertical lead wire

●For details of sensor switches, see p.111~121.

Moving Sensor Switch

mm [in.]

- Loosening the mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- Tighten the mounting screw with a tightening torque of 0.1 \sim 0.2N·m [0.9~1.8in·lbf].

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

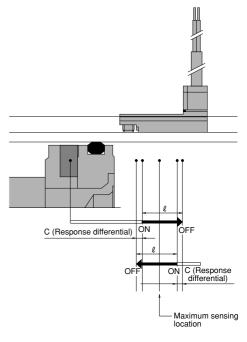
• Operating range : *l*

The distance the piston travels in one direction, while the switch is in the ON position.

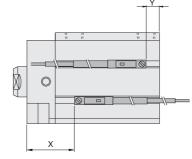
Response differential : C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Solid state type


Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.937]
Operating range : ℓ	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3∼7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	3.5~7.5 [0.138~0.295]	4~8.5 [0.157~0.335]	4.5~9.5 [0.177~0.374]	4.5~9.0 [0.177~0.354]
Response differential : C		1.0 [0.039] or less							1.5 [0.05	9] or less
Maximum sensing location	6 [0.236]									

Remark: The above table shows reference values.


Beed switch type

		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								mm [m.]
Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.937]
Operating range : ℓ			9~13.5 [0.354~0.531]						11~16 [0.433~0.630]	
Response differential : C	1.0 [0.039] or less		2.0 [0.079] or less						3.0 [0.118] or less	2.5 [0.098] or less
Maximum sensing location					10 [0	.394]				

Remark: The above table shows reference values.

When the sensor switch is mounted in the location shown in the diagram below (figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Solid state typeDouble acting type

	Double ac	ting type						mm [in.]
Code	Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]
~	Standard type	17 [0.669]	17 [0.669]	21 [0.827]	26 [1.024]	28.5 [1.122]	29.5 [1.161]	27.5 [1.083]
^	With bumper (-R)	20 [0.787]	20 [0.787]	25 [0.984]	31 [1.220]	30.5 [1.201]	31.5 [1.240]	30.5 [1.201]
v	Standard type	4 [0.157]	4 [0.157]	7.5 [0.295]	9 [0.354]	8.5 [0.335]	10.5 [0.413]	14.5 [0.571]
T	With bumper (-R)	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	11.5 [0.453]

Reed switch type Double acting type

	Double ac	ting type						mm [in.]
Code	Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]
v	Standard type	12.5 [0.492]	12.5 [0.492]	16.5 [0.650]	21.5 [0.846]	24 [0.945]	25 [0.984]	23 [0.906]
^	With bumper (-R)	15.5 [0.610]	15.5 [0.610]	20.5 [0.807]	26.5 [1.043]	26 [1.024]	27 [1.063]	26 [1.024]
v	Standard type	-0.5 [-0.020]	-0.5 [-0.020]	3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]
T	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]

RoHS directive compliant products

ACTUATORS GENERAL CATALOG

JIG CYLINDERS C SERIES LOW-FRICTION CYLINDER

Low friction cylinders INDEX

Features -- 32 Handling instructions and precautions ——— - 34 Low friction cylinders Specifications — Order codes — Order - 36 - 37 Internal configuration and names of each part — 38 Dimensions — 39 Clean specification low friction cylinder Specification _____ 41 Order codes _____ 42 Internal configuration and names of each part — 43 Cleanliness evaluation — 44
 Dimensions
 44

 Dimensions
 45

 Mounting brackets
 47

 Sensor switch
 49

JIG CYLINDERS C SERIES Low friction cylinders

New C Series jig cylinders that provide both low pressure operation and low speed operation. Minimum operating pressure from 0.01 MPa [1 psi], minimum operating speed of 1 mm/s [0.039 in/sec].

Low friction

Low sliding friction and reduced stickslip following non-operation for improved response delay. Support for pressing pressure control, tension control, etc.

Low-speed operation

1 mm/s [0.039 in/sec] minimum operating speed provides smooth operation with little stick-slip.

Cylinder bores from ϕ 6 [0.236]

Bores from $\phi 6$ [0.236] to $\phi 40$ [1.575] meet a wide range of needs.

Low-pressure operation

Minimum operating pressure from 0.01 \sim 0.1 MPa [1 \sim 15 psi].

Cylinder bore mm [in]	Minimum operating pressure (MPa [psi])
6 [0.236]	0.1 [15]
8 [0.315]	0.06 [9]
10 [0.394]	0.03 [4]
12 [0.472]	0.03 [4]
16 [0.630]	0.02 [3]
20 [0.787]	0.02 [3]
25 [0.984]	0.02 [3]
32 [1.260]	0.01 [1]
40 [1.575]	0.01 [1]

The same applies to the clean specification.

Clean specification low friction cylinders

JIS/ISO Class 4 equivalent cleanliness (FED-STD Class 10 equivalent) clean specification also available (based on Koganei standards).

Low friction cylinders, clean specification low-friction cylinders

Bore size	and	strol	(e (mm	ı [in])								
Cylinder bore	Standa	tandard stroke										
6 [0.236]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	—	—	—	—	—	—	—	—
8 [0.315]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	—	—	—	—	—	—	—	—
10 [0.394]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	—	—	—	—	—	—	—	—
12 [0.472]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	—	—	—	—	—	—
16 [0.630]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	—	—	—	—	—	—
20 [0.787]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	—	—
25 [0.984]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	—	—
32 [1.260]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	75 [2.953]	100 [3.9]
40 [1.575]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	75 [2.953]	100 [3.9]

- Be sure to thoroughly wash your hands following contact with the grease used for low friction cylinders and clean specification low friction cylinders. Grease on the hands can become heated when smoking and can cause grease to adhere to the cigarette, which creates the risk of noxious gas being emitted when the grease burns. Grease that is used on the outside is chemically very stable at normal temperatures, but generates noxious gas at temperatures above 260°C [500 °F].
 - Before use, be sure to read the safety precautions at the front of the general personal catalog.
- Low friction cylinders, clean specification low-friction cylinders are not non-ion specification.

General precautions

Air supply

- 1. Use air as the media. For the use of any other medium, consult your nearest Koganei sales office.
- 2. Air to operate the cylinder should be clean air that contains no degraded compressor oil, etc. Install an air filter (filtration of 40 μ m or less) near the cylinder or valve to remove dust and accumulated liquid. Also drain the air filter periodically. If liquid or dust gets into the cylinder, it may cause defective operation.

Piping

Before installing piping to the cylinder, thoroughly flush the inside of the pipes (with compressed air). Machining chips, sealing tape, rust and other debris remaining from the piping work may result in air leaks and malfunctions.

Atmosphere

- 1. Cover the unit when using it in locations where it might be subject to excessive dust, dripping water, dripping oil, etc.
- 2. This product cannot be used if the medium or ambient atmosphere includes any of the substances below. Organic solvents, phosphate type hydraulic oil, sulfur dioxide gas, chlorine gas, acids, or ozone.

Lubrication

Do not supply oil.

