Koganei Clean System products provide complete support for the maintenance of a clean environment inside the cleanroom.

Koganei Clean System products meet the needs of the ultra-clean production environment. In everything from actuators and valves to air preparation and auxiliary equipment, anti-corrosion materials processing and other Koganei-developed design concepts serve to prevent particle contamination within the cleanroom. These perfectly designed mechanisms, which resolve even the slightest leaks to the outside during operations, have already won a high level of reliability.

Koganei Cleanliness

There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specifications. Therefore, to measure the effects of cleanroom contamination by pneumatic equipment, Koganei has decided to use "number of particles generated per 10 operations," rather than particle density. Koganei has also developed classifications for application classes in cleanroom, based on JIS and other upper limit density tables, and on the company's own experience.

Remarks: 1. In the above table, product performance in terms of the number of particles generated per 10 operations is expressed as the upper limit of particles corresponding to the equivalent JIS or ISO class.
2. In the above table, values in the JIS, ISO, and FED-STD upper limit density tables are calculated as upper density per liter.
3. The classes shown are clean levels as classified in JIS and ISO.

From the above definitions, the Koganei clean level classes can be viewed as the level of average contamination per liter of surrounding air over a period of 10 operations in cleanroom. Air ventilation in cleanrooms is usually faster than 1 cycle per minute, and clean volumetric capacity is usually larger than 1 liter, which should provide a sufficient safety margin in practice.

Caution: The above conclusions are based on an ideal situation in which air ventilation is being implemented. For specific cases where air ventilation is not ensured, caution is needed since the clean classes cannot be maintained.

The clean system diagrams shown here are for Class 5 equivalent products. For Class 4 or Class 3 equivalent products, consult us.

Evaluations of Cleanliness

Koganei has therefore specified its in-house measurement methods, to conduct evaluations on the cleanroom rating.

The number of particles of the Air Cylinder Cleanroom Specification is measured as shown in the method below.

1. Measurement conditions

1-1 Test circuit: Figure 1 (no suction), Figure 2 (with suction)

1-2 Operating conditions of tested cylinder
Operating frequency: 1 Hz
Average speed: $500 \mathrm{~mm} / \mathrm{s}$ [20in. $/ \mathrm{sec}$.]
Applied pressure: 0.5 MPa [73psi.]
Suction condition: Microejector ME05, Primary side: 0.5 MPa [73psi.] applied, Tube: $\phi 6$ [0.236in.]
Mounting direction: Vertical
Chamber volume: 8.3ℓ [0.293 $\mathrm{ft}{ }^{3}$]

2. Particle counter

Manufacturer/model: RION/KM20
Suction flow rate: $28.3 \mathrm{l} / \mathrm{min}$ [1 ft . $/ \mathrm{min}$.]
Particle diameter: $0.1 \mu \mathrm{~m}, 0.2 \mu \mathrm{~m}, 0.3 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 0.7 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}$

3. Measurement method

3-1 Confirmation of number of particles in the measurement system
Under the conditions in the above 1 and 2 , using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.
3-2 Measurement under operation
Under the conditions in the above1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.
3-3 Reconfirmation
Performed the measurement in 3-1 again, to reconfirm the number of particles in the measurement system.

4. Measurement results

- Cleanroom specification

Jig Cylinder (no suction from dust collection port)
Particle generation over 1 million operations (CS-CDA16×30)

- Cleanroom specification

Slim Cylinder (with suction from dust collection port)
Particle generation over 1 million operations (CS-DA20×100)

For "safety precautions" listed in the Clean System Product Drawings, see the materials below.

- For actuators, see "Safety Precautions" on p. 45 of the Actuators General Catalog .
- For valves, see "Safety Precautions" on p. 31 of the Valves General Catalog.
- For air treatment and auxiliary equipment, see "Safety Precautions" on p. 31 of the General Catalog of Air Treatment, Auxiliary, Vacuum.

