

KOGANEI **ACTUATORS GENERAL CATALOG**

SLIT TYPE RODLESS CYLINDERS ϕ 10

SLIT TYPE RODLESS CYLINDERS ϕ 63, ϕ 80

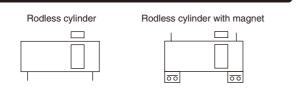
KOGANEI

ACTUATORS GENERAL CATALOG

SLIT TYPE RODLESS CYLINDERS ϕ 10

CONTENTS

Features/Specifications/Order Codes -	1069
nner Construction —	1070
Dimensions —————	1071
Handling Instructions and Precautions	1072


SLIT TYPE RODLESS CYLINDERS φ 10

ORC 10

The smallest slit barrel type with seal band in the series

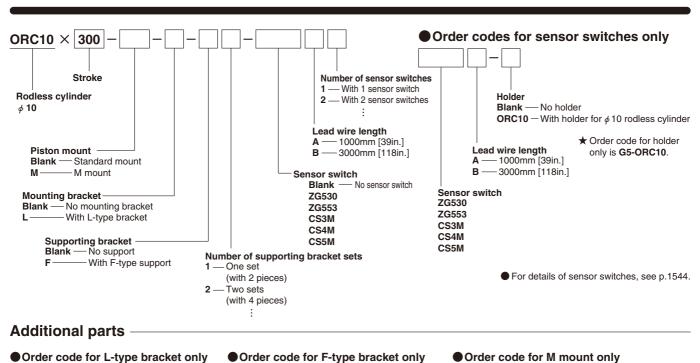
- Offers directly applying loads, non-rotating, and long strokes in hard-to-reach places not covered under conventional small-bore cylinders.
- Compact sensor switch strongly supports the space savings of the ultra-slender body.

Symbols

Specifications

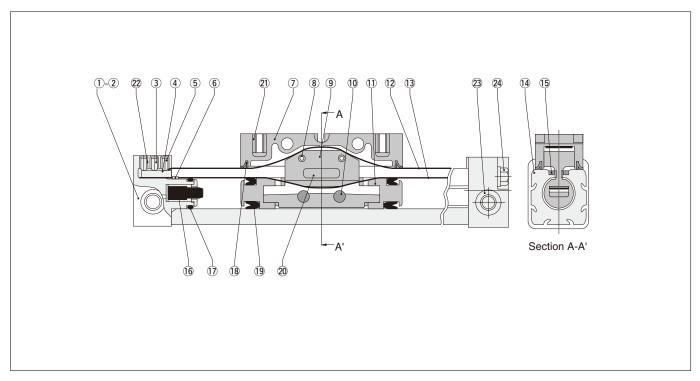
	Dave see fin 1	10.70.70.10
Item	Bore mm [in.]	10 [0.394]
Operation type		Double acting type
Media		Air
Operating pressure rar	nge MPa [psi.]	0.2~0.7 [29~102]
Proof pressure	MPa [psi.]	1.03 [149]
Operating temperature range °C [°F]		0~60 [32~140]
Operating speed range mm/s [in./sec.]		100~500 [3.9~19.7] Note
Cushion		Rubber bumper
Lubrication		Not required
Maximum stroke	mm [in.]	2000 [78.74]
Stroke tolerance	1000 [39.37] or less	+5 [+0.197] 0 0
mm [in.]	1001~2000 [39.41~78.74]	+6 [+0.236] 0 [0]
Port size		M5×0.8

Note: For piston speed, see p.1072 Cushioning capacity


M- ORC 10

Stroke

	mm
Standard strokes	Available strokes
100, 200, 300, 400, 500	25~2000


Remark: Non-standard strokes are available at 1mm pitch intervals. Consult us for delivery.

Order Codes

F - ORC 10

L - ORC 10

Major Parts and Materials

No.	Parts	Materials	Q'ty	Remarks
1	End cover R Note1	Polybutylene terephthalate	1	
2	End cover L Note2	Polybutylene terephthalate	1	
3	Inner seal band setscrew	Alloy steel	4	Hexagon socket setscrew
4	Inner seal band lock	Steel	2	Nickel plated
(5)	Outer seal band setscrew	Alloy steel	4	Hexagon socket setscrew
6	Rivet	Polyacetal	2	
7	Piston mount	Nylon	1	
8	Spring pin	Alloy steel	2	
9	Piston yoke	Zinc alloy	1	Chromating
10	Magnet	Rare earth magnet	2	
11)	Piston	Polyacetal	2	
12	Outer seal band	Stainless chrome steel	1	

Notes: 1.	When looking at the front of the connection ports, this is the left
	sided one.