Bracket mounting

- **1.** A foot bracket cannot be mounted on a low friction cylinder with spigot joint that has a cylinder bore of ϕ 40 [1.575] (-G). Cannot be mounted on a clean specification low friction cylinder with spigot joint (-G), of any cylinder bore.
- **2.** A flange bracket cannot be mounted on the rod side of a low friction cylinder with spigot joint that has a cylinder bore of ϕ 40 [1.575] (-G). Cannot be mounted on the rod side of a clean specification low friction cylinder with spigot joint (-G), of any cylinder bore.
- **3.** A clevis bracket cannot be mounted on a clean specification low friction cylinder.

Disassembly and assembly

Note the following before replacing a seal. Be sure to cut off all air supply completely, and confirm that residual pressure inside the product or in piping connected to the product is zero. To disassemble, remove the snap ring and then pull out the rod. The snap ring can fly off when it is being removed, so caution is required. Doing so creates the risk of injury.

The snap ring can fly off when it is being removed, so caution is required. A snap ring flying off creates the risk of material damage. When assembling, check to make sure that the snap ring is engaged securely. Incomplete assembly results in a dangerous situation that creates the risk of material damage and life-threatening injury.

Mid-stroke

 The mid-stroke manufacturing method basically uses tube cutting.

However, strokes up to 5 mm [0.197 in] with cylinder bores of ϕ 12 [0.472] to ϕ 40 [1.575] use collar stoppers.

 ϕ 6 [0.236], ϕ 8 [0.315], and ϕ 10 [0.394] cylinder bore midstrokes are special handling (collar stoppers). Contact your nearest Koganei sales office for information about availability.

- Dimensions
- 1. In the case of tube cutting, the add stroke is the mid-stroke.
- **2.** For the add stroke in the case of a collar stopper, the longer stroke becomes the standard stroke.

Sensor switch

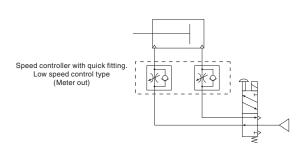
Standard cylinders do not have a sensor switch magnet built in. To mount a sensor switch, a sensor cylinder with a built-in sensor switch magnet is required.

- Note 1. For information about the sensor switch mounting position and movement range, refer to page 🕲 .
 - 2. Contact protection measures are required for connections that result in an inductive load on a reed sensor switch, or when capacitance surge is generated. For details about contact protection measures, refer to the sensor switch page of the general personal catalog.

Other

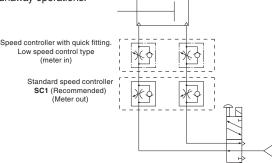
- 1. Avoid use that subjects the piston rod to lateral load.
- 2. Minimum operating pressure is measured based on JIS B8377-1.
 - Measurement Method Summary: With no load, horizontal mounting, a minimum operating pressure

is applied to each size cylinder and then stopped. A full stroke is performed to check for vibration or any other abnormality.


Piping and mounting

Refer to the diagrams below in the case of low-speed operation of a low friction cylinder.

Recommended circuit

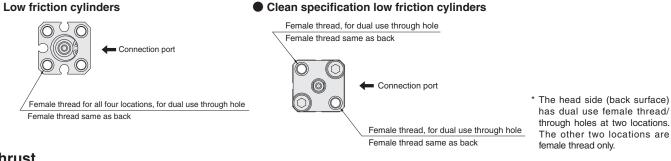


Uses meter out speed controller.

2. Rod pop-out prevention circuit

Using the cylinder in combination with the speed controller shown in the following diagram is effective for controlling speed and preventing runaway operations.

Note: Install the speed controller as close as possible to the cylinder.


Installing the main unit

To allow for a variety of possible mounting methods, the jig cylinder mounting holes are available as a combination of female threaded holes and as through holes, or as female threaded holes only.

For details, refer to the diagrams below. The mounting method is the same regardless of the cylinder bore.

Note: When fixing the main unit with direct through bolts, be sure to use the attached special washers (not included with ϕ 6 [0.236], ϕ 8 [0.315], ϕ 10 [0.394] cylinder bores).

Low friction cylinders

Thrust

Determine the thrust required by the load and working air pressure, then select the appropriate cylinder bore. Load The table shows calculated values, so select a cylinder bore whose load factor (Load Factor = $\frac{\text{Load}}{\text{Calculated value}}$) that is 70% or lower (50% or lower in the case of high speed).

Double acting type

	1 1		1 1
Push —		Pull —	

										N [lbf]
Cylinder bore	Piston Rod diameter	Operation	Pressure area			Air	pressure MPa	[psi]		
mm [in]	mm [in]	Operation	mm ²	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
6 [0 226]	4 [0 157]	Push side	28.3 [0.044]	2.8 [0.629]	5.7 [1.281]	8.5 [1.911]	11.3 [2.540]	14.1 [3.170]	17.0 [3.822]	19.8 [4.451]
6 [0.236]	4 [0.157]	Pull side	15.7 [0.024]	1.6 [0.360]	3.1 [0.697]	4.7 [1.057]	6.3 [1.416]	7.9 [1.776]	9.4 [2.113]	11.0 [2.473]
9 [0 215]	5 [0 107]	Push side	50.3 [0.078]	5.0 [1.124]	10.1 [2.271]	15.1 [3.395]	20.1 [4.519]	25.1 [5.643]	30.2 [6.789]	35.2 [7.913]
8 [0.315]	5 [0.197]	Pull side	30.6 [0.047]	3.1 [0.697]	6.1 [1.371]	9.2 [2.068]	12.3 [2.765]	15.3 [3.440]	18.4 [4.136]	21.4 [4.811]
10 [0.394]	E [0 107]	Push side	78.5 [0.122]	7.9 [1.776]	15.7 [3.530]	23.6 [5.305]	31.4 [7.059]	39.3 [8.835]	47.1 [10.589]	55.0 [12.364]
10 [0.394]	5 [0.197]	Pull side	58.9 [0.091]	5.9 [1.326]	11.8 [2.653]	17.7 [3.979]	23.6 [5.305]	29.5 [6.632]	35.3 [7.936]	41.2 [9.262]
12 [0.472]	6 [0 006]	Push side	113.0 [0.2]	11.3 [2.540]	22.6 [5.081]	33.9 [7.621]	45.2 [10.161]	56.5 [12.702]	67.8 [15.242]	79.1 [17.782]
12 [0.472]	6 [0.236]	Pull side	84.8 [0.131]	8.5 [1.911]	17.0 [3.822]	25.4 [5.71]	33.9 [7.621]	42.4 [9.532]	50.9 [11.443]	59.3 [13.331]
16 [0 620]	0 [0 015]	Push side	201.0 [0.3]	20.1 [4.519]	40.2 [9.037]	60.3 [13.556]	80.4 [18.075]	100.5 [22.6]	120.6 [27.1]	140.7 [31.6]
16 [0.630]	8 [0.315]	Pull side	150.0 [0.2]	15.1 [3.395]	30.1 [6.767]	45.2 [10.161]	60.3 [13.556]	75.4 [16.951]	90.4 [20.323]	105.5 [23.7]
20 [0 797]	10 [0 204]	Push side	314.0 [0.5]	31.4 [7.059]	62.8 [14.118]	94.2 [21.177]	125.6 [28.2]	157.0 [35.3]	188.4 [42.4]	219.8 [49.4]
20 [0.787]	10 [0.394]	Pull side	235.5 [0.4]	23.6 [5.305]	47.1 [10.589]	70.7 [15.894]	94.2 [21.177]	117.8 [26.5]	141.3 [31.8]	164.9 [37.1]
25 [0 09/1	10 [0 470]	Push side	490.6 [0.8]	49.1 [11.038]	98.1 [22.054]	147.2 [33.1]	196.3 [44.1]	245.3 [55.1]	294.4 [66.2]	343.4 [77.2]
25 [0.984]	12 [0.472]	Pull side	377.6 [0.6]	37.8 [8.498]	75.5 [16.973]	113.3 [25.5]	151.0 [33.9]	188.8 [42.4]	226.6 [50.9]	264.3 [59.4]
22 [1 260]	16 [0 620]	Push side	803.8 [1.2]	80.4 [18.075]	160.8 [36.1]	241.2 [54.2]	321.5 [72.3]	401.9 [90.4]	482.3 [108.4]	562.7 [126.5]
32 [1.260]	16 [0.630]	Pull side	602.9 [0.9]	60.3 [13.556]	120.6 [27.1]	180.9 [40.7]	241.2 [54.2]	301.4 [67.8]	361.7 [81.3]	422.0 [94.9]
40 [1 575]	16 [0 620]	Push side	1256.0 [2]	125.6 [28.2]	251.2 [56.5]	376.8 [84.7]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.7]
40 [1.575]	16 [0.630]	Pull side	1055.0 [2]	105.5 [23.7]	211.0 [47.4]	316.5 [71.2]	422.0 [94.9]	527.5 [118.6]	633.0 [142.3]	738.5 [166.0]

