

Koganei Clean System products provide complete support for the maintenance of a clean environment inside the cleanroom.

Koganei Clean System products meet the needs of the ultra-clean production environment. In everything from actuators and valves to air preparation and auxiliary equipment, anti-corrosion materials processing and other Koganei-developed design concepts serve to prevent particle contamination within the cleanroom. These perfectly designed mechanisms, which resolve even the slightest leaks to the outside during operations, have already won a high level of reliability.

Koganei Cleanliness

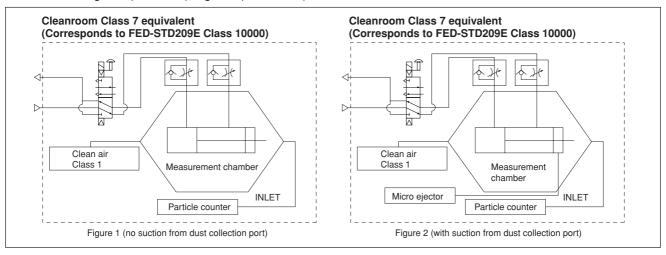
There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specifications. Therefore, to measure the effects of cleanroom contamination by pneumatic equipment, Koganei has decided to use "number of particles generated per 10 operations," rather than particle density. Koganei has also developed classifications for application classes in cleanroom, based on JIS and other upper limit density tables, and on the company's own experience.

Remarks: 1. In the above table, product performance in terms of the number of particles generated per 10 operations is expressed as the upper limit of particles corresponding to the equivalent JIS or ISO class.

- 2. In the above table, values in the JIS, ISO, and FED-STD upper limit density tables are calculated as upper density per liter.
- 3. The classes shown are clean levels as classified in JIS and ISO.

From the above definitions, the Koganei clean level classes can be viewed as the level of average contamination per liter of surrounding air over a period of 10 operations in cleanroom. Air ventilation in cleanrooms is usually faster than 1 cycle per minute, and clean volumetric capacity is usually larger than 1 liter, which should provide a sufficient safety margin in practice.

Caution: The above conclusions are based on an ideal situation in which air ventilation is being implemented. For specific cases where air ventilation is not ensured, caution is needed since the clean classes cannot be maintained.


The clean system diagrams shown here are for Class 5 equivalent products. For Class 4 or Class 3 equivalent products, consult us.

Koganei has therefore specified its in-house measurement methods, to conduct evaluations on the cleanroom rating.

The number of particles of the Air Cylinder Cleanroom Specification is measured as shown in the method below.

1. Measurement conditions

1-1 Test circuit: Figure 1 (no suction), Figure 2 (with suction)

1-2 Operating conditions of tested cylinder

Operating frequency: 1Hz

Average speed: 500mm/s [20in./sec.] Applied pressure: 0.5MPa [73psi.]

Suction condition: Microejector ME05, Primary side: 0.5MPa [73psi.] applied, Tube: ∮6 [0.236in.]

Mounting direction: Vertical Chamber volume: 8.3 ℓ [0.293ft.*]

2. Particle counter

Manufacturer/model: RION/KM20 Suction flow rate: 28.3 ℓ /min [1ft:/min.]

Particle diameter: 0.1 μ m, 0.2 μ m, 0.3 μ m, 0.5 μ m, 0.7 μ m, 1.0 μ m

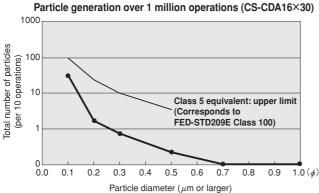
3. Measurement method

3-1 Confirmation of number of particles in the measurement system

Under the conditions in the above 1 and 2, using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.

3-2 Measurement under operation

Under the conditions in the above1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.


3-3 Reconfirmation

Performed the measurement in 3-1 again, to reconfirm the number of particles in the measurement system.