^{2.} When looking at the front of the connection ports, this is the right sided one.

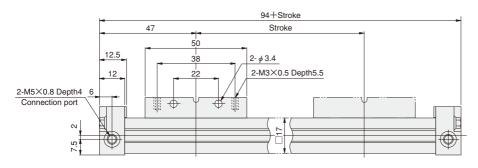
No.	Parts	Materials	Q'ty	Remarks
13	Inner seal band	Stainless chrome steel	1	
14)	Cylinder barrel	Aluminum alloy	1	Anodized
15	Magnet strip	Rubber magnet	2	
16	Bumper	Synthetic rubber (NBR)	2	
⊕*	Cylinder gasket	Synthetic rubber (NBR)	2	
18★	Scraper	Nylon	1	
19★	Piston seal	Synthetic rubber (NBR)	2	
20★	Bearing strip	Polyethylene	2	
21)	Thread insert	Brass	2	
22	Thread insert	Brass	8	
23	Thread insert	Brass	2	Nickel plated
24	End cap screw	Alloy steel	4	Zinc plated

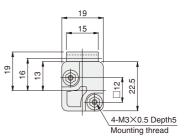
^{★:} Available as a seal repair kit.

Cylinder Thrust

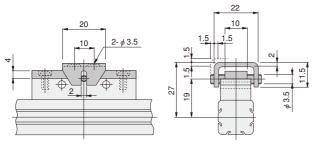
Select a suitable cylinder bore size considering the load and air pressure to obtain the required thrust.

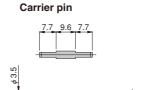
Since the figures in the table are calculated values, select a bore size that results in a load ratio (load ratio = $\frac{\text{Load}}{\text{Calculated value}}$) of 70% or less.


						N [lbf.]
Pressure area		Ai	r pressure	MPa [ps	si.]	
mm² [in.²]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
78.5 [0.1217]	15.7 [3.53]	23.5 [5.28]	31.4 [7.06]	39.3 [8.83]	47.1 [10.59]	55.0 [12.36]

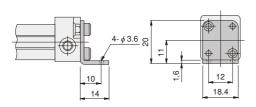

Mass

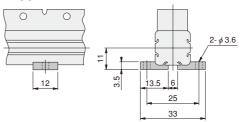
					kg [lb.]
Zero stroke mass	Additional mass for each		Additional mass of	of option (per unit)	
(with standard mount)	1 mm [0.0394in.] stroke	M mount	L-type bracket	F-type support	Sensor switch (with holder)
0.078 [0.172]	0.00054 [0.00119]	0.018 [0.040]	0.008 [0.018]	0.002 [0.004]	A: 0.05 [0.11] B: 0.09 [0.20]

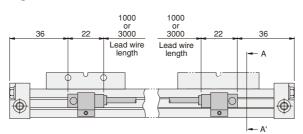

●Standard mount ORC 10 × Stroke






M mount




L-type bracket

F-type support

Mounting location of sensor switch

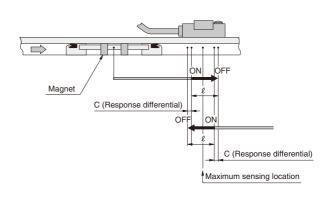
ORC-SW

- Notes: 1. When the sensor switch is mounted in the dimensions shown in the drawing, the magnet comes to the sensor switch's maximum sensing location at the end of the stroke.
 - When 2 sensor switches are mounted on the same surface, the minimum stroke should be 25mm.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

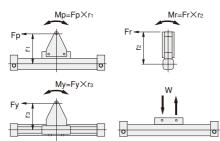

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Maximum sensing location

- maximum scrisii	mm [in.]	
Sensor switch model	ZG530, ZG553	CS3M, CS4M, CS5M
Operating range: ℓ	2.4~4.1 [0.094~0.161]	4~7 [0.157~0.276]
Response differential: C	0.7 [0.028]	1 [0.039]
Maximum sensing location Note	11 [0.433]	8 [0.315]

Note: This is the length measured from the switch's opposite end side to the lead wire.