JIG CYLINDERS C SERIES CLEAN SPECIFICATION LOW FRICTION CYLINDERS

Double Acting Type

Symbol

Specifications

Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]		
Operating type		Double acting type									
Media		Air									
Maximum operating pressure MPa [psi]		0.7 [102]									
Proof pressure MPa [psi]		1.05 [152]									
Operating temperature range °C [°F]		$0 \sim 60 [32 \sim 140]$									
Cushion		None Rubber bumper type									
Lubrication					No						
Port size		M3×0.5			M5>	< 0.8		Rc	1/8		
Dust collection port		M3×0.5 M5×0.8									
Cleanliness		Class 4 equivalent (FED-STD Class 10 equivalent)									
Cleanniness		(Vacuum suction from dust collection port. Based on Koganei standards. For details, refer to page 44.))		

Minimum Operation Pressure

Item Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Minimum operating pressure MPa [psi]	0.1 [15]	0.06 [9]	0.03	3 [4]	0.02 [3]		0.0	1 [1]	

Operating Speed Range

Item Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Operating speed range mm/s [in/sec]				1 ^{Note} ~	~ 500 [0.039 ~	[,] 19.7]			

Note: When using ϕ 6 [0.236] at 1 mm/s [0.039 in/sec], apply air pressure of at least 0.3 MPa [44 psi].

When using $\phi 8$ [0.315] to $\phi 40$ [1.575] at 1 mm/s [0.039 in/sec], apply air pressure of at least 0.15 MPa [22 psi].

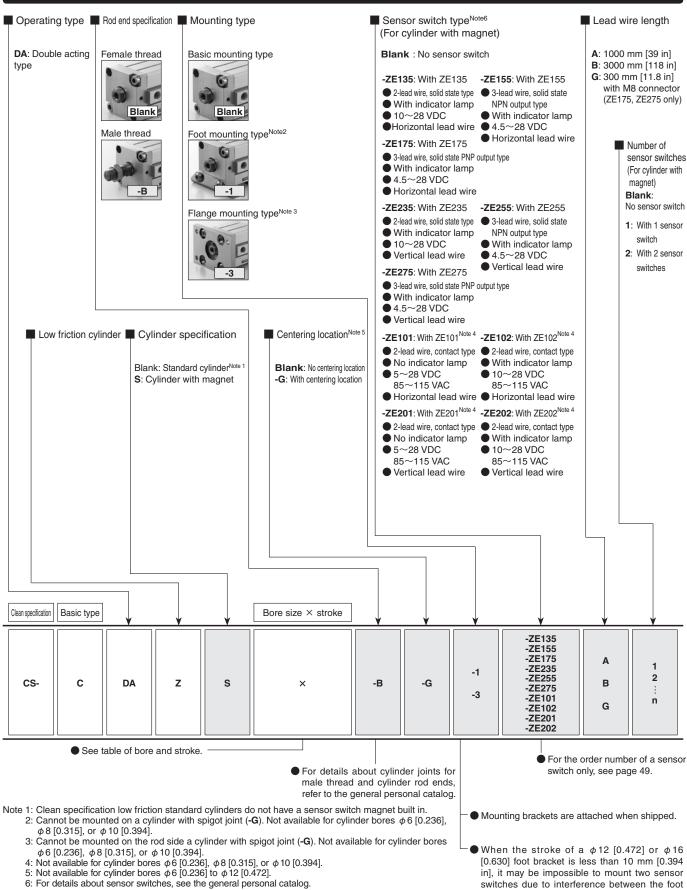
When using reed switch type sensor switches, operates at cylinder speed of 30 mm/s [1.181 in/sec] or higher.

Bore Size and Stroke

For information about mid-stroke, refer to page 34.

			mm [in]
	B	Standar	rd stroke
Operating type	Bore	Standard cylinders	Cylinder with magnet
	6 [0.236]		
	8 [0.315]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787]
	10 [0.394]		
	12 [0.472]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],
Double acting type	16 [0.630]	30 [1.181]	30 [1.181]
	20 [0.787]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],
	25 [0.984]	30 [1.181], 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969]	30 [1.181], 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969]
	32 [1.260]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 30 [1.181],	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 30 [1.181],
	40 [1.575]	35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969], 75 [2.953], 100 [3.9]	35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969], 75 [2.953], 100 [3.9]
	1 [0 0 2 0]		

Reference 1: Stroke tolerance ${}^{+1}_{0}$


2: $\phi 6$ [0.236], $\phi 8$ [0.315], and $\phi 10$ [0.394] cylinder bore mid-strokes are special handling (collar stoppers).

3: ϕ 12 [0.472] to ϕ 40 [1.575] cylinder bore mid-strokes basically are tube cut.

However, strokes up to 5 mm [0.197 in] with cylinder bores of ϕ 12 [0.472] to ϕ 40 [1.575] are not tube cut.

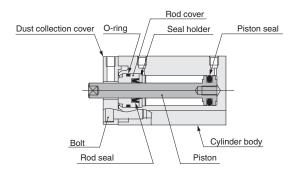
In this case, a collar stopper is used.