4. Measurement results

Cleanroom specification

Jig Cylinder (no suction from dust collection port)

Cleanroom specification

Slim Cylinder (with suction from dust collection port)

Particle generation over 1 million operations (CS-DA20×100) 1000 fotal number of particles (per 10 operations) Class 5 equivalent: upper limit (Corresponds to FED-STD209E Class 100) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 0.9 $1.0(\phi)$ Particle diameter (µm or larger)

Safety Precautions

Always read these precautions carefully before use.

For "safety precautions" listed in the Clean System Product Drawings, see the materials below.

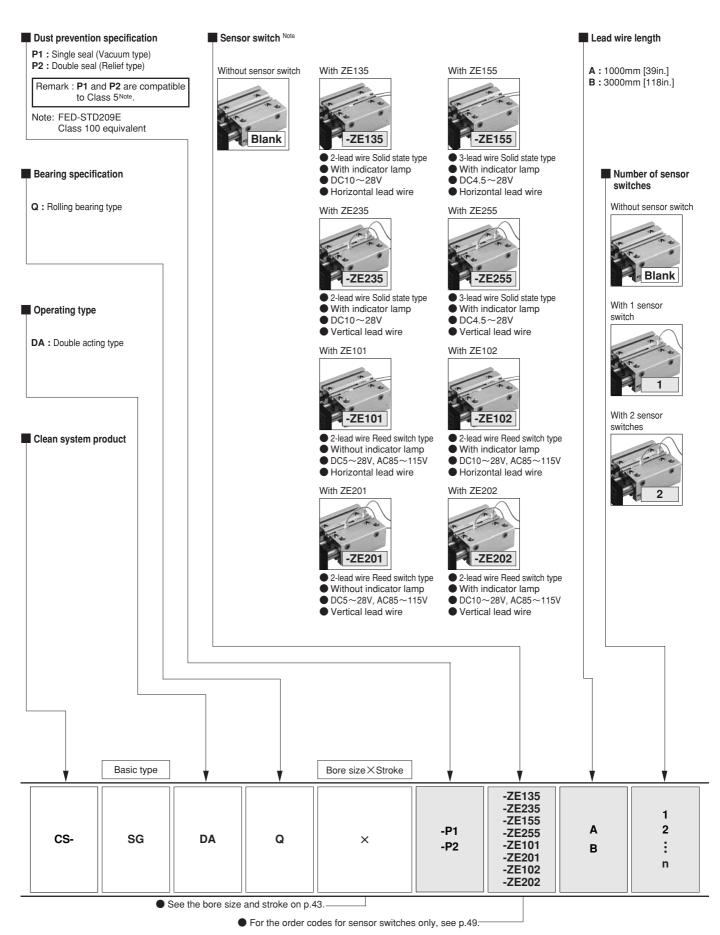
- \bullet For actuators, see "Safety Precautions" on p. 45 of the Actuators General Catalog .
- For valves, see "Safety Precautions" on p. 31 of the Valves General Catalog.
- For air treatment and auxiliary equipment, see "Safety Precautions" on p.31 of the General Catalog of Air Treatment, Auxiliary, Vacuum.

Symbol

Caution: If used when a lateral load is applied, or used as a lifter, load should be 20% or less of the standard type.