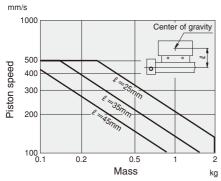


Selection

Allowable load and moment

Although the rodless cylinder ϕ 10 [0.394in.] can be used with directly applying loads, make sure that the load and moment do not exceed the values in the below.

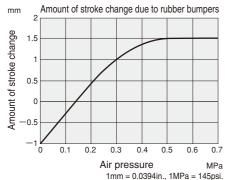
Pitching moment : Mp=Fp \times r₁.......1N·m [0.74ft·lbf] Rolling moment : Mr=Fr \times r₂....... 0.2N·m [0.15ft·lbf] Yawing moment : My=Fy \times r₃...... 0.3N·m [0.22ft·lbf] Maximum load capacity : W............... 20N [4.5lbf.]


Remark: The inclined angle of the piston mount when applying the maximum moment in the rolling direction should be 3 degrees or less for totaling both swing directions.

Cautions: 1. The moment including the inertial force generated when the load is moved or stopped must not exceed the values in the above. For the mass and piston speed, see the [Cushioning capacity].

2. Rolling moment: Mr Should not be applied as much as possible.

Cushioning capacity


While rubber bumpers are standard equipment on all rodless cylinders ϕ 10, keep the maximum mass and speed within the ranges shown in the graph below. If load and speed exceed the ranges, install an external shock absorber, etc., to absorb the shock.

1mm = 0.0394in./sec., 1kg = 2.205lb.

Cautions: 1. The maximum speed of the rodless cylinder ϕ 10 [0.394in.] is 500mm/s [19.7in./sec.].

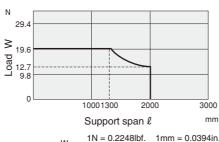
2. The mass shown in the graph is the total mass carried by the rodless cylinder ϕ 10 [0.394in.] .

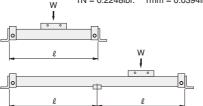
3

Mounting, Maintenance

Mounting

- While any mounting direction is allowed, we recommend that the piston mount be installed so that it faces downward when mounting in locations subject to dripping water or oil, etc., or to large amounts of dust.
- Avoid any electric welding after mounting the rodless cylinder φ 10 [0.394in.]. Current may flow into the cylinder, generate sparks between the inner seal band, outer seal band, and cylinder barrel, and damage the seal band.


Caution: Avoid applying strong shocks to the cylinder barrel's slit portion.


Support

A long stroke and large load may cause deflection in the cylinder barrel.

If support span: ℓ exceeds the values shown in the graph, install an F-type support in the intermediate stroke position.

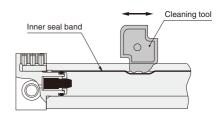
Support span: $\ell = \text{Stroke} + 94 \text{mm} [3.70 \text{in.}]$

Caution: We recommend mounting an F-type support whenever support span: ℓ exceeds 1300mm [51.18in.], regardless of the load status.

Piston mount assembly

M mount

Set the pin with the collar attached to the standard mount, then use mounting bolts to secure the M mount in place, and align the groove on the mounting plate to the pin, and place the mount on the pin.


Intermediate stop control

Since for structural reasons external air leakage is inevitable for the rodless cylinder ϕ 10 [0.394in.], use of all port block 3-position valves, etc., for intermediate stop control could result in failure to maintain the stopping position. We recommend, therefore, the installation of double-sided pressure control circuits that use PAB-connection 3-position valves, etc. For intermediate stop control circuit under constant loads, such as vertical mounting applications, consult us.

Maintenance

The rodless cylinder ϕ 10 [0.394in.] is structurally incapable of completely preventing air leakage to the outside. Nevertheless, particles adhering to the inner seal band are the most common cause of initial-staged air leakages, and this type of failure is easily remedied.

First, loosen the outer seal band setscrews, remove the outer seal band, and apply approx. 0.1MPa [15psi.] of air pressure to the rodless cylinder. Next, insert a cleaning tool inside the cylinder barrel slit and then, while pressing down the inner seal band and moving it along the slit, use air to blow off the particles.