Order Codes for Clean Specification Low Friction Cylinders

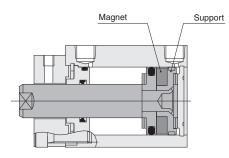
Additional Parts (To be ordered separately)

Foot mounting bracket (page 47)

42 KOGANEI


Flange mounting bracket (page 48)

switches due to interference between the foot bracket and sensor switch. For details, contact your nearest Koganei sales office.


03 2016

• Double acting type (CS-CDAZ)

• ϕ 6 [0.236] $\sim \phi$ 10 [0.394]

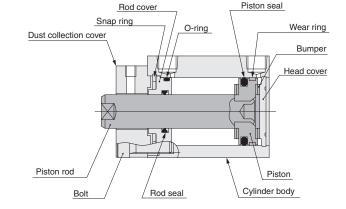
• Cylinder with magnet

Major Parts and Materials

Article Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]					
Cylinder body				Aluminum alloy (anodized)										
Piston	Sta	ainless st	eel	A	luminum a	alloy (spe	cial anti-r	ust treate	d)					
Piston rod		_		Stainles	s steel (wi	th chrome	plating)	Hard steel (with	chrome plating)					
Gasket				Synthe	tic rubber	(NBR)								
Rod cover		Aluminum alloy (special anti-abrasion treated)												
Bumper		— Synthetic rubber (NBR)												
Magnet	Neod	ymium m	agnet			Plastic	magnet							
Support	С	opper allo	ру	A	luminum a	alloy (spe	cial anti-r	ust treate	d)					
Snap ring		_			5	Steel (nic	kel plated)						
Wear ring		_				Synthe	tic resin							
Dust collection cover				Aluminu	m alloy (a	nodized)								
Bolt	Sta	ainless st	eel		Steel	(nickel p	lated)		Stainless steel					

Seal Repair Kit

Bore mm [in]	Model	Set contents
12 [0.472]	SRK-CDAZ12	
16 [0.630]	SRK-CDAZ16	Piston seal: 1
20 [0.787]	SRK-CDAZ20	Rod seal: 1
25 [0.984]	SRK-CDAZ25	
32 [1.260]	SRK-CDAZ32	O-ring: 1
40 [1.575]	SRK-CDAZ40	


Note 1: There is no seal repair kit available for cylinder bores $\phi 6$ [0.236], $\phi 8$ [0.315], or $\phi 10$ [0.394].

2: Use special grease. For information about grease, contact Koganei.

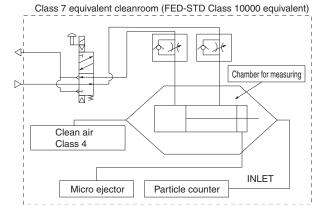
Mass

							g [oz]			
Dere eize	Zara atraka	Additional mass			nting brackets	Additional mass of sensor switch ^N				
Bore size mm [in]	Zero stroke Mass	for each 1 mm stroke	of cylinder with magnet	Foot bracket	Flange bracket	ZE 🗌 🗌 A ZE 🗌 🗌 G	ZE 🗌 🗌 B			
6 [0.236]	17.2 [0.607]	0.74 [0.026]	3.9 [0.138]	—	—					
8 [0.315]	22.7 [0.801]	0.95 [0.034]	5.4 [0.190]	—	—					
10 [0.394]	29.3 [1.034]	1.12 [0.040]	6.8 [0.240]	—	—					
12 [0.472]	49.3 [1.739]	1.28 [0.045]	8 [0.282]	50 [1.764]	55 [1.940]					
16 [0.630]	67.9 [2.395]	1.62 [0.057]	11 [0.388]	62 [2.187]	71 [2.504]	15 [0.529]	35 [1.235]			
20 [0.787]	100.2 [3.5]	2.26 [0.080]	27 [0.952]	84 [2.963]	101 [3.6]					
25 [0.984]	146.1 [5.2]	3.11 [0.110]	39 [1.376]	104 [3.7]	160 [5.6]					
32 [1.260]	235.7 [8.3]	4.11 [0.145]	28 [0.988]	126 [4.4]	186 [6.6]					
40 [1.575]	347.0 [12.2]	4.47 [0.158]	37 [1.305]	160 [5.6]	335 [11.8]					

Note: Sensor switch types A, B, and G are lead wire lengths. A: 1000 mm [39 in], B: 3000 mm [118 in], G: 300 mm [11.8 in], with M8 connector

• ϕ 12 [0.472] ~ ϕ 40 [1.575]

Cleanliness evaluation methods for current clean specification pneumatic equipment are not defined by JIS or other standards. Because of this, Koganei devises its own independent measurement methods for cleanliness and carries out evaluation accordingly.


Jig cylinder C series clean specification low friction cylinder dust volume is measured using the method described below.

1. Samples being measured

CS-CDAZ40×100 (Load: 288 g [10.2 oz])

2. Measurement conditions

2-1 Test circuit: With suction from dust collection port

2-2 Sample operation conditions

3. Particle counter used

Manufacturer/Model:	RION Co., Ltd./KM20
Suction flow:	28.3 ℓ /min (ANR) [1.000 ft ³ /min (SCFM)]
Passable particle sizes:	0.1 μm, 0.2 μm, 0.3 μm, 0.5 μm, 0.7 μm, 1.0 μm

4. Measurement methodology

4-1 Measurement system dust emission volume check

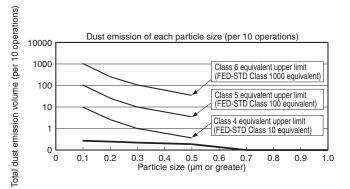
Measurement for nine minutes with the particle counter without operation of the test sample in accordance with conditions 1 and 2 to confirm a count value no greater than 1.

m

4-2 Actual measurement

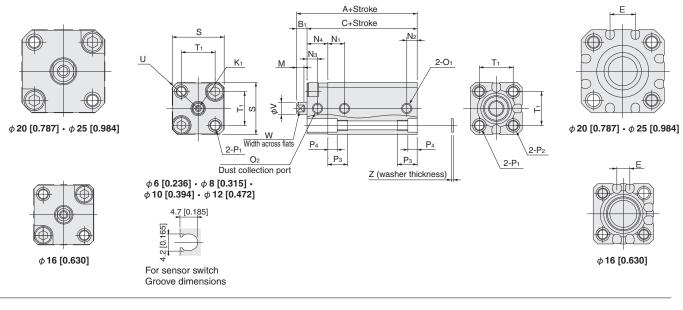
Operation of the test sample in accordance with conditions 1 and 2 for 36 minutes, total value measurement for the latter 18 minutes.

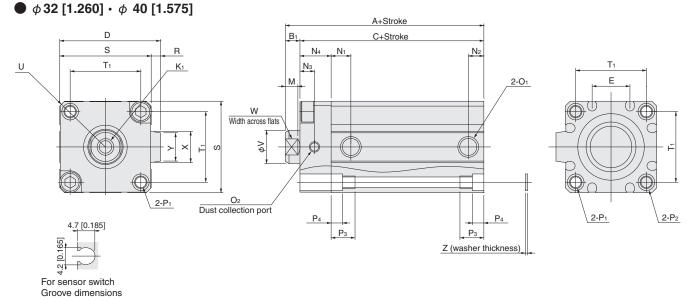
4-3 Re-confirmation


Performance of check 4-1 again to re-check measurement system dust emission.