Symbol

Specifications

Item Bore size $\mathrm{mm}[$ in. $]$			6 [0.236]
Media			Air
Mounting type			Side mount
Operating pressure range		MPa [psi.]	$0.3 \sim 0.7$ [44~102]
Proof pre	-	MPa [psi.]	1.03 [149]
Operating temperature range $\quad{ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$			0~60 [32~140]
Operating	ge	mm / s [in./sec.]	100~300 [3.9~11.8]
Cushion			None
Lubricatio			Not required
Non-rotating accuracy			$\pm 0.45{ }^{\circ}$
Port size	Supply and	and exhaust port	M 5×0.8
	Dust colle	lection port	M5 $\times 0.8$

Bore Size and Stroke

		mm [in.]
Bore size	Standard strokes	Maximum available stroke
6 $[0.236]$	$10,20,30,40,50$	70

Note: Consult us for delivery of cylinders with strokes exceeding the standard.

Order Codes

Mass

Bore size mm [in.]		Zero stroke mass Note1	Additional mass		
		Additional mass of each 10 mm .] stroke	Mass of 1 sensor switch Note2		
		CS5T,CS11T,ZC130,ZC153			
6 [0.236]	Standard specification		68 [2.40]	12 [0.42]	A : 20 [0.71] B : 50 [1.76]

Notes: 1. The above table is for the standard strokes.
2. There are 2 types of sensor switch lead wire lengths. A: 1000 mm [39in.], B: 3000 mm [118in.]

Calculation example: The mass for bore size of 20 mm and stroke of 50 mm with 2 sensor switches (ZC130),
$68+(12 \times 5)+(20 \times 2)=168 \mathrm{~g}$ [5.93oz.]

Major Parts and Materials

No.	Parts	Materials
(1)	Cylinder body	Aluminum alloy (anodized)
(2)	Piston	Aluminum alloy (chromic acid anodic oxide coating)
(3)	Cover	Aluminum alloy (anodized)
(4)	Wear ring	Plastic
(5)	Piston rod	Steel (chrome plated)
(6)	Housing gasket	Synthetic rubber (NBR)
(7)	Housing	Aluminum alloy (chromic acid anodic oxide coating)
(8)	Seal holder	Aluminum alloy
(9)	Rod bushing	Plastic
(10)	Piston seal	Synthetic rubber (NBR)
(11)	Plug	Aluminum alloy (anodized)
(12)	Magnet	Plastic magnet
(13)	E-ring	Stainless steel
(14)	Washer	Steel (nickel plated)
(15)	End plate	Mild steel (nickel plated)
(16)	Rod seal	
(17)	Dust leak prevention seal	Synthetic rubber
(18)	Plug gasket	

Dimensions mm [in.]

Bore Code	A	B	C	D
$\mathbf{6}$	$61[2.402]$	$10[0.394]$	$51[2.008]$	$13[0.512]$

Note: The counterbore depth is measured from the upper surface of the body.

Sensor Switches

Order Codes

Minimum Cylinder Strokes When Using Sensor Switches

				mm [in.]
Type of sensor switch	2 pcs. mounting			1 pc. mounting
	1-surface mounting		2-surface mounting	
	One groove on each A surface and B surface	Two grooves on B surface		
CS \square T \square	40 [1.575]	10 [0.394]	10 [0.394]	10 [0.394]
ZC $\square \square$	40 [1.575]	10 [0.394]	10 [0.394]	10 [0.394]

Remark: For the mounting surfaces, see p.90.

- Order code of sensor holder only

C1-TDA6 ${ }^{\text {Note2 }}$
Notes: 1. Two sensor holders (one for the A, C surface and one for the B surface) come with 1 sensor switch.
2. One set consists of 2 sensor holders (one each for the A, C surface and for the B surface).
Remark: For the mounting surfaces, see p. 90.
For details of sensor switches, see p.111~121.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: ℓ
The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C
The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