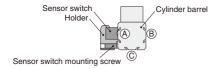
Cautions: 1. Always use protective glasses.

- When performing maintenance, use the special cleaning tool. Use of a screwdriver or other tool could damage the inner seal band or cylinder barrel.
- If the above maintenance fails to stop the air leakage, follow instructions in the user's manual to perform a cylinder overhaul.

Sensor switch

Handling precautions

- Because of a magnetic sensing-type sensor switch, avoid use in locations under strong magnetic fields, or near power lines and other large current sources.
- **2.** Do not apply strong force or excessive bending to the lead wire.
- **3.** Avoid use in ambient chemical atmospheres.
- **4.** For use in ambient atmospheres subject to dripping water or oil, consult us.
- Note that the relay may be unable to respond when the piston speed is high and the switch's ON time becomes too short.


Mounting

Loosening the sensor switch mounting screw (M3) allows removal of the holder and sensor switch.

For mounting, hook the holder latch along with the sensor switch onto the lower groove of the cylinder barrel, and then tighten the mounting screw

Set the tightening torque of the mounting screw to 0.2N·m [1.8in·lbf].

The sensor switch can be mounted in either location A or B shown in the diagram. It cannot be mounted in location c.

Caution: After mounting the sensor switch, always confirm it is securely mounted.

General precautions

Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the rodless cylinder ϕ 10 [0.394in.]. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

Atmosphere

- If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, the band may break or the life of the seals could be shortened, and use a cover to protect the unit, or install with the piston mount facing downward.
- 2. Do not engage in electric welding close to the rodless cylinder ϕ 10 [0.394in.]. The welding spatters could damage the outer seal band.
- The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.
 - Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Lubrication

The rodless cylinder ϕ 10 [0.394in.] can be used without lubrication. If lubrication is required, use the recommended oils listed below.

Recommended oils

Idemitsu Kosan Co., Ltd. : Daphne Rockdrill 46 Showa Shell Sekiyu K.K. : Rock drill oil 32

Mobil Sekiyu K.K.: Almo 525

Others: Products equivalent to the above

Media

- 1. Use air for the media. For the use of any other media, consult us.
- 2. Air used for the rodless cylinder ϕ 10 [0.394in.] should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum 40 $\mu m)$ near the cylinder or valve to remove collected liquid or dust. In addition, drain the air filter periodically.

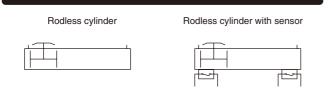
KOGANEI

ACTUATORS GENERAL CATALOG

SLIT TYPE RODLESS CYLINDERS ϕ 63, ϕ 80 CONTENTS

Features/Specifications/Order Codes ———————	1123
Inner Construction, Major Parts and Materials ————	1124
Dimensions —	1125
Sensor Switches —	1128
Handling Instructions and Precautions —————	1130

RODLESS CYLINDERS


 ϕ 63, ϕ 80

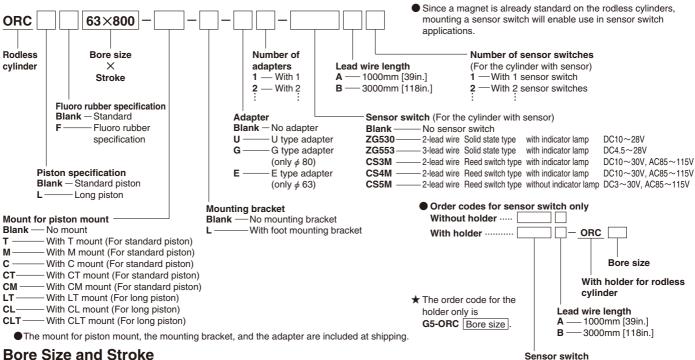
Features

- A long stroke of up to 5000mm [196.8in.] can be manufactured. It can also be used to make driving equipment, which could not be done by air cylinders in the past.
- The magnet for the sensor switch is standard equipment. By installing a sensor switch, the piston position can be easily detected, and the space for the limit switch mounting and design man-hours can be greatly reduced.
- Upside down installation mountings have been put into a series. By installing the piston yoke facing downwards, the seal band is protected, thereby increasing its durability.

Symbols

Specifications

Bore size		φ 63 [2.480in.]	φ 80 [3.150in.]	
Media		Air		
Operation type		Double a	cting type	
Operating pressