
Koganei Clean System products provide complete support for the maintenance of a clean environment inside the cleanroom.

Koganei Clean System products meet the needs of the ultra-clean production environment. In everything from actuators and valves to air preparation and auxiliary equipment, anti-corrosion materials processing and other Koganei-developed design concepts serve to prevent particle contamination within the cleanroom. These perfectly designed mechanisms, which resolve even the slightest leaks to the outside during operations, have already won a high level of reliability.

Koganei Cleanliness

KOGANG

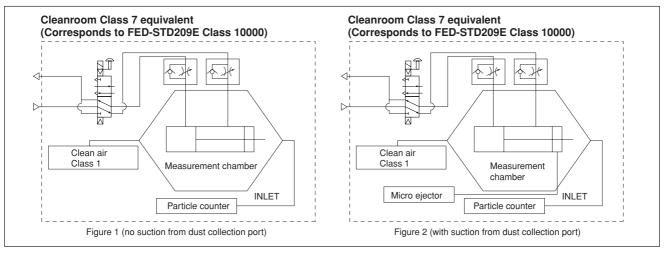
There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specifications. Therefore, to measure the effects of cleanroom contamination by pneumatic equipment, Koganei has decided to use "number of particles generated per 10 operations," rather than particle density. Koganei has also developed classifications for application classes in cleanroom, based on JIS and other upper limit density tables, and on the company's own experience.

Remarks: 1. In the above table, product performance in terms of the number of particles generated per 10 operations is expressed as the upper limit of particles corresponding to the equivalent JIS or ISO class.

- 2. In the above table, values in the JIS, ISO, and FED-STD upper limit density tables are calculated as upper density per liter.
- 3. The classes shown are clean levels as classified in JIS and ISO.

From the above definitions, the Koganei clean level classes can be viewed as the level of average contamination per liter of surrounding air over a period of 10 operations in cleanroom. Air ventilation in cleanrooms is usually faster than 1 cycle per minute, and clean volumetric capacity is usually larger than 1 liter, which should provide a sufficient safety margin in practice.

Caution: The above conclusions are based on an ideal situation in which air ventilation is being implemented. For specific cases where air ventilation is not ensured, caution is needed since the clean classes cannot be maintained.


The clean system diagrams shown here are for Class 5 equivalent products. For Class 4 or Class 3 equivalent products, consult us.

Koganei has therefore specified its in-house measurement methods, to conduct evaluations on the cleanroom rating.

The number of particles of the Air Cylinder Cleanroom Specification is measured as shown in the method below.

1. Measurement conditions

1-1 Test circuit: Figure 1 (no suction), Figure 2 (with suction)

1-2 Operating conditions of tested cylinder

Operating frequency: 1Hz

Average speed: 500mm/s [20in./sec.]

Applied pressure: 0.5MPa [73psi.]

Suction condition: Microejector ME05, Primary side: 0.5MPa [73psi.] applied, Tube: ¢6 [0.236in.]

Mounting direction: Vertical Chamber volume: 8.3 ℓ [0.293ft.³]

2. Particle counter

Manufacturer/model: RION/KM20 Suction flow rate: 28.3 ℓ /min [1ft.³/min.] Particle diameter: 0.1 μ m, 0.2 μ m, 0.3 μ m, 0.5 μ m, 0.7 μ m, 1.0 μ m

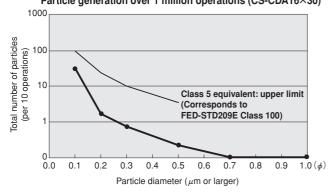
3. Measurement method

3-1 Confirmation of number of particles in the measurement system

Under the conditions in the above 1 and 2, using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.

3-2 Measurement under operation

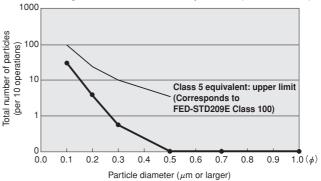
Under the conditions in the above1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.


3-3 Reconfirmation

Performed the measurement in 3-1 again, to reconfirm the number of particles in the measurement system.

4. Measurement results

Cleanroom specification


Jig Cylinder (no suction from dust collection port) Particle generation over 1 million operations (CS-CDA16×30)

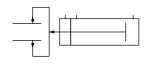
Cleanroom specification

Slim Cylinder (with suction from dust collection port)

Particle generation over 1 million operations (CS-DA20×100)

For "safety precautions" listed in the Clean System Product Drawings, see the materials below.

