Koganei Clean System products provide complete support for the maintenance of a clean environment inside the cleanroom.

Koganei Clean System products meet the needs of the ultra-clean production environment. In everything from actuators and valves to air preparation and auxiliary equipment, anti-corrosion materials processing and other Koganei-developed design concepts serve to prevent particle contamination within the cleanroom. These perfectly designed mechanisms, which resolve even the slightest leaks to the outside during operations, have already won a high level of reliability.

Koganei Cleanliness

There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specifications. Therefore, to measure the effects of cleanroom contamination by pneumatic equipment, Koganei has decided to use "number of particles generated per 10 operations," rather than particle density. Koganei has also developed classifications for application classes in cleanroom, based on JIS and other upper limit density tables, and on the company's own experience.

Remarks: 1. In the above table, product performance in terms of the number of particles generated per 10 operations is expressed as the upper limit of particles corresponding to the equivalent JIS or ISO class.
2. In the above table, values in the JIS, ISO, and FED-STD upper limit density tables are calculated as upper density per liter.
3. The classes shown are clean levels as classified in JIS and ISO.

From the above definitions, the Koganei clean level classes can be viewed as the level of average contamination per liter of surrounding air over a period of 10 operations in cleanroom. Air ventilation in cleanrooms is usually faster than 1 cycle per minute, and clean volumetric capacity is usually larger than 1 liter, which should provide a sufficient safety margin in practice.

Caution: The above conclusions are based on an ideal situation in which air ventilation is being implemented. For specific cases where air ventilation is not ensured, caution is needed since the clean classes cannot be maintained.

The clean system diagrams shown here are for Class 5 equivalent products. For Class 4 or Class 3 equivalent products, consult us.

Evaluations of Cleanliness

Koganei has therefore specified its in-house measurement methods, to conduct evaluations on the cleanroom rating.

The number of particles of the Air Cylinder Cleanroom Specification is measured as shown in the method below.

1. Measurement conditions

1-1 Test circuit: Figure 1 (no suction), Figure 2 (with suction)

1-2 Operating conditions of tested cylinder
Operating frequency: 1 Hz
Average speed: $500 \mathrm{~mm} / \mathrm{s}$ [20in. $/ \mathrm{sec}$.]
Applied pressure: 0.5 MPa [73psi.]
Suction condition: Microejector ME05, Primary side: 0.5 MPa [73psi.] applied, Tube: $\phi 6$ [0.236in.]
Mounting direction: Vertical
Chamber volume: 8.3ℓ [0.293 $\mathrm{ft}{ }^{3}$]

2. Particle counter

Manufacturer/model: RION/KM20
Suction flow rate: $28.3 \mathrm{l} / \mathrm{min}$ [1 ft . $/ \mathrm{min}$.]
Particle diameter: $0.1 \mu \mathrm{~m}, 0.2 \mu \mathrm{~m}, 0.3 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 0.7 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}$

3. Measurement method

3-1 Confirmation of number of particles in the measurement system
Under the conditions in the above 1 and 2 , using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.
3-2 Measurement under operation
Under the conditions in the above1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.
3-3 Reconfirmation
Performed the measurement in 3-1 again, to reconfirm the number of particles in the measurement system.

4. Measurement results

- Cleanroom specification

Jig Cylinder (no suction from dust collection port)
Particle generation over 1 million operations (CS-CDA16×30)

- Cleanroom specification

Slim Cylinder (with suction from dust collection port)
Particle generation over 1 million operations (CS-DA20×100)

For "safety precautions" listed in the Clean System Product Drawings, see the materials below.

- For actuators, see "Safety Precautions" on p. 45 of the Actuators General Catalog .
- For valves, see "Safety Precautions" on p. 31 of the Valves General Catalog.
- For air treatment and auxiliary equipment, see "Safety Precautions" on p. 31 of the General Catalog of Air Treatment, Auxiliary, Vacuum.

Symbol

Specifications

Item		CS-RAP $\square 1$	CS-RAP $\square 5$	CS-RAP $\square 10$	CS-RAP $\square 20$
Operating type		Double acting piston type (Rack and pinion construction)			
Effective torque ${ }^{\text {Note }}$	$\mathrm{N} \cdot \mathrm{m}$ [ft $\cdot \mathrm{lbf}]$	0.078 [0.058]	0.373 [0.275]	0.883 [0.651]	1.863 [1.374]
Swing angle (Tolerance ${ }^{+10^{\circ}}{ }^{\circ}$)	CS-RAP \square-90	90°			
	CS-RAP \square-100	100°			
	CS-RAP \square-180	180°			
	CS-RAP \square-190	190°			
	CS-RAP \square-360	360°			
Media		Air			
Port size		M 5×0.8	Rc1/8		
Rod diameter	mm [in.]	4 [0.157]	6 [0.236]	8 [0.315]	10 [0.394]
Operating pressure range	MPa [psi.]	$0.15 \sim 0.7$ [22~102]		$0.06 \sim 0.7$ [9~102]	
Proof pressure	MPa [psi.]	1.03 [149]			
Operating temperature range	${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$	0~50 [32~122]			
Allowable energy	J [in.lbf]	0.001 [0.009]	0.003 [0.027]	0.008 [0.071]	0.015 [0.133]
Lubrication		Not required			
Cushion		None			

Note: Values are obtained when the air pressure is 0.49 MPa [71 psi.$]$.

Mass

g [oz.]			
Model	Main body mass	Additional mass	
		Double rod specification	With sensor switch specificationNote
CS-RAP1-90,100	101 [3.56]	2 [0.07]	With 1 sensor switch: 24 [0.85]
CS-RAP1-180,190	119 [4.20]		
CS-RAP1-360	166 [5.86]		
CS-RAP5-90,100	252 [8.89]	4 [0.14]	
CS-RAP5-180,190	300 [10.58]		
CS-RAP5-360	415 [14.64]		
CS-RAP10-90,100	346 [12.20]	10 [0.35]	With 2 sensor switches: 46 [1.62]
CS-RAP10-180,190	426 [15.03]		
CS-RAP10-360	584 [20.60]		
CS-RAP20-90,100	561 [19.79]	16 [0.56]	
CS-RAP20-180,190	675 [23.81]		
CS-RAP20-360	931 [32.84]		

Calculation example: Mass of CS-RAP1-180 with double rod and 1 sensor switch; $119+2+24=145 \mathrm{~g}$ [5.110z.]
Note: The additional mass of the sensor switch is the mass of the sensor holder and the sensor body only, and does not include the lead wire mass.

```
CS - RAP
```



```
\(\square\)
```



```
                        90-90
                        100-100
        180-180
        180-180
        190-190
        Rod material
        \square
        Stainless
            Rod type
                            Blank - Single rod type
                            D - Double rod type
A__ 1000mm [39in.]
Lead wire length
B__ 3000mm [118in.]
Sensor switch
    Nominal torque
    1- }9.8\textrm{N}\cdot\textrm{cm}[0.87\textrm{in}\cdot\textrm{lbf}
    5__ 49N\cdotcm [4.3in\cdotlbf]
    Blank __ Without sensor switch
    CS5T__ 2-lead wire Reed switch type without indicator lamp (DC5~28V, AC85~115V)
    10- 98N}\cdot\textrm{cm}[8.7\textrm{in}\cdot|\textrm{lbf}
    20__ 196N•cm [17.3in`lbf]
    CS11T__ 2-lead wire Reed switch type with indicator lamp (DC10~28V)
    ZC130 __ 2-lead wire Solid state type with indicator lamp (DC10~28V)
    Blank -_ Standard specification
    S - Sensor switch use specification
    S
```

 S
    ```
\(\square\)


```

ZC153 - 3-lead wire Solid state type with indicator lamp (DC4.5~28V)
Rotary actuator
Piston type
Clean system product

```

Inner Construction and Major Parts
Sensor switch use specification


Major Parts and Materials
\begin{tabular}{c|l|c}
\hline No. & \multicolumn{1}{|c|}{ Parts } & Materials \\
\hline (1) & Main body & Aluminum (anodized) \\
\hline (2) & Rod pinion & Stainless steel (SUS304) \\
\hline (3) & Rack & \multirow{2}{*}{ Plastic } \\
\hline (4) & Piston & \\
\hline (5) & Piston seal & \multirow{2}{*}{ Synthetic rubber (NBR) } \\
\hline (6) & O-ring & Plastic magnet \\
\hline (7) & Magnet & \\
\hline
\end{tabular}

\section*{Seals}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{3}{|c|}{O-ring} & Piston seal \\
\hline Model Q'ty & 4 & 2 & 2 & 2 \\
\hline CS-RAP \(\square 1\) & IN 10 & I.D \(\phi 6 \times \phi 1.2\) & I.D \(\phi 9 \times \phi 1.5\) & PPY-10 \\
\hline CS-RAP \(\square 5\) & IN 16 & I.D \(\phi 9 \times \phi 1.5\) & I.D \(\phi 14 \times \phi 1.5\) & PPY-16 \\
\hline CS-RAP \(\square 10\) & IN 20 & P8 & I.D \(\phi 19 \times \phi 0.6\) & PPY-20 \\
\hline CS-RAP \(\square 20\) & I.D \(\phi 25 \times \phi 1.5\) & P10 & I.D \(\phi 24.6 \times \phi 0.7\) & PPY-25 \\
\hline
\end{tabular}

CS-RAP \(\square 1\)


CS-RAP \(\square 5\)


CS-RAP \(\square 10\)


CS-RAP \(\square 20\)


\section*{Sensor Switches}

\section*{Order Codes}


\section*{Swing End Detection and Mounting Location of Sensor Switch}

When the sensor switch is mounted in the location shown in the diagram, the magnet comes to the maximum sensing location of the sensor switch at the end of the swing. At this time, the sensor switch \(A\) operates at the end of the swing in the \(A\) direction, and sensor switch \(B\) operates at the end of the swing in the \(B\) direction.