CS5T \square			CS11T \square			ZC130 $\square, \mathrm{ZC153} \square$		
Operating range	Response differential	Maximum sensing loction location	Operating range	Response differentia	Maximum sensing location	Operating range	Response differentia	$\begin{gathered} \text { Maximum } \\ \text { sensing } \\ \text { location } \end{gathered}$
$\begin{gathered} \hline 5 \sim 7 \\ {[0.197 \sim} \\ 0.276] \end{gathered}$	$\begin{gathered} 1.3 \\ {[0.051]} \\ \text { or less } \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} 7 \\ {[0.276]} \end{gathered}\right.$	$\begin{gathered} 5 \sim 7 \\ {[0.197 \sim} \\ 0.276] \end{gathered}$	$\begin{gathered} 1.3 \\ {[0.051]} \\ \text { or less } \end{gathered}$	$\begin{gathered} 10.5 \\ {[0.413]} \end{gathered}$	$\begin{gathered} 2 \sim 3 \\ {[0.079 \sim} \\ 0.118] \end{gathered}$	$\begin{gathered} 0.3 \\ {[0.012]} \\ \text { or less } \\ \hline \end{gathered}$	$\begin{gathered} 8.5 \\ {[0.335]} \end{gathered}$

Note: The maximum sensing location is the distance from the end of the switch opposite to the lead wire.
Remark: The above table shows reference values.

Loosening mounting screw allows the sensor switch to be moved freely in the cylinder's axial direction.

- Tighten the mounting screw with a tightening torque of $0.3 \mathrm{~N} \cdot \mathrm{~m}[2.7 \mathrm{in} \cdot \mathrm{lbf}]$ or less.

-Caution when mounting

In the ZC type sensor switches, the opposite side from the model marking surface is the sensing surface side. Mount it so that the cylinder magnet comes to the sensing surface side.

- Mounting on either 1 or 2 surfaces of the A, B, or C surfaces allows detection of the rod side and head side stroke end.
- Since 2 sensor holders and 2 mounting screws (one for the A, C surface and one for the B surface) are provided for each sensor switch, use them in accordance with the required mounting surface.

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the locations shown below (the figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Mounting location	Sensor switch type		
	CS5T \square	CS11T \square	ZC130 $\square, \mathrm{ZC153} \square$
X	$\begin{gathered} 23 \\ {[0.906]} \end{gathered}$	$\begin{gathered} 19.5 \\ {[0.768]} \end{gathered}$	$\begin{gathered} 22 \\ {[0.866]} \end{gathered}$
Y	$\begin{gathered} 6 \\ {[0.236]} \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.256]} \end{gathered}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$

Remark: Mount the sensor switch so that the surface showing the model marking faces up.

Dimensions of Sensor Switch mm [in.]

Sensor Code	SW5Tich \square	CS11T \square	ZC130 \square	ZC153 \square
A	$22[0.866]$	$26[1.024]$	$25[0.984]$	

Symbol

Specifications

Bore Size and Stroke

mm [in.]		
Bore size	Standard strokes	Maximum available stroke
$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	10, 20, 30, 40, 50, 60, 70	140
$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	$\begin{aligned} & 10,20,30,40,50,60,70 \\ & 80,90,100 \end{aligned}$	200
$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	$\begin{aligned} & 10,20,30,40,50,60,70 \\ & 80,90,100 \end{aligned}$	200
$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$	$\begin{aligned} & 10,20,30,40,50,60,70 \\ & 80,90,100 \end{aligned}$	200
$\begin{gathered} 32 \\ {[1.260]} \end{gathered}$	$\begin{aligned} & 10,20,30,40,50,60,70 \\ & 80,90,100 \end{aligned}$	200

Remark: Consult us for delivery of cylinders with strokes exceeding the standard.

Order Codes

Remark: In the standard cylinder, the magnet for sensor switch is built-in.

Major Parts and Materials

No.	Parts	Materials
(1)	Cylinder body	Aluminum alloy (anodized)
(2)	Piston	Aluminum alloy (chromic acid anodic oxide coating)
(3)	Cover	Aluminum alloy (anodized)
(4)	Wear ring	Plastic
(5)	Piston rod	Steel (chrome plated)
(6)	Housing gasket	Synthetic rubber (NBR)
(7)	Housing	Aluminum alloy (chromic acid anodic oxide coating)
(8)	Seal holder	Mild steel (nickel plated)
(9)	Rod bushing	Plastic
(10)	Piston seal	Synthetic rubber (NBR)
(11)	Plug	Aluminum alloy (anodized)
(12)	Magnet	Plastic magnet
(13)	E-ring	Stainless steel
(14)	Washer	Steel (nickel plated)
(15)	End plate	Mild steel (nickel plated)
(16)	Bumper	$\phi 10,16,20,25$: Synthetic rubber, $\phi 32:$ Urethane
(17)	Rod seal	
(18)	Dust leak prevention seal	Synthetic rubber (NBR)
(19)	Plug gasket	