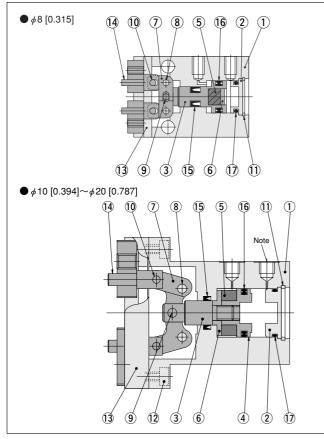
- \bullet For actuators, see "Safety Precautions" on p. 45 of the Actuators General Catalog .
- For valves, see "Safety Precautions" on p. 31 of the Valves General Catalog.
- For air treatment and auxiliary equipment, see "Safety Precautions" on p.31 of the General Catalog of Air Treatment, Auxiliary, Vacuum.



STEM AIR HANDS NHB SERIES PARALLEL TYPE

Linear Guide Specification Double Acting Type

Symbol



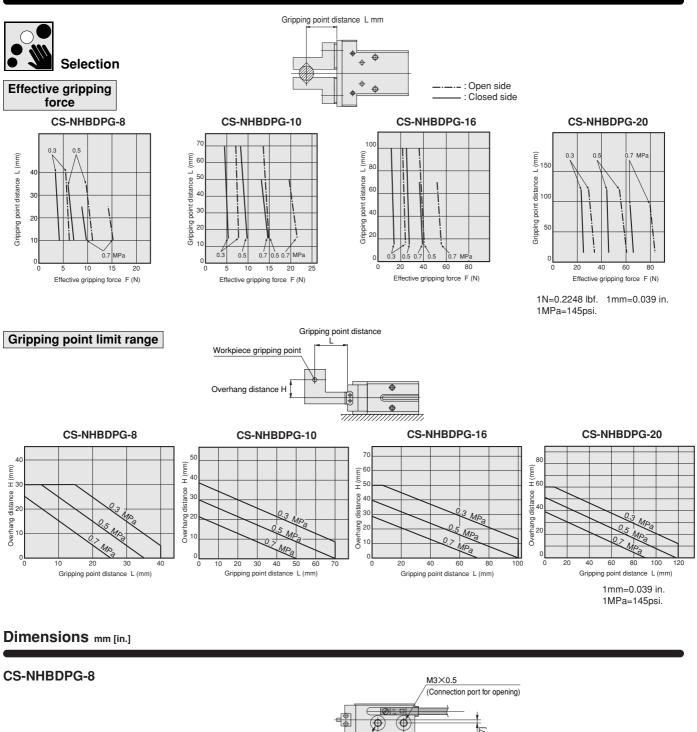
Specifications

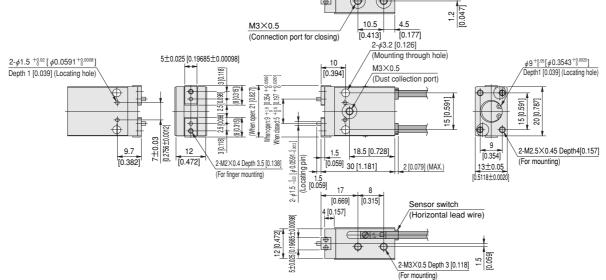
<hr/>	De els secolot										
Item	Basic model	CS-NHBDPG-8	CS-NHBDPG-10	CS-NHBDPG-16	CS-NHBDPG-20						
Cylinder bore size	mm [in.]	8 [0.315]	10 [0.394]	16 [0.630]	20 [0.787]						
Operating type			Double acting type								
Media			Air								
Operating pressure	range MPa [psi.]	0.22~0.7 [32~102]	0.2~0.7 [29~102]	0.12~0.7 [17~102]	0.1~0.7 [15~102]						
Proof pressure	MPa [psi.]	1.05 [152]									
Operating temperature	range °C [°F]	0~60 [32~140]									
Maximum operating frequ	Jency cycle/min	120									
Lubrication		Not required									
Effective gripping force	Closed side	5.8 [1.30]	9.4 [2.11]	26.4 [5.93]	45.0 [10.12]						
(F)Note 1 N [lbf.]	Open side	9.9 [2.23]	14.7 [3.30]	39.2 [8.81]	59.8 [13.44]						
Lever open/closed	stroke mm [in.]	4 [0.157]	6.5 [0.256]	10 [0.394]	14 [0.551]						
Repeatability	mm [in.]	±0.01 [±0.0004]									
Port size		M3>	M3×0.5 M5×0.8								
Mass ^{Note 2}	g [oz.]	24 [0.85] (29 [1.02])	80 [2.82] (91 [3.21])	159 [5.61] (178 [6.28])	329 [11.60] (355 [12.52])						

Notes: 1. Values are obtained when gripping point distance is 30mm [1.18in.] under operating pressure 0.5 MPa [73psi.]. For details of the effective gripping force, see the graphs on p.106. 2. () mean the mass with the mounting bracket: **-M**.