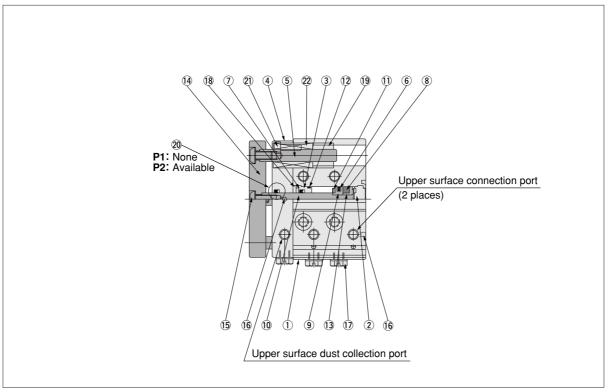
Specifications

Item Bore size mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
Operating type				Double a	cting type			1
Media				А	ir			
Operating pressure range MPa [psi.]	0.2	2~1.0 [29~14	l5]		0.1	5~1.0 [22~1 ⁴	1 5]	
Proof pressure MPa [psi.]				1.5 [218]			
Operating temperature range °C [°F]				0~60[3	32~140]			
Operating speed range mm/s [in./sec.]				100~300	[3.9~11.8]			
Cushion				Rubber	bumper			
Lubrication				Prohi	bited			
Port size	M5×0.8 Rc1/8 Rc1/4							1/4
Dust collection port size				M5>	<0.8			
Stroke tolerance mm [in.]				+1.5	+0.059 0			


Remark: Since plugs for connection ports in ϕ 20 \sim ϕ 63 are provided, care should be taken not to get sealant into the cylinder when assembling the plugs after applying sealant, etc.

Bore Size and Stroke

		mm [in.]
Bore size	Standard strokes	Maximum available stroke
12 [0.472]	10, 20, 30, 40, 50, 75, 100	100
16 [0.630]	10, 20, 30, 40, 30, 73, 100	100
20 [0.787]		
25 [0.984]		
32 [1.260]	10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200	200
40 [1.575]	10, 20, 30, 40, 30, 73, 100, 123, 130, 173, 200	200
50 [1.969]		
63 [2.480]		


Remarks: 1. Non-standard strokes are available at 5mm [0.197in.] intervals. Since the manufacturing method is collar packed, the total length, etc., are the same dimensions as the next size up standard stroke cylinder.

2. Strokes of 75mm [2.953in.] or longer, use long bushing type.

Note: For details of sensor switches, see p.111~121.

■ Jig Cylinder with Guide (Diagram shows ϕ 12 [0.472in.].)

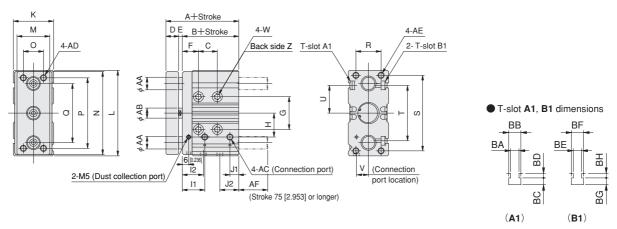
Remark: The number of bearings for 50mm [1.969in.] stroke or shorter is 1 bearing per shaft. At 75mm [2.953in.] stroke or longer, 2 bearings per shaft. The plate, piston rod, and guide rod cannot be disassembled.

Major Parts and Materials

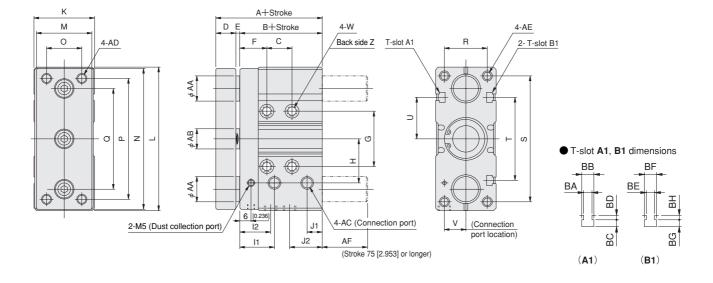
No.	Parts Bore mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	
1)	Cylinder body		Aluminum alloy (anodized)							
2	Head cover				Aluminum alle	oy (anodized)				
3	Rod cover			Aluminum	alloy (special v	wear-resistant	treatment)			
4	Dust prevention cover				Aluminum alle	by (anodized)				
5	Guide rod				Stainles	ss steel				
6	Piston seal				Synthetic ru	bber (NBR)				
7	Rod seal				Synthetic ru	bber (NBR)				
8	Magnet				Plastic	magnet				
9	Piston			Aluminum	alloy (special r	ust prevention	treatment)			
10	Piston rod			Sta	inless steel (ha	ırd chrome pla	ted)			
10	Bumper				Synthetic ru	bber (NBR)				
12	O-ring				Synthetic ru	bber (NBR)				
13	Support			Aluminum	alloy (special r	ust prevention	treatment)			
14	Plate				Aluminum alle	oy (anodized)				
15	Bolt		Steel (nic	kel plated)			Stainles	s steel		
16	Steel ball				Stainles	ss steel				
	Plug	Brass (nic	kel plated)	Stair	nless steel (sup	plied at shippi	ng for ϕ 20 [0.	787]∼ <i>ϕ</i> 63 [2.	480])	
18	Snap ring				Steel (nick	kel plated)				
19	Collar	Aluminum alloy (special rust prevention treatment)								
20	Dust leak prevention seal	Synthetic rubber (NBR)								
21)	Bolt		Stainless steel							
22	Rolling bearing			Steel, p	lastic (low dust	generation tre	eatment)			