Seals

Parts	Rod seal	Piston seal	Plug gasket	Housing gasket	Dust leak prevention seal
Bueem Q'ty	2	2	2	2	2
$\mathbf{1 0}$	PIU-6	PWP-10	1.5×9	1.5×9	PIU-6
$\mathbf{1 6}$	PIU-8	PWP-16	1.5×15	1.5×13	PIU-8
$\mathbf{2 0}$	PIU-10	PWP-20	1.5×19.5	1.5×17	PIU-10
$\mathbf{2 5}$	PIU-12	PWP-25	1.5×23	1.5×22	PIU-12
$\mathbf{3 2}$	PIU-16	PWP-32	2×31.5	2×28.5	PIU-16

Mass

Notes: 1. The above table is for the standard strokes.
2. There are 2 types of sensor switch lead wire lengths.

A: 1000 mm [39in.], B: 3000 mm [118in.]

Calculation example: The mass for bore size of 20 mm and stroke of 60 mm with 2 sensor switches (ZC135A),
$393+(36 \times 6)+(15 \times 2)=639 \mathrm{~g}[22.54 \mathrm{oz}$.]

Code	A	B	C	D	E						
Bore Stroke					10	20	30	40	50	60	70
10 [0.394]	$\begin{gathered} 68 \\ {[2.677]} \end{gathered}$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$	$\begin{gathered} 56 \\ {[2.205]} \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \end{array} \right\rvert\,$	$\begin{gathered} 40 \\ {[1.575]} \end{gathered}$	$\begin{gathered} 40 \\ {[1.575]} \end{gathered}$	$\begin{gathered} 45 \\ {[1.772]} \end{gathered}$	$\begin{gathered} 50 \\ {[1.969]} \end{gathered}$	$\begin{array}{\|c} \hline 55 \\ {[2.165]} \end{array}$	$\begin{gathered} 60 \\ {[2.362]} \end{gathered}$	$\begin{gathered} 65 \\ {[2.559]} \end{gathered}$

Note: The counterbore depth is measured from the upper surface of the body.