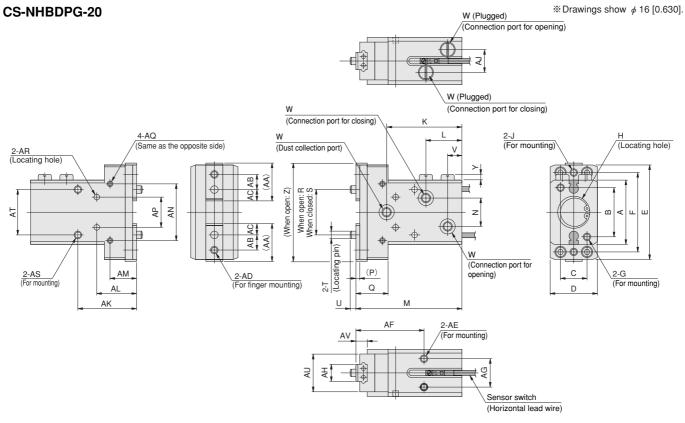
Inner Construction

Note: The plug is attached to the extra connection port on the side surface. (Except ϕ 8 [0.315in.])


Order Codes

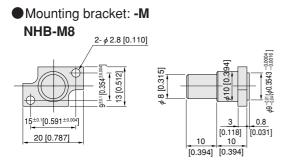

Clean system Mounting bracket Sensor switch Lead wire Number of sensor switches product length (Applied to air hands with Without sensor Without mounting sensor switches) bracket switch A: 1000mm 1: With 1 sensor switch [39in.] 2 : With 2 sensor switches в : 3000mm [118in.] . ★Included at shipping Blank Blank Additional With mounting With ZE155 bracket With ZE135 With ZE235 With ZE255 **Parts** (To be ordered separately) Calle Ca Colle Ca 100 Coll.= .. 101 Mounting bracket . -M -ZE155 -ZE235 -ZE255 -ZE135 ★ Included at Solid state type Solid state type Solid state type Solid state type shipping With indicator lamp With indicator lamp With indicator lamp With indicator lamp ●DC10~28V ● DC4.5~28V ●DC10~28V ● DC4.5~28V 2-lead wire • 3-lead wire 2-lead wire 3-lead wire Horizontal lead wire Horizontal lead wire Vertical lead wire Vertical lead wire For φ 8 [0.315in.] NHB-M8 For ϕ 10 [0.394in.] Cylinder bore size Basic model NHB-M10 For ϕ 16 [0.630in.] -ZE135 -8 NHB-M16 For φ 20 [0.787in.] -ZE155 Α 1 Double -10 -NHBDPG CS -M NHB-M20 acting type -ZE235 в 2 -16 -ZE255 -20

Major Parts and Materials

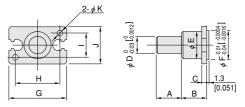

No.	Parts	Materials	Remarks
1	Body	Aluminum alloy	
2	Head cover	Aluminum alloy	
3	Piston rod	Stainless steel	
4	Piston	Aluminum alloy	Except \$\$\phi\$ 8 [0.315in.]
5	Magnet	Plastic magnet	
6	Magnet holder	Aluminum alloy	
7	Action lever	Steel	
8	Fulcrum pin	Steel	
9	Press fit pin	Steel	
10	Press fit pin	Steel	
1	Internal snap ring	Steel	
12	Hexagon socket head bolt	Steel	
13	Bearing	Stainless steel	
(14)	Knuckle	Stainless steel	
(15)	Seal	Synthetic rubber (NBR)	
16	Seal	Synthetic rubber (NBR)	
17	O-ring	Synthetic rubber (NBR)	