4-4 Measurement value conversion

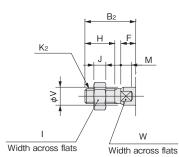
Conversion of the total value obtained during the latter 18 minutes of 4-2 to a value per 10 operations of the cylinder.

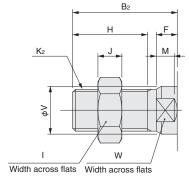

5. Measurement result precautions^{Note}


Suction from dust collection port

Note: The individual particle size graphs are for measurements following one million product operations.

• φ6 [0.236] ~ φ 25 [0.984]

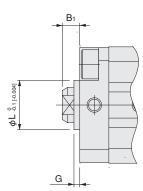



Model	Standard	cylinder (C	S-CDAZ)	Cylinder wi	th magnet (CS-CDAZS)		-	K						0	•
Bore	Α	B1	С	Α	B 1	С	D	E	K 1	M	N 1	N2	N3	N 4	O 1	O 2
6 [0.236]	24 [0.945]	5 [0.197]	19 [0.748]	29 [1.142]	5 [0.197]	24 [0.945]	-	—	M2.5×0.45, depth 5 [0.197]	3 [0.118]	6.5 [0.256]	3.5 [0.138]	2.5 [0.098]	5 [0.197]	M3×0.5	M3×0.5
8 [0.315]	25 [0.984]	5 [0.197]	20 [0.787]	30 [1.181]	5 [0.197]	25 [0.984]	-	—	M3×0.5, depth 5 [0.197]	3 [0.118]	7.5 [0.295]	3.5 [0.138]	2.5 [0.098]	5 [0.197]	M3×0.5	M3×0.5
10 [0.394]	26 [1.024]	5 [0.197]	21 [0.827]	31 [1.220]	5 [0.197]	26 [1.024]	-	—	M3×0.5, depth 5 [0.197]	3 [0.118]	8 [0.315]	4 [0.157]	2.5 [0.098]	5 [0.197]	M3×0.5	M3×0.5
12 [0.472]	37 [1.457]	5 [0.197]	32 [1.260]	42 [1.654]	5 [0.197]	37 [1.457]	-	—	M3×0.5, depth 6 [0.236]	3.5 [0.138]	8 [0.315]	5 [0.197]	5 [0.197]	10 [0.394]	M5×0.8	M5×0.8
16 [0.630]	37.5 [1.476]	5.5 [0.217]	32 [1.260]	42.5 [1.673]	5.5 [0.217]	37 [1.457]	-	6.2 [0.244]	M4×0.7, depth 8 [0.315]	3.5 [0.138]	8 [0.315]	5 [0.197]	5 [0.197]	10 [0.394]	M5×0.8	M5×0.8
20 [0.787]	40 [1.575]	5.5 [0.217]	34.5 [1.358]	50 [1.969]	5.5 [0.217]	44.5 [1.752]	-	12.2 [0.480]	M5×0.8, depth 10 [0.394]	4.5 [0.177]	9.5 [0.374]	5 [0.197]	5 [0.197]	10 [0.394]	M5×0.8	M5×0.8
25 [0.984]	42 [1.654]	6 [0.236]	36 [1.417]	52 [2.047]	6 [0.236]	46 [1.811]	-	12.2 [0.480]	M6×1, depth 10 [0.394]	5 [0.197]	10.5 [0.413]	5 [0.197]	5 [0.197]	10 [0.394]	M5×0.8	M5×0.8
32 [1.260]	50 [1.969]	7 [0.276]	43 [1.693]	55 [2.165]	7 [0.276]	48 [1.890]	48.5 [1.909]	18.2 [0.717]	M8×1.25, depth 12 [0.472]	6 [0.236]	9.5 [0.374]	7.5 [0.295]	7 [0.276]	15 [0.591]	Rc1/8	M5×0.8
40 [1.575]	53 [2.087]	7 [0.276]	46 [1.811]	58 [2.283]	7 [0.276]	51 [2.008]	56.5 [2.224]	18.2 [0.717]	M8×1.25, depth 12 [0.472]	6 [0.236]	10.5 [0.413]	7.5 [0.295]	7 [0.276]	15 [0.591]	Rc1/8	M5×0.8

Bore	P1	P 2	P ₃	P 4	R	S	T 1	U	V	W	Х	Y	Z	Applicable through bolt
6 [0.236]	ϕ 3.3 [0.13] (through hole) counter bore ϕ 6 [0.236] (both sides) and M4 \times 0.7 (both sides)	Counter bore $\phi6[0.236]$ and M4 $\times0.7$	9.5 [0.374]	3.5 [0.138]	-	19 [0.748]	11 [0.433]	R12	4 [0.157]	3.5 [0.138]	—	-	-	M3
8 [0.315]	ϕ 3.3 [0.13] (through hole) counter bore ϕ 6.2 [0.244] (both sides) and M4×0.7 (both sides)	Counter bore $\phi6.2[0.244]$ and $M4{\times}0.7$	9.5 [0.374]	3.5 [0.138]	—	21 [0.827]	13 [0.512]	R13.5	5 [0.197]	4 [0.157]	—	-	—	M3
10 [0.394]	ϕ 3.3 [0.13] (through hole) counter bore ϕ 6.2 [0.244] (both sides) and M4×0.7 (both sides)	Counter bore $\phi6.2[0.244]$ and $M4{\times}0.7$	9.5 [0.374]	3.5 [0.138]	—	23 [0.906]	15 [0.591]	R15	5 [0.197]	4 [0.157]	—	-	—	M3
12 [0.472]	ϕ 4.3 [0.169] (through hole) counter bore ϕ 6.5 [0.256] (both sides) and M5 \times 0.8 (both sides)	Counter bore $\phi6.5[0.256]$ and $M5{\times}0.8$	9.5 [0.374]	4.5 [0.177]	—	25 [0.984]	16.3 [0.642]	R16	6 [0.236]	5 [0.197]	—	-	1 [0.039]	M3
16 [0.630]	ϕ 4.3 [0.169] (through hole) counter bore ϕ 6.5 [0.256] (both sides) and M5 \times 0.8 (both sides)	Counter bore $\phi6.5[0.256]$ and $M5{\times}0.8$	9.5 [0.374]	4.5 [0.177]	—	29 [1.142]	19.8 [0.780]	R19	8 [0.315]	6 [0.236]	—	-	1 [0.039]	M3
20 [0.787]	ϕ 4.3 [0.169] (through hole) counter bore ϕ 6.5 [0.256] (both sides) and M5 \times 0.8 (both sides)	Counter bore $\phi6.5[0.256]$ and $M5{\times}0.8$	9.5 [0.374]	4.5 [0.177]	—	34 [1.339]	24 [0.945]	R22	10 [0.394]	8 [0.315]	—	-	1 [0.039]	M3
25 [0.984]	$\phi5.1$ [0.201] (through hole) counter bore $\phi8$ [0.315] (both sides) and M6×1 (both sides)	Counter bore $\phi8[0.315]$ and M6 $\times1$	11.5 [0.453]	5.5 [0.217]	_	40 [1.575]	28 [1.102]	R25	12 [0.472]	10 [0.394]	_	-	1 [0.039]	M4
32 [1.260]	$\phi5.1$ [0.201] (through hole) counter bore $\phi8$ [0.315] (both sides) and M6×1 (both sides)	Counter bore $\phi 8$ [0.315] and M6 $\times 1$	11.5 [0.453]	5.5 [0.217]	4.5 [0.177]	44 [1.732]	34 [1.339]	R29.5	16 [0.630]	14 [0.551]	15 [0.591]	13.6 [0.535]	1 [0.039]	M4
40 [1.575]	$\phi 6.9$ [0.272] (through hole) counter bore $\phi 9.5$ [0.374] (both sides) and M8 \times 1.25 (both sides)	Counter bore $\phi9.5[0.374]$ and M8 $\times1.25$	15.5 [0.610]	7.5 [0.295]	4.5 [0.177]	52 [2.047]	40 [1.575]	R35	16 [0.630]	14 [0.551]	15 [0.591]	13.6 [0.535]	1.6 [0.063]	M5