- $\boldsymbol{\phi} 16 \sim \phi 25$ CS-TBDA Bore size $\times \square$ Stroke

Cod	A	B	C	D	E										F	G	H	1	J		K	L	M	N_{1}	N_{2}
Bore Stroke					10	20	30	40	50	60	70	80	90	100											
16 [0.630]	$\begin{array}{c\|} \hline 78 \\ {[3.071]} \end{array}$	$\begin{array}{\|c} \hline 15 \\ {[0.591]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 63 \\ {[2.480]} \\ \hline \end{array}$	$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	$\begin{gathered} 40 \\ {[1.575]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 45 \\ {[1.772]} \\ \hline \end{array}$	$\left[\begin{array}{c} 50 \\ {[1.969]} \end{array}\right.$	$\begin{gathered} 55 \\ {[2.165]} \end{gathered}$	$\begin{gathered} 60 \\ {[2.362]} \end{gathered}$	$\begin{gathered} 65 \\ {[2.559]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ {[2.756]} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 75 \\ {[2.953]} \\ \hline \end{array}$	$\begin{gathered} 80 \\ {[3.150]} \end{gathered}$	$\begin{array}{\|c\|} \hline 85 \\ {[3.346]} \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \\ \hline \end{array}$	$\left[\begin{array}{c} 47 \\ {[1.850]} \end{array}\right.$	$\left[\left.\begin{array}{c} 7 \\ {[0.276]} \end{array} \right\rvert\,\right.$	$\begin{array}{\|c\|} \hline 24 \\ {[0.945]} \\ \hline \end{array}$	M4×	epth 5 [0.197]	$\begin{array}{c\|} \hline 47 \\ {[1.850]} \end{array}$	$\left[\begin{array}{c} 53 \\ {[2.087]} \\ \hline \end{array}\right.$	$\left[\begin{array}{c} 20 \\ {[0.787]} \end{array}\right.$	$\begin{array}{c\|} \hline 32 \\ {[1.260]} \end{array}$	$\begin{gathered} 10 \\ {[0.394]} \\ \hline \end{gathered}$
20 [0.787]	$\left[\begin{array}{c} 88 \\ {[3.465]} \end{array}\right]$	$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	$\begin{array}{\|c\|} 68 \\ {[2.677]} \end{array}$	$\left[\begin{array}{c} 20 \\ {[0.787]} \end{array}\right.$	$\begin{gathered} 45 \\ {[1.772]} \end{gathered}$	$\left[\begin{array}{c} 45 \\ {[1.772]} \end{array}\right.$	$\left[\begin{array}{c} 50 \\ {[1.969]} \end{array}\right.$	$\begin{gathered} 55 \\ {[2.165]} \end{gathered}$	$\begin{gathered} 60 \\ {[2.362]} \end{gathered}$	$\left\lvert\, \begin{gathered} 65 \\ {[2.559]} \end{gathered}\right.$	$\left[\begin{array}{c} 70 \\ {[2.756]} \end{array}\right.$	$\begin{gathered} 75 \\ {[2.953]} \end{gathered}$	$\left[\begin{array}{c} 80 \\ {[3.150]} \end{array}\right.$	$\begin{gathered} 85 \\ {[3.346]} \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 55 \\ {[2.165]} \end{gathered}$	$\left[\begin{array}{c} 10 \\ {[0.394]} \end{array}\right]$	$\begin{gathered} 28 \\ {[1.102]} \end{gathered}$	M4×0.7	Depth 5 [0.197]	$\left[\begin{array}{c} 55 \\ {[2.165]} \end{array}\right.$	$\begin{gathered} 61 \\ {[2.402]} \end{gathered}$	$\begin{gathered} 24 \\ {[0.945]} \end{gathered}$	$\left[\left.\begin{array}{c} 35 \\ {[1.378]} \end{array} \right\rvert\,\right.$	$\begin{gathered} 12 \\ {[0.472]} \\ \hline \end{gathered}$
25 [0.984]	$\left[\begin{array}{c} 91 \\ {[3.583]} \end{array}\right.$	$\left\|\begin{array}{c} 19 \\ {[0.748]} \end{array}\right\|$	$\begin{array}{\|c\|} \hline 72 \\ {[2.835]} \\ \hline \end{array}$	$\begin{gathered} 30 \\ {[1.181]} \end{gathered}$	$\left[\begin{array}{c} 50 \\ {[1.969]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 50 \\ {[1.969]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 55 \\ {[2.165]} \end{array}$	$\left\lvert\, \begin{gathered} 60 \\ {[2.362]} \end{gathered}\right.$	$\left.\begin{array}{c} 65 \\ {[2.559]} \end{array}\right]$	$\begin{gathered} 70 \\ {[2.756]} \end{gathered}$	$\left[\begin{array}{c} 75 \\ {[2.953]} \end{array}\right.$	$\left.\begin{array}{c} 80 \\ {[3.150]} \end{array}\right]$	$\begin{gathered} 85 \\ {[3.346]} \end{gathered}$	$\begin{gathered} 90 \\ {[3.543]} \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 66 \\ {[2.598]} \end{gathered}$	$\left[\begin{array}{c} 9 \\ {[0.354]} \end{array}\right.$	$\begin{gathered} 34 \\ {[1.339]} \end{gathered}$	M4×0.8	Depth 6 [0.236]	$\begin{array}{\|c\|} \hline 66 \\ {[2.598]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 72 \\ {[2.835]} \\ \hline \end{array}$	$\begin{gathered} 29 \\ {[1.142]} \end{gathered}$	$\left[\begin{array}{c} 40 \\ {[1.575]} \end{array}\right.$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$