Handling Instructions and Precautions

CS-NHBDPG-10 CS-NHBDPG-16 CS-NHBDPG-20



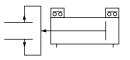
Model	Α	В	С	D	E	F	G	Н	J	K	L	М	Ν	Р
CS-NHBDPG-10	23	17	10	20±0.05	36	30	M3×0.5	φ 11 ^{+0.05} [φ 0.4331 ^{+0.0020}]	M3×0.5	35	17	49	7	1.5
	[0.906]	[0.669]	[0.394]	[0.7874±0.0020]	[1.417]	[1.181]	Depth 6 [0.236]	Depth 1.5 [0.059]	Depth 4.5 [0.177]	[1.378]	[0.669]	[1.929]	[0.276]	[0.059]
CS-NHBDPG-16	34	26	14	25±0.05	50	42	M4×0.7	φ 17 ^{+0.05} ₀ [φ 0.6693 ^{+0.0020}]	M4×0.7	40	19	56	15	2
	[1.339]	[1.024]	[0.551]	[0.9843±0.0020]	[1.969]	[1.654]	Depth 7 [0.276]	Depth 1.5 [0.059]	Depth 5 [0.197]	[1.575]	[0.748]	[2.205]	[0.591]	[0.079]
CS-NHBDPG-20	45	35	16	32±0.05	62	54	M5×0.8	$\phi 21^{+0.05}_{0} [\phi 0.8268^{+0.0020}_{0}]$	M4×0.7	45	21	67	17	3
	[1.772]	[1.378]	[0.630]	[1.2598±0.0020]	[2.441]	[2.126]	Depth 9 [0.354]	Depth 1.5 [0.059]	Depth 7 [0.276]	[1.772]	[0.827]	[2.638]	[0.669]	[1.181]


Q	R	S	Т	U	V	W	Y	Z	AA	AB	AC	AD	AE	AF	AG
14	$15.5 \ {}^{+0.8}_{0}$ $[0.610 \ {}^{+0.031}_{0}]$	9 ^{+0.5} [0.354 ^{+0.020}]	\$\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	2 [0.079]	7.5 [0.295]	M3×0.5	2 [0.079]	37 [1.457]	14.7 [0.579]	5 [0.197]	4.5 [0.177]	M3×0.5 Depth 4 [0.157]	M3×0.5 Depth 5 [0.197]	29 [1.142]	12 [0.472]
17	22 ^{+1.8} [0.866 ^{+0.071} 0]	12 ^{+1.3} [0.472 ^{+0.051}]	φ 4 _{-0.03} [φ0.1575 _{-0.0012}]	3 [0.118]	7.5 [0.295]	M5×0.8	3 [0.118]	52 [2.047]	20 [0.787]	8 [0.315]	6 [0.236]	M4×0.7 Depth 5 [0.197]	M4×0.7 Depth 6 [0.236]	36 [1.417]	15 [0.591]
23	30 ^{+2.9} [1.181 ^{+0.114}]	16 ^{+1.4} [0.630 ^{+0.055} ₀]	\$\$\phi_0.03\$	3 [0.118]	7.5 [0.295]	M5×0.8	3 [0.118]	64 [2.520]	24 [0.945]	8 [0.315]	8 [0.315]	M5×0.8 Depth 7 [0.276]	M5×0.8 Depth 8 [0.315]	43 [1.693]	18 [0.709]

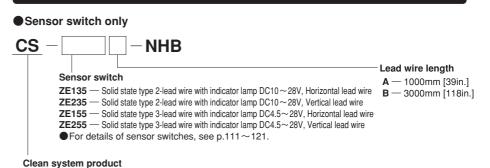
AH	AJ	AK	AL	AM	AN	AP	AQ	AR	AS	AT	AU	AV
7±0.025	9	24	16	11	20	12±0.03	M3×0.5		M4 \times 0.7 Depth 6 [0.236],	17	17	6
[0.27559±0.00098]	[0.354]	[0.945]	[0.630]	[0.433]	[0.787]	[0.4724±0.0012]	Depth 5 [0.197]		Drilled hole diameter ϕ 3.4 [0.134] thru hole	[0.669]	[0.669]	[0.236]
9±0.025	12	31	21	14	30	16±0.03	M3×0.5	φ3 ^{+0.02} [φ0.1181 ^{+0.0008}]	M4 \times 0.7 Depth 7 [0.276],	24	20	8
[0.35433±0.00098]	[0.472]	[1.220]	[0.827]	[0.551]	[1.181]	[0.6299±0.0012]	Depth 5 [0.197]	Depth 3 [0.118]	Drilled hole diameter ϕ 3.4 [0.134] thru hole	[0.945]	[0.787]	[0.315]
12±0.025	16	37	27.3	17		22±0.03	M4×0.7	$\phi 4^{+0.02}_{0} [\phi 0.1575^{+0.0008}_{0}]$	M4 \times 0.8 Depth 8 [0.315],	30	27	10
[0.47244±0.00098]	[0.630]	[1.457]	[1.075]	[0.669]		[0.8661±0.0012]	Depth 6 [0.236]	Depth 3.5 [0.1378]	Drilled hole diameter ϕ 4.2 [0.165] thru hole	[1.181]	[1.063]	[0.394]