• φ6 [0.236] ~ φ 25 [0.984]

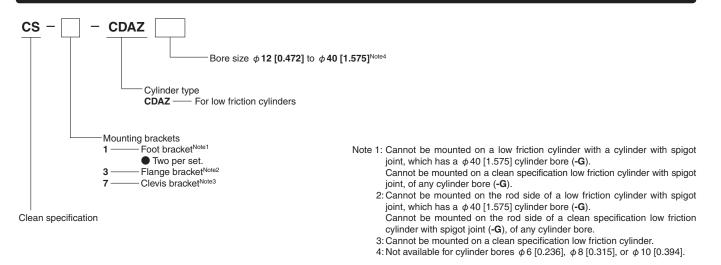
• φ **32** [1.260] • φ **40** [1.575]



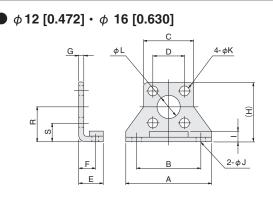
Bore	B ₂	F	Н	I	J	K2	М	V	W
6 [0.236]	15 [0.591]	5 [0.197]	8 [0.315]	5.5 [0.217]	1.8 [0.071]	M3×0.5	3 [0.118]	4 [0.157]	3.5 [0.138]
8 [0.315]	15 [0.591]	5 [0.197]	8 [0.315]	7 [0.276]	2.4 [0.094]	M4×0.7	3 [0.118]	5 [0.197]	4 [0.157]
10 [0.394]	15 [0.591]	5 [0.197]	8 [0.315]	7 [0.276]	2.4 [0.094]	M4×0.7	3 [0.118]	5 [0.197]	4 [0.157]
12 [0.472]	17 [0.669]	5 [0.197]	10 [0.394]	8 [0.315]	4 [0.157]	M5×0.8	3.5 [0.138]	6 [0.236]	5 [0.197]
16 [0.630]	20.5 [0.807]	5.5 [0.217]	13 [0.512]	10 [0.394]	5 [0.197]	M6×1	3.5 [0.138]	8 [0.315]	6 [0.236]
20 [0.787]	22.5 [0.886]	5.5 [0.217]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	4.5 [0.177]	10 [0.394]	8 [0.315]
25 [0.984]	24 [0.945]	6 [0.236]	15 [0.591]	14 [0.551]	6 [0.236]	M10×1.25	5 [0.197]	12 [0.472]	10 [0.394]
32 [1.260]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	6 [0.236]	16 [0.630]	14 [0.551]
40 [1.575]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	6 [0.236]	16 [0.630]	14 [0.551]

Remark: Cylinder joints and cylinder rod ends for mounting on a male thread rod end specification are also available. For details, see the general personal catalog.

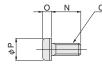
Dimensions of Centering Location (mm [in])

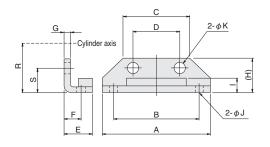

Bore Code	B 1	G	L
16 [0.630]	5.5 [0.217]	1.5 [0.059]	12 [0.472]
20 [0.787]	5.5 [0.217]	1.5 [0.059]	15 [0.591]
25 [0.984]	6 [0.236]	2 [0.079]	17 [0.669]
32 [1.260]	7 [0.276]	2 [0.079]	21 [0.827]
40 [1.575]	7 [0.276]	2 [0.079]	29 [1.142]

•Not available for *φ*6 [0.236], *φ*8 [0.315], *φ*10 [0.394], and *φ*12 [0.472]


JIG CYLINDERS C SERIES MOUNTING BRACKETS

Foot Mounting Bracket, Flange Mounting Bracket, Clevis Mounting Bracket

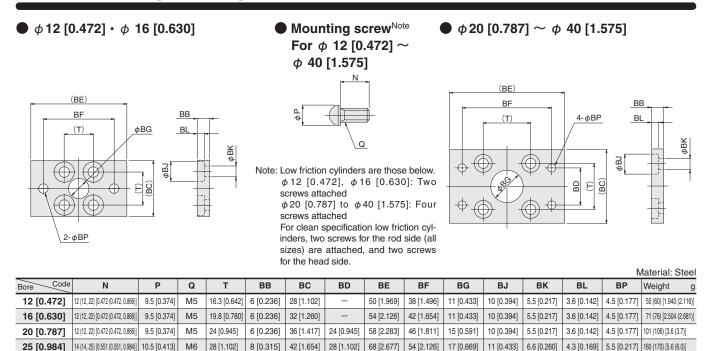

Order Codes of Mounting Bracket Only


Dimensions of Foot Mounting Bracket (mm [in])

Mounting screw (4 attached) ● For φ 12 [0.472] ~ φ 40 [1.575]

Φ 20 [0.787] ~ φ 40 [1.575]