Bore Code	P_{1} Note	Q	S	T	V	W	Y	Z
16 [0.630]	$\phi 4.5$ [0.177] (Thru hole) Counterbore $\phi 8$ [0.315] Depth 5.5 [0.217] (Both sides)	$\begin{gathered} 34 \\ {[1.339]} \end{gathered}$	$\begin{gathered} 54 \\ {[2.126]} \\ \hline \end{gathered}$	$\left[\begin{array}{c} 21 \\ {[0.827]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{array}{c\|} \hline 6.2 \\ {[0.244]} \\ \hline \end{array}$	$\begin{aligned} & 18.5 \\ & {[0.728]} \\ & \hline \end{aligned}$	$\begin{gathered} 5.7 \\ {[0.224]} \end{gathered}$
20 [0.787]	$\phi 4.5$ [0.177] (Thru hole) Counterbore $\phi 8$ [0.315] Depth 5.5 [0.217] (Both sides)	$\begin{gathered} 44 \\ {[1.732]} \end{gathered}$	$\begin{gathered} 62 \\ {[2.441]} \end{gathered}$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 8.2 \\ {[0.323]} \end{gathered}$	$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	$\begin{gathered} 6.8 \\ {[0.268]} \end{gathered}$
25 [0.984]	$\phi 4.5$ [0.177] (Thru hole) Counterbore $\phi 9$ [0.354] Depth 6 [0.236] (Both sides)	$\left[\begin{array}{c} 56 \\ {[2.205]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 73 \\ {[2.874]} \\ \hline \end{array}$	$\begin{gathered} 30 \\ {[1.181]} \end{gathered}$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$	$\begin{aligned} & 10.2 \\ & {[0.402]} \end{aligned}$	$\begin{aligned} & 22.5 \\ & {[0.886]} \end{aligned}$	$\begin{gathered} 8.3 \\ {[0.327]} \end{gathered}$

Note: The counterbore depth is measured from the upper surface of the body.

de	A	B	C	D	E									
Bore					10	20	30	40	50	60	70	80	90	100
32 [1.260]	$\begin{gathered} 118 \\ {[4.646]} \end{gathered}$	$\begin{gathered} 30 \\ {[1.181]} \end{gathered}$	$\begin{array}{\|c\|} \hline 88 \\ {[3.465]} \end{array}$	$\begin{gathered} 35 \\ {[1.378]} \end{gathered}$	$\begin{array}{\|c\|} \hline 55 \\ {[2.165]} \end{array}$	$\begin{gathered} 60 \\ {[2.362]} \end{gathered}$	$\begin{array}{\|c\|} \hline 65 \\ {[2.559]} \end{array}$	$\begin{array}{\|c\|} \hline 70 \\ {[2.756]} \end{array}$	$\begin{array}{\|c\|} \hline 75 \\ {[2.953]} \end{array}$	$\begin{gathered} 80 \\ {[3.150]} \end{gathered}$	$\begin{gathered} 85 \\ {[3.346]} \end{gathered}$	$\begin{gathered} 90 \\ \text { 93.5431 } \end{gathered}$	$\begin{gathered} 95 \\ \text { [3.740] } \end{gathered}$	$\begin{gathered} 100 \\ {[3.937]} \end{gathered}$

Note: The counterbore depth is measured from the upper surface of the body.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location
Operating range: ℓ
The distance the piston travels in one direction, while the switch is
in the

- Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Sensor switch mounting surface

mm [in.]

Item	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Mounting } \\ \text { surface } \end{array} & \text { Bore size } \\ \hline \end{array}$	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
Operating range : ℓ	A and C surface	2.5~6 [0.098~0.236]			2.5~6.5 [0.098~0.256]	5~12 [0.197~0.472]
	B surface	$2.5 \sim 4[0.098 \sim 0.157]$	2~4.5 [0.079~0.177]		2.5~5.5[0.098~0.217]	4~9 [0.157~0.354]
Response differential : C	-	1.0 [0.039] or less	1.2 [0.047] or less		1.5 [0.059] or less	2.0 [0.079] or less
Maximum sensing location ${ }^{\text {lue }}$	-	6 [0.236]				

Remark: The above table shows reference values.
Note: The maximum sensing location is the distance from the end of the switch opposite to the lead wire.