Notes: 1. Do not mount the sensor switch in the reverse direction.
2. When an external stopper, etc., limits the swing angle, note that there may be cases where the sensor switch does not operate within the above adjusting range
mm [in.]
\begin{tabular}{l|c|c|c}
\hline \multirow{2}{*}{\multicolumn{2}{|c|}{ Model }} & \multicolumn{3}{c}{\(\mathbf{X}:\) Maximum sensing location } \\
\cline { 2 - 5 } & ZC130, ZC153 & CS5T & CS11T \\
\hline RAPS1 & \(6.5[0.256]\) & \(5.0[0.197]\) & \(8.5[0.335]\) \\
\hline RAPS5 & \(7.0[0.276]\) & \(5.5[0.217]\) & \(9.0[0.354]\) \\
\hline RAPS10 & \multirow{2}{*}{\(6.5[0.256]\)} & \(5.0[0.197]\) & \(8.5[0.335]\) \\
\hline RAPS20 & & & \\
\hline
\end{tabular}

Sensor Switch Operating Range and Response Differential

mm [in.]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{CS5T \(\square\)} & \multicolumn{2}{|r|}{CS11T \(\square\)} & \multicolumn{2}{|r|}{ZC1 \(\square \square \square\)} \\
\hline Operating range \& & Response difiential & Operating range \(\ell\) & Response difternial & Operating range \(\ell\) & Response diferential O \\
\hline \[
\begin{gathered}
4.7 \sim 10.8 \\
{[0.185 \sim 0.425]} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.4 \text { [0.055] } \\
& \text { or less }
\end{aligned}
\] & \[
\begin{gathered}
6.8 \sim 9.5 \\
{[0.268 \sim 0.374]}
\end{gathered}
\] & \[
\begin{aligned}
& 1.4 \text { [0.055] } \\
& \text { or less }
\end{aligned}
\] & \[
\begin{gathered}
1.5 \sim 4.7 \\
{[0.059 \sim 0.185]}
\end{gathered}
\] & \[
\begin{gathered}
0.3 \text { [0.012] } \\
\text { or less }
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Reference}

When use of an external stopper limits the swing angle, 2 sensor switches can be used up to the angle ( \(\alpha\) ) shown below. The recommended type of the sensor switch is a solid state sensor switch for its short operating range.


D: Swing angle
\(\theta\) : Range where sensor switch cannot detect
\(\alpha\) : Range where sensor switch can detect
\begin{tabular}{|c|c|c|c|}
\hline Model & Swing angle & \(\theta^{\text {Note }}\) & \(\alpha\) \\
\hline \multirow{5}{*}{RAPS1} & \(90^{\circ}\) & \multirow{4}{*}{\(56^{\circ}\)} & \(17^{\circ}\) \\
\hline & \(100^{\circ}\) & & \(22^{\circ}\) \\
\hline & \(180^{\circ}\) & & \(62^{\circ}\) \\
\hline & \(190^{\circ}\) & & \(67^{\circ}\) \\
\hline & \(360^{\circ}\) & \(100^{\circ}\) & \(130^{\circ}\) \\
\hline \multirow{5}{*}{RAPS5} & \(90^{\circ}\) & \multirow{4}{*}{\(42^{\circ}\)} & \(24^{\circ}\) \\
\hline & \(100^{\circ}\) & & \(29^{\circ}\) \\
\hline & \(180^{\circ}\) & & \(69^{\circ}\) \\
\hline & \(190^{\circ}\) & & \(74^{\circ}\) \\
\hline & \(360^{\circ}\) & \(170^{\circ}\) & \(95^{\circ}\) \\
\hline \multirow{5}{*}{RAPS10} & \(90^{\circ}\) & \multirow{3}{*}{\(32^{\circ}\)} & \(29^{\circ}\) \\
\hline & \(100^{\circ}\) & & \(34^{\circ}\) \\
\hline & \(180^{\circ}\) & & \(70^{\circ}\) \\
\hline & \(190^{\circ}\) & \(40^{\circ}\) & \(75^{\circ}\) \\
\hline & \(360{ }^{\circ}\) & \(220^{\circ}\) & \(70^{\circ}\) \\
\hline \multirow{5}{*}{RAPS20} & \(90^{\circ}\) & \multirow{3}{*}{\(26^{\circ}\)} & \(32^{\circ}\) \\
\hline & \(100^{\circ}\) & & \(37^{\circ}\) \\
\hline & \(180^{\circ}\) & & \(50^{\circ}\) \\
\hline & \(190^{\circ}\) & \(80^{\circ}\) & \(55^{\circ}\) \\
\hline & \(360^{\circ}\) & \(250^{\circ}\) & \(55^{\circ}\) \\
\hline
\end{tabular}

Note: Two sensor switches may be ON at the same time when the angle adjustment is set to this value or below.
Remark: For the use of reed type sensor switches, or for swing starting points other than those listed above, consult us.

\section*{- Caution when installing RAP with sensor switch}

In the ZC type sensor switches, the opposite side from the model marking surface is the sensing surface side. Mount it so that the cylinder magnet comes to the sensing surface side.

Remark: The above table shows reference values.```