Seals

Туре		Jig cylinders	with guides	
Parts	Rod seal	Piston seal	Tube	gasket
Bore size mm	Dust leak prevention seal	1 Istori scar	Rod side	Head side
12	MYR-6	PSD-12	Y090260	None
16	MYR-8	PSD-16	Y090207	Y090207
20	MYR-10	PSD-20	Y090216	Y090216
25	MYR-12	PSD-25	Y090210	Y090210
32	MYR-16	PSD-32	L090084	L090084
40	MYR-16	PSD-40	L090151	L090151
50	MYR-20	PSD-50	L090174	L090174
63	MYR-20	PSD-63	L090180	L090180


Mass

					g [oz.]
	Туре	Jig cylinders	with guides	Opt	ions
	Mass	Zero	Additional mass	Additional mass	of sensor switch
Bore size m		stroke mass	for each 1mm [0.0394in.] stroke	ZE□□□A	ZE□□□B
12	50 [1.969] st or shorter	158 [5.57]	3.63 [0.1280]		
[0.472]	75 [2.953] st or longer	168 [5.93]	3.63 [0.1280]		
16	50 [1.969] st or shorter	256 [9.03]	5.17 [0.1824]		
[0.630]	75 [2.953] st or longer	297 [10.48]	5.17 [0.1824]		
20	50 [1.969] st or shorter	440 [15.52]	8.4 [0.296]		
[0.787]	75 [2.953] st or longer	521 [18.38]	8.4 [0.296]		
25	50 [1.969] st or shorter	642 [22.65]	10.12 [0.3570]		
[0.984]	75 [2.953] st or longer	720 [25.40]	10.12 [0.3570]	15 [0 52]	25 [4 22]
32	50 [1.969] st or shorter	1012 [35.70]	13.71 [0.4836]	15 [0.53]	35 [1.23]
[1.260]	75 [2.953] st or longer	1227 [43.28]	13.71 [0.4836]		
40	50 [1.969] st or shorter	1230 [43.39]	15.78 [0.5566]		
[1.575]	75 [2.953] st or longer	1530 [53.97]	15.78 [0.5566]		
50	50 [1.969] st or shorter	2082 [73.44]	23.27 [0.8208]		
[1.969]	75 [2.953] st or longer	2419 [85.33]	23.27 [0.8208]		
63	50 [1.969] st or shorter	2700 [95.24]	26.97 [0.9513]		
[2.480]	75 [2.953] st or longer	3038 [107.16]	26.97 [0.9513]		


Rolling bearing type CS-SGDAQ [

Bore size X Stroke

• *φ* 12 [0.472], *φ* 16 [0.630]

\bullet ϕ 20 [0.787] \sim ϕ 63 [2.480]