OReed switch type

Bore size Item	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
Operating range : ℓ	6~8.5	0.335]	6~8 [0.236~0.315]	7~9.5[0.276~0.374]	12~16.5 [0.472~0.650]
Response differential : C	1.5 [0.059] or less				2.5 [0.098] or less
Maximum sensing locaion ${ }^{\text {loeb }}$	10 [0.394]				

Remark: The above table shows reference values.
Note: The maximum sensing location is the distance from the end of the switch opposite to the lead wire.

When mounting cylinders in close proximity,
install the cylinder so that it should exceed the values in the table below.
mm [in.]

Status of mounting in close proximity	Code	Type	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
A		Solid state type	53 [2.087]	66 [2.598]	73 [2.874]	87 [3.425]	119 [4.685]
B	A	Reed switch type	48 [1.890]	60 [2.362]	68 [2.677]	81 [3.189]	109 [4.291]
	B	Solid state type	11 [0.433]	12 [0.472]	11 [0.433]	14 [0.551]	23 [0.906]
		Reed switch type	6 [0.236]			8 [0.315]	13 [0.512]

	A	Solid state type	47 [1.850]	59 [2.323]	65 [2.559]	77 [3.031]	107 [4.213]
		Reed switch type	42 [1.654]	54 [2.126]	62 [2.441]	73 [2.874]	96 [3.780]
	B	Solid state type	5 [0.197]		3 [0.118]	4 [0.157]	11 [0.433]
		Reed switch type	0 [0]				

	A	Solid state type	28 [1.102]	33 [1.299]	36 [1.417]	44 [1.732]	65 [2.559]
		Reed switch type	22 [0.866]	27 [1.063]	30 [1.181]	37 [1.457]	53 [2.087]
	B	Solid state type	11 [0.433]	12 [0.472]	11 [0.433]	14 [0.551]	25 [0.984]
		Reed switch type	5 [0.197]	6 [0.236]	5 [0.197]	7 [0.276]	13 [0.512]
	A	Solid state type	21 [0.827]	24 [0.945]	25 [0.984]	30 [1.181]	44 [1.732]
		Reed switch type	17 [0.669]	21 [0.827]	25 [0.984]	30 [1.181]	40 [1.575]
	B	Solid state type	4 [0.157]	3 [0.118]	0 [0]		4 [0.157]
		Reed switch type	0 [0]				

Remark: For mounting in configurations other than the above, consult us.

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the locations shown below (figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

When the lead wire is pulled from the head side.

When the lead wire of the head side detection sensor switch only is pulled from the rod side.

mm [in.]					
Code Bore	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
X	37.5 [1.476]	43.5 [1.713]	$47.5[1.870]$	52.5 [2.067]	62 [2.441]
Y	-3.5[-0.138]	-2.5[-0.098]	-1.5[-0.059]	-2.5[-0.098]	4 [0.157]

Reed switch type

Code	Bore	$\mathbf{1 0}[0.394]$	$\mathbf{1 6}[0.630]$	$\mathbf{2 0}[0.787]$	$25[0.984]$
\mathbf{X}	$32[1.260]$				
\mathbf{Y}	$0.5[1.319]$	$39.5[1.555]$	$43.5[1.713]$	$48.5[1.909]$	$58[2.283]$

mm [in.]					
Code Bore	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
X	37.5 [1.476]	43.5 [1.713]	47.5 [1.870]	52.5 [2.067]	62 [2.441]
Y	$6.5[0.256]$	$7.5[0.295]$	$8.5[0.335]$	$7.5[0.295]$	14 [0.551]

Reed switch type

Code	Bore	$\mathbf{1 0}[0.394]$	$\mathbf{1 6}[0.630]$	$\mathbf{2 0}[0.787]$	$25[0.984]$
\mathbf{X}	$32[1.260]$				
\mathbf{Y}	$2.5[1.319]$	$39.5[1.555]$	$43.5[1.713]$	$48.5[1.909]$	$58[2.283]$