Material: Steel


																		IV	laterial: Steel
Bore	Α	В	С	D	Е	F	G	Н	I	J	К	L	N [lbf]	0	Р	Q	R	S	Weight g
12 [0.472]	44 [1.732]	34 [1.339]	25 [0.984]	16.3 [0.642]	12.5 [0.492]	8 [0.315]	2 [0.079]	29.5 [1.161]	4.5 [0.177]	4.5 [0.177]	5.5 [0.217]	11 [0.433]	12 (12, 22) [0.472 (0.472, 0.866)]	2.7 [0.106]	9.5 [0.374]	M5	17 [0.669]	8.9 [0.350]	50 (54) [1.764 (1.905)]
16 [0.630]	48 [1.890]	38 [1.496]	29 [1.142]	19.8 [0.780]	13 [0.512]	8 [0.315]	2 [0.079]	33.5 [1.319]	4.5 [0.177]	4.5 [0.177]	5.5 [0.217]	11 [0.433]	12 (12, 22) [0.472 (0.472, 0.866)]	2.7 [0.106]	9.5 [0.374]	M5	19 [0.748]	9.1 [0.358]	62 (66) [2.187 (2.328)]
20 [0.787]	54 [2.126]	44 [1.732]	34 [1.339]	24 [0.945]	15 [0.591]	9.2 [0.362]	3.2 [0.126]	16.5 [0.650]	7 [0.276]	4.5 [0.177]	5.5 [0.217]	-	12 (12, 22) [0.472 (0.472, 0.866)]	2.7 [0.106]	9.5 [0.374]	M5	24 [0.945]	12 [0.472]	84 (88) [2.963 (3.104)]
25 [0.984]	64 [2.520]	52 [2.047]	40 [1.575]	28 [1.102]	16.5 [0.650]	10.7 [0.421]	3.2 [0.126]	17.5 [0.689]	6 [0.236]	5.5 [0.217]	6.6 [0.260]	-	14 (14, 25) [0.551 (0.551, 0.984)]	3.3 [0.130]	10.5 [0.413]	M6	26 [1.024]	12 [0.472]	104 (109) [3.7 (3.8)]
32 [1.260]	68 [2.677]	56 [2.205]	44 [1.732]	34 [1.339]	17 [0.669]	11.2 [0.441]	3.2 [0.126]	19 [0.748]	8 [0.315]	5.5 [0.217]	6.6 [0.260]	-	14 (14, 30) [0.551 (0.551, 1.181)]	3.3 [0.130]	10.5 [0.413]	M6	30 [1.181]	13 [0.512]	126 (134) [4.4 (4.7)]
40 [1.575]	78 [3.071]	64 [2.520]	52 [2.047]	40 [1.575]	18.2 [0.717]	11.2 [0.441]	3.2 [0.126]	19 [0.748]	7 [0.276]	6.6 [0.260]	9 [0.354]	-	20 (20, 35) [0.787 (0.787, 1.378)]	4.4 [0.173]	14 [0.551]	M8	33 [1.299]	13 [0.512]	160 (172) [5.6 (6.1)]

Remarks: Values in parentheses are clean specification.

When there are two values in parentheses, the left value is for the head side while the right value is for the rod side.

Note: When mounting for clean specification, remove the dust collection cover fixing bolt (1), and secure with the mounting screw that comes with the bracket.

Dimensions of Flange Mounting Bracket (mm [in])

Remarks: Values in parentheses are clean specification.

10.5 [0.413]

M6

M8

34 [1.339]

40 [1.575]

14 (14, 30) [0.551 (0.551, 1.181)]

20 (20, 35) [0.787 (0.787, 1.378)] 14 [0.551]

32 [1.260]

40 [1.575]

When there are two values in parentheses, the left value is for the head side while the right value is for the rod side.

Щ

48 [1.890]

58 [2.283]

34 [1.339]

40 [1.575]

72 [2.835]

84 [3.307]

58 [2.283]

68 [2.677]

22 [0.866]

28 [1.102]

11 [0.433]

15 [0.591]

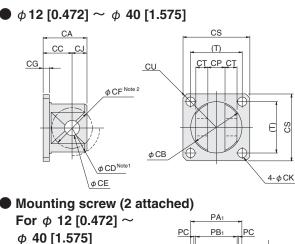
6.6 [0.260]

9 [0.354]

4.3 [0.169]

5.3 [0.209]

5.5 [0.217]


186 (200) [6.6 (7.1)]

6.6 [0.260] 335 (359) [11.8 (12.7)]

8 [0.315]

8 [0.315]

Dimensions of Clevis Mounting Bracket (mm [in])

40 [1.575]

																						Ν	Mater	ial: Steel
Bore Code	N	0	Р	Q	Т	CA	СВ	СС	CD	CE	CF	CG	CJ	СК	СР	CS	СТ	CU	PA 1	PB1	PC	PD	PE1	Weight g
12 [0.472]	12 [0.472]	5 [0.197]	8.5 [0.335]	M5	16.3 [0.642]	15 [0.591]	12 [0.472]	11 [0.433]	R7.5	4 [0.157] ^{+0.03}	R 5	4 [0.157]	4 [0.157]	5.5 [0.217]	4 [0.157] ^{+0.2} +0.1	25 [0.984]	3 [0.118]	R16	15 [0.591]	10.6 [0.417]	0.7 [0.028]	4 [0.157]18	2.5 [0.098]	30 [1.058]
16 [0.630]	12 [0.472]	5 [0.197]	8.5 [0.335]	M5	19.8 [0.780]	17 [0.669]	16 [0.630]	12 [0.472]	R10	5 [0.197] ^{+0.03}	R 6	4 [0.157]	5 [0.197]	5.5 [0.217]	5 [0.197] ^{+0.2} _{+0.1}	29 [1.142]	3.5 [0.138]	R19	17 [0.669]	12.6 [0.496]	0.7 [0.028]	5 [0.197]18	3 [0.118]	40 [1.411]
20 [0.787]	12 [0.472]	5 [0.197]	8.5 [0.335]	M5	24 [0.945]	25 [0.984]	22 [0.866]	17 [0.669]	R14	8 [0.315] ^{+0.04}	R11	4 [0.157]	8 [0.315]	5.5 [0.217]	8 [0.315] ^{+0.4} +0.2	34 [1.339]	5.2 [0.205]	R22	24.4 [0.961]	19.6 [0.772]	0.9 [0.035]	8 [0.315]18	6 [0.236]	75 [2.646]
25 [0.984]	16 [0.630]	6 [0.236]	10 [0.394]	M6	28 [1.102]	25 [0.984]	26 [1.024]	17 [0.669]	R16	8 [0.315] ^{+0.04}	R11	4 [0.157]	8 [0.315]	6.6 [0.260]	8 [0.315] ^{+0.4} +0.2	40 [1.575]	5.2 [0.205]	R25	24.4 [0.961]	19.6 [0.772]	0.9 [0.035]	8 [0.315]18	6 [0.236]	100 [3.5]
32 [1.260]	16 [0.630]	6 [0.236]	10 [0.394]	M6	34 [1.339]	29 [1.142]	34 [1.339]	19 [0.748]	R20	10 [0.394] ^{+0.04}	R12.5	4 [0.157]	10 [0.394]	6.6 [0.260]	12 [0.472] ^{+0.4} +0.2	44 [1.732]	8 [0.315]	R29.5	34 [1.339]	29.2 [1.150]	0.9 [0.035]	10 [0.394]18	8 [0.315]	165 [5.8]
40 [1.575]	20 [0.787]	8 [0.315]	13 [0.512]	M8	40 [1.575]	29 [1.142]	34 [1.339]	19 [0.748]	R20	10 [0.394] ^{+0.04}	R12.5	4 [0.157]	10 [0.394]	9 [0.354]	12 [0.472] ^{+0.4} +0.2	52 [2.047]	8 [0.315]	R35	34 [1.339]	29.2 [1.150]	0.9 [0.035]	10 [0.394]®	8 [0.315]	200 [7.1]

Note 1: CD = Swing range of the clevis itself.