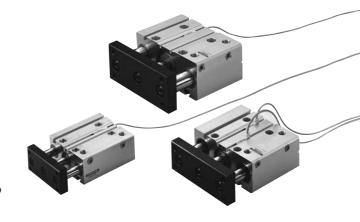
Code		_				С			_	_	_	_					
Bore size	Α	В	10	20	30	Stroke 40	50~100	125 or longer	D	E	F	G	Н	l1	12	J1	J2
12 [0.472]	46 [1.811]	35 [1.378]	15 [0.591]	25 [0.984]	35 [1.378]	45 [1.772]	55 [2.165]	_	8 [0.315]	3 [0.118]	15 [0.591]	22 [0.866]	17 [0.669]	20 [0.787]	19 [0.748]	6 [0.236]	14 [0.551]
16 [0.630]	50 [1.969]	37 [1.457]	15 [0.591]	25 [0.984]	35 [1.378]	45 [1.772]	55 [2.165]	_	10 [0.394]	3 [0.118]	15 [0.591]	26 [1.024]	19 [0.748]	20 [0.787]	19 [0.748]	7.5 [0.295]	16 [0.630]
20 [0.787]	62	46	20	30	40	50	60	110	12	4	16	30	27	21	21	10	20
	[2.441]	[1.811]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.472]	[0.157]	[0.630]	[1.181]	[1.063]	[0.827]	[0.827]	[0.394]	[0.787]
25 [0.984]	64	48	20	30	40	50	60	110	12	4	16	33	29	22	22	10	21
	[2.520]	[1.890]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.472]	[0.157]	[0.630]	[1.299]	[1.142]	[0.866]	[0.866]	[0.394]	[0.827]
32 [1.260]	69	50	20	30	40	50	60	110	15	4	17	44	35	23	20	12	25
	[2.717]	[1.969]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.591]	[0.157]	[0.669]	[1.732]	[1.378]	[0.906]	[0.787]	[0.472]	[0.984]
40 [1.575]	73	54	20	30	40	50	60	110	15	4	17	52	40	24	24	13	25
	[2.874]	[2.126]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.591]	[0.157]	[0.669]	[2.047]	[1.575]	[0.945]	[0.945]	[0.512]	[0.984]
50 [1.969]	80	57	20	30	40	50	60	110	18	5	18	66	52.5	25.5	20	15	31
	[3.150]	[2.244]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.709]	[0.197]	[0.709]	[2.598]	[2.067]	[1.004]	[0.787]	[0.591]	[1.220]
63 [2.480]	80	57	20	30	40	50	60	110	18	5	18	78	60	27	20	14	31
	[3.150]	[2.244]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.709]	[0.197]	[0.709]	[3.071]	[2.362]	[1.063]	[0.787]	[0.551]	[1.220]

mm [in.]