Options

NHB-M10, M16, M20



Model Code	Α	В	С	D	E	F	G	Н	- 1	J	K
NHB-M10	15 [0.591]	15 [0.591]	3 [0.118]	10 [0.394]	11 [0.433]	11 [0.433]	23 [0.906]	17 [0.669]	10 [0.394]	16 [0.630]	3.4 [0.134]
NHB-M16	15 [0.591]	15 [0.591]	3 [0.118]	10 [0.394]	16 [0.630]	17 [0.669]	34 [1.339]	26 [1.024]	14 [0.551]	22 [0.866]	4.5 [0.177]
NHB-M20	15 [0.591]	15 [0.591]	3 [0.118]	10 [0.394]	18 [0.709]	21 [0.827]	45 [1.772]	35 [1.378]	16 [0.630]	26 [1.024]	5.5 [0.217]

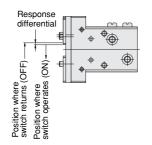

AIR HANDS NHB SERIES LINEAR GUIDE SPECIFICATION

Sensor Switches

Symbol

Order Codes

Sensor Switch Operating Range and Response Differential

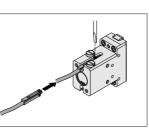

Open/closed stroke differential (Open/closed angle differential)

The stroke differential (angle differential) between the point where the lever on one side moves and turns the switch ON and the point where the switch is turned OFF as the lever travels in the opposite direction.

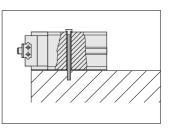
Operating position repeatability

When the lever on one side moves in the same direction, operating position repeatability is defined as the range of the deviation of the position where the switch is turned ON or turned OFF.

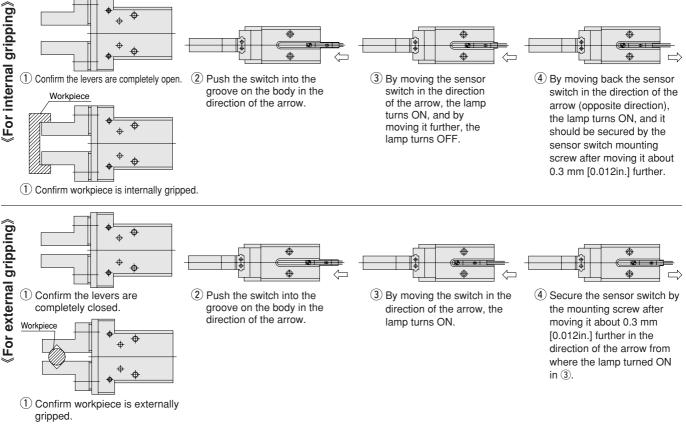
Parallel type linear guide specification


Parallel type linear guide specification

Parallel type linear guide specification mm [ir										
Model	Open/closed stroke differential	Operating position repeatability								
(CS-)NHB PG(L,Y)-8	0.5 [0.020]	0.2 [0.008]								
(CS-)NHB PG(L,Y)-10	0.5 [0.020]	0.2 [0.008]								
(CS-)NHB PG(L,Y)-16	0.8 [0.031]	0.2 [0.008]								
(CS-)NHB PG(L,Y)-20	0.8 [0.031]	0.2 [0.008]								


Remark: The above table shows reference values.

Tighten the mounting screw after the sensor switch is inserted in the switch mounting groove in the direction of the arrow in the diagram and move to the proper location. Tightening torque of the mounting screw is $0.1 \sim 0.2$ N·m [$0.9 \sim 1.8$ in·lbf].


Caution: Care must be exercised that the sensor switch cannot be inserted into the switch mounting groove from the diagram's top direction.

Caution: Care must be exercised that a sensor switch cannot be mounted when the body is installed by using thru holes, as shown in the diagram to the right.

• Adjusting Sensor Switch Mounting Position (Mount the sensor switch so that the surface showing the model marking faces up.)

Remark: ① shows the desired location for the switch to turn ON. Install and adjust it in accordance with $① \sim ④$ above.