2: CF = Maximum allowable swing radius of the opposing bracket. Remark: Installation is by two bolts.

48 KOGANEI

JIG CYLINDERS C SERIES SENSOR SWITCHES

Solid State Type, Reed Switch Type

Order Codes

Lead wire length A: 1000 mm [39 in] **B**: 3000 mm [118 in] G: 300 mm [11.8 in] with M8 connector (ZE175, ZE275 only)

Sensor switch model

ZE135: Solid state type	2 lead wires	With indicator	$10 \sim 28 \text{VDC}$	Horizontal lead wire
ZE155: Solid state type	3 lead wires NPN output type	With indicator	$4.5 \sim 28 \text{VDC}$	Horizontal lead wire
ZE175: Solid state type	3 lead wires PNP output type	With indicator	$4.5 \sim 28 \text{VDC}$	Horizontal lead wire
ZE235: Solid state type	2 lead wires	With indicator	$10 \sim 28 \text{VDC}$	Vertical lead wire
ZE255: Solid state type	3 lead wires NPN output type	With indicator	$4.5 \sim 28 \text{VDC}$	Vertical lead wire
ZE275: Solid state type	3 lead wires PNP output type	With indicator	$4.5 \sim 28 \text{VDC}$	Vertical lead wire

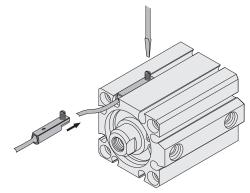
ZE101: Contact type Without indicator 5 \sim 28 VDC $\,$ Horizontal lead wire $85 \sim 115 \, \text{VAC}$ ZE102: Contact type With indicator $10 \sim 28 \text{ VDC}$ Horizontal lead wire $85 \sim 115 \text{ VAC}$ **ZE201**: Contact type Without indicator $5 \sim 28$ VDC Vertical lead wire

ZE202: Contact type With indicator

- $85 \sim 115 \, \text{VAC}$ $10 \sim 28$ VDC Vertical lead wire $85 \sim 115$ VAC

Minimum Allowable Cylinder Stroke for Sensor Switch Use

Solid State Type mm [in]								
Outlington to and	Two mou							
Cylinder bore	One surface mounting	One mounted						
6~12 [0.236~0.472]	30 [1.181]	10 [0.394]	E [0 407]					
16~40 [0.63~1.575]	10 [0	5 [0.197]						


Note: Two can be mounted with a 5 mm [0.197 in] stroke. However, care should be taken because overlap may occur.

Reed Switch Type

				լուլ ուու
	Two m	One manual		
	Cylinder bore	One surface mounting	One mounted	
	12 [0.472]	30 [1.181]	10 [0.394]	10 [0 00 4]
	16~40 [0.63~1.575]	10 [0	10 [0.394]	

Moving Sensor Switch

- Loosening the screw allows the sensor switch to be moved along the switch mounting groove of the cylinder tube.
- The tightening torque for the screws is 0.1 to 0.2 N·m [0.885 to 1.770 in•lbf].

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

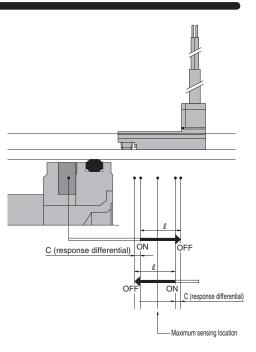
[in]

●Operating range: ℓ

The range from where the piston turns the switch on and the point where the switch is turned off as the piston travels in the same direction. Response differential: C

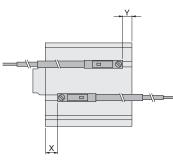
The distance between the point where the piston turns the switch on and the point where the switch is turned off as the piston travels in the opposite direction.

Solid State Type


Solid State Type mm [in										
Item Bore	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	
Operating range: <i>l</i>	1.8~3.0 [0.071~0.118]	1.8~3.0 [0.071~0.118]	2.0~3.2 [0.079~0.126]	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	
Response differential: C	C 0.2 [0.008] or less 0.5 [0.020] or				0] or less					
Maximum sensing location	6 [0.236]									

Remark: The values in the table above are reference values.

Reed Switch Type


Reed Switch Type mm [i											
Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]					
Operating range: ℓ	4.5~8.5 [0.177~0.335]	5.5~9.5 [0.217~0.374]	9~13.5 [0.354~0.531]	10~15.5 [0.394~0.61]	8~12 [0.315~0.472]	8.5~14 [0.335~0.551]					
Response differential: C	1.0 [0.039] or less	2.0 [0.079] or less									
Maximum sensing location	10 [0.394]										

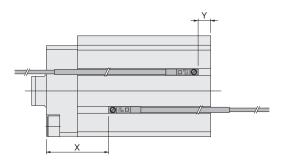
Remark: The values in the table above are reference values.

Mounting the sensor switch in the locations shown (values in diagram are reference values), the sensor magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Low friction cylinders

Solid State Type

Double acting type


Double acting type mm [in]									
Code Bore	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Х	6.5 [0.256]	7.5 [0.295]	8 [0.315]	10 [0.394]	10 [0.394]	15 [0.591]	15 [0.591]	15 [0.591]	16 [0.630]
Y	0.4 [0.016]	0.5 [0.020]	1 [0.039]	6 [0.236]	5 [0.197]	8 [0.315]	9 [0.354]	6 [0.236]	8 [0.315]

Reed Switch Type

Double acting type

Double acting type mm [in]									
Code Bore	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Х	—	—	—	5.5 [0.217]	6 [0.236]	10.5 [0.413]	11 [0.433]	11 [0.433]	12 [0.472]
Y	_		—	1.5 [0.059]	1 [0.039]	4 [0.157]	5 [0.197]	2 [0.079]	4 [0.157]

Clean specification low friction cylinders

Solid State Type

Double acting type mm [in] Code Bore 6 [0.236] 8 [0.315] 10 [0.394] 12 [0.472] 16 [0.630] 20 [0.787] 25 [0.984] 32 [1.260] 40 [1.575] 11.5 [0.453] 12.5 [0.492] 13 [0.512] 20 [0.787] 20 [0.787] 25 [0.984] 25 [0.984] 30 [1.181] 31 [1.220] Х 0.4 [0.016] 0.5 [0.020] 1 [0.039] 6 [0.236] 5 [0.197] 8 [0.315] 9 [0.354] 6 [0.236] 8 [0.315] Y

Reed Switch Type

Double acting type mm [in] Code Bore 6 [0.236] 8 [0.315] 10 [0.394] 12 [0.472] 16 [0.630] 20 [0.787] 25 [0.984] 32 [1.260] 40 [1.575] х 15.5 [0.610] 16 [0.630] 20.5 [0.807] 21 [0.827] 26 [1.024] 27 [1.063] 1.5 [0.059] 1 [0.039] 4 [0.157] 5 [0.197] 2 [0.079] 4 [0.157] Y ____ _