													111111 [111.]
Bore size	K	L	М	N	0	Р	Q	R	s	Т	U	VNote	W
12 [0.472]	28 [1.102]	58 [2.283]	22 [0.866]	56 [2.205]	14 [0.551]	48 [1.890]	42 [1.654]	18 [0.709]	51 [2.008]	37 [1.457]	18.5 [0.728]	8.5 [0.335]	ϕ 4.2 [0.165] (Thru hole) Counterbore ϕ 8 [0.315] Depth 4.5 [0.177]
16 [0.630]	32 [1.260]	68 [2.677]	26 [1.024]	66 [2.598]	16 [0.630]	56 [2.205]	47 [1.850]	20 [0.787]	60 [2.362]	44 [1.732]	22 [0.866]	9.5 [0.374]	φ 4.2 [0.165] (Thru hole) Counterbore φ 8 [0.315] Depth 4.5 [0.177]
20 [0.787]	40 [1.575]	82 [3.228]	36 [1.417]	80 [3.150]	24 [0.945]	66 [2.598]	58 [2.283]	26 [1.024]	72 [2.835]	54 [2.126]	27 [1.063]	13.5 [0.531]	ϕ 5.2 [0.205] (Thru hole) Counterbore ϕ 9.5 [0.374] Depth 5.5 [0.217]
25 [0.984]	42 [1.654]	92 [3.622]	38 [1.496]	90 [3.543]	26 [1.024]	76 [2.992]	63 [2.480]	30 [1.181]	80 [3.150]	54 [2.126]	27 [1.063]	14.5 [0.571]	ϕ 5.2 [0.205] (Thru hole) Counterbore ϕ 9.5 [0.374] Depth 5.5 [0.217]
32 [1.260]	48 [1.890]	114 [4.488]	44 [1.732]	112 [4.409]	28 [1.102]	96 [3.780]	80 [3.150]	34 [1.339]	100 [3.937]	66 [2.598]	33 [1.299]	17 [0.669]	ϕ 6.8 [0.268] (Thru hole) Counterbore ϕ 11 [0.433] Depth 7 [0.276]
40 [1.575]	54 [2.126]	124 [4.882]	50 [1.969]	122 [4.803]	34 [1.339]	106 [4.173]	90 [3.543]	40 [1.575]	106 [4.173]	82 [3.228]	41 [1.614]	18 [0.709]	ϕ 6.8 [0.268] (Thru hole) Counterbore ϕ 11 [0.433] Depth 7 [0.276]
50 [1.969]	66 [2.598]	150 [5.906]	62 [2.441]	148 [5.827]	42 [1.654]	120 [4.724]	110 [4.331]	44 [1.732]	130 [5.118]	100 [3.937]	50 [1.969]	22 [0.866]	φ 8.6 [0.339] (Thru hole) Counterbore φ 14 [0.551] Depth 9 [0.354]
63 [2.480]	76 [2.992]	162 [6.378]	72 [2.835]	160 [6.299]	52 [2.047]	132 [5.197]	122 [4.803]	44 [1.732]	144 [5.669]	120 [4.724]	60 [2.362]	24 [0.945]	ϕ 8.6 [0.339] (Thru hole) Counterbore ϕ 14 [0.551] Depth 9 [0.354]

Note: The \boldsymbol{V} dimension shows the side connection port location.

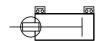
mm [in.]


Bore size	z	AA	АВ	AC	AD	AE	AF
12 [0.472]	M5×0.8 Depth 8 [0.315]	6 [0.236]	6 [0.236]	M5×0.8	M4×0.7	M4×0.7 Depth 8 [0.315]	5 [0.197]
16 [0.630]	M5×0.8 Depth 11 [0.433]	8 [0.315]	8 [0.315]	M5×0.8	M5×0.8	M5×0.8 Depth 10 [0.394]	13 [0.512]
20 [0.787]	M6×1 Depth 12 [0.472]	12 [0.472]	10 [0.394]	Rc1/8	M6×1	M6×1 Depth 12 [0.472]	17 [0.669]
25 [0.984]	M6×1 Depth 12 [0.472]	13 [0.512]	12 [0.472]	Rc1/8	M6×1	M6×1 Depth 12 [0.472]	18 [0.709]
32 [1.260]	M8×1.25 Depth 16 [0.630]	16 [0.630]	16 [0.630]	Rc1/8	M8×1.25	M8×1.25 Depth 16 [0.630]	26 [1.024]
40 [1.575]	M8×1.25 Depth 16 [0.630]	16 [0.630]	16 [0.630]	Rc1/8	M8×1.25	M8×1.25 Depth 16 [0.630]	22 [0.866]
50 [1.969]	M10×1.5 Depth 20 [0.787]	20 [0.787]	20 [0.787]	Rc1/4	M10×1.5	M10×1.5 Depth 20 [0.787]	29 [1.142]
63 [2.480]	M10×1.5 Depth 20 [0.787]	20 [0.787]	20 [0.787]	Rc1/4	M10×1.5	M10×1.5 Depth 20 [0.787]	29 [1.142]

mm [in.]

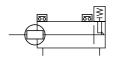
										111111 [1111.]
Bore Code	T-9	slot	ВА	ВВ	вс	BD	BE	BF	BG	ВН
size	A 1	B1	DA	DD	ВС	טם	BE	DF	В	БП
12 [0.472]	M3×0.5	M4×0.7	3.3 [0.130]	5.8 [0.228]	3 [0.118]	1.5 [0.059]	4.3 [0.169]	7.3 [0.287]	3.5 [0.138]	2.5 [0.098]
16 [0.630]	M4×0.7	M4×0.7	4.3 [0.169]	7.3 [0.287]	3.5 [0.138]	1.5 [0.059]	4.3 [0.169]	7.3 [0.287]	3.5 [0.138]	3 [0.118]
20 [0.787]	M4×0.7	M5×0.8	4.3 [0.169]	7.3 [0.287]	4 [0.157]	3 [0.118]	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]
25 [0.984]	M4×0.7	M5×0.8	4.3 [0.169]	7.3 [0.287]	4 [0.157]	3 [0.118]	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]
32 [1.260]	M5×0.8	M5×0.8	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]
40 [1.575]	M5×0.8	M6×1	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]	6.3 [0.248]	10.3 [0.406]	5.5 [0.217]	3 [0.118]
50 [1.969]	M5×0.8	M8×1.25	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]	8.3 [0.327]	13.3 [0.524]	7 [0.276]	4.5 [0.177]
63 [2.480]	M5×0.8	M8×1.25	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]	8.3 [0.327]	13.3 [0.524]	7 [0.276]	4.5 [0.177]

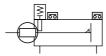
JIG CYLINDERS WITH GUIDES

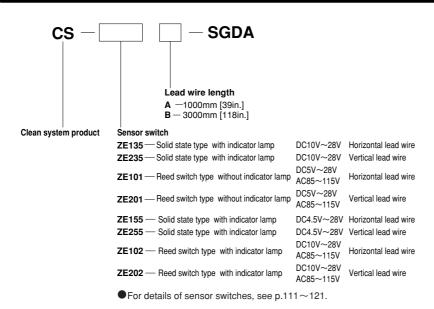

Sensor Switches

Symbols

Standard cylinder






● End keep cylinder (Head side)

Order Codes (for Sensor Switches Only)

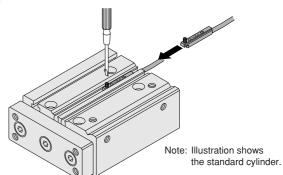
Minimum Cylinder Strokes When Mounting Sensor Switches

Solid state type

mm [in.]

Bore size	2 pcs. m	nounting Note	1 no mounting
mm [in.]	1-surface mounting	2-surface mounting	1 pc. mounting
12~63 [0.472~2.480]	10 [0	.394]	5 [0.197]

Note: Two pcs. mounting is possible at stroke 5mm. Be aware, however, that overlapping may occur.


Reed switch type

mm [in.]

	71		
Bore size	2 pcs. n	nounting	1 pc. mounting
mm [in.]	1-surface mounting	2-surface mounting	r pc. mounting
12~63 [0.472~2.480]	10 [0	.394]	10 [0.394]

Moving Sensor Switch

- Loosening the mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- Tighten the mounting screw with a tightening torque of 0.1 ~ 0.2N m [0.9 ~ 1.8in lbfl.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: &

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Solid state type

mm [in.]

Item Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
Operating range: ℓ	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	3.5~7.5 [0.138~0.295]	4~8.5 [0.157~0.335]
Response differential: C		1.0 [0.039] or less						
Maximum sensing location Note				6 [0.	236]			

Note: The maximum sensing location is the distance from the end of the switch on the opposite side of the lead wire.

Remark: The above table shows reference values.

●Reed switch type

mm [in.]

Item Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
Operating range: ℓ	5.5~8 [0.217~0.315]	6.5~9 [0.256~0.354]	10~13 [0.394~0.512]	11.5~15 [0.453~0.591]	9~11.5 [0.354~0.453]	10~13.5 [0.394~0.531]	10.5~14.5 [0.413~0.571]	11~15.5 [0.433~0.610]
Response differential: C	1.0 [0.039] or less	1.5 [0.059] or less						
Maximum sensing location Note	10 [0.394]							

Note: The maximum sensing location is the distance from the end of the switch on the opposite side of the lead wire.

Remark: The above table shows reference values.

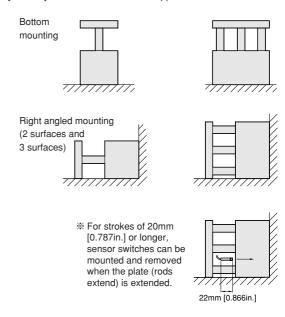
C (Response differential) OFF ON C (Response differential) Maximum sensing location

When Mounting Cylinders with Sensor Switches in Close Proximity

Sensor switch

When mounting cylinders in close proximity, install the cylinder so that it exceeds the values in the table below.

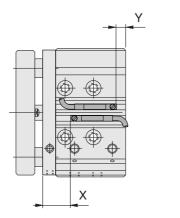
The end plates are the same

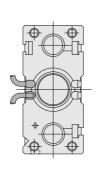

direction mm [in.]						
D	Solid st	ate type	Reed switch type			
Bore size	Α	В	Α	В		
12	33 [1.299]		28 [1.102]			
16	37 [1.457]	5 [0.197]	32 [1.260]			
20	45 [1.772]		40 [1.575]			
25	50 [1.969]		42 [1.654]	0 [0]		
32	56 [2.205]	8 [0.315]	48 [1.890]	0 [0]		
40	62 [2.441]		54 [2.126]			
50	78 [3.071]	10 [0 470]	66 [2.598]			
63	88 [3.465]	12 [0.472]	76 [2.992]			

The end plates are the opposite

direction mm [in.]							
D	Solid st	ate type	Reed switch type				
Bore size	Α	В	Α	В			
12	34 [1.339]		28 [1.102]				
16	38 [1.496]	6 [0.236]	32 [1.260]				
20	46 [1.811]		40 [1.575]				
25	25 54 [2.126]		42 [1.654]	0 [0]			
32	60 [2.362]	12 [0.472]	48 [1.890]	0 [0]			
40	66 [2.598]		54 [2.126]				
50	84 [3.307]	10 [0 700]	66 [2.598]				
63	94 [3.701]	18 [0.709]	76 [2.992]				

Mounting and Removing Sensor Switches


In Jig Cylinders with Guides of ϕ 12 \sim ϕ 63, be aware that sensor switches cannot be mounted or removed when strokes of 10mm [0.394in.] or shorter installed in the application shown below.



Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the locations shown in the diagram below (figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Jig cylinders with guides

■ Solid state type

mm [in.]

Code Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
Х	19.5 [0.768]	21 [0.827]	24 [0.945]	26 [1.024]	25 [0.984]	26.5 [1.043]	26.5 [1.043]	26.5 [1.043]
Υ	3.5 [0.138]	4.5 [0.177]	10 [0.394]	10 [0.394]	13 [0.512]	15.5 [0.610]	18.5 [0.728]	18.5 [0.728]

■ Reed switch type

mm [in.]

								111111 [111.]
Code Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
Х	15.5 [0.610]	17 [0.669]	20 [0.787]	22 [0.866]	21 [0.827]	22.5 [0.886]	22.5 [0.886]	22.5 [0.886]
Υ	0 [0]	0 [0]	6 [0.236]	6 [0.236]	9 [0.354]	11.5 [0.453]	14.5 [0.571]	14.5 [0.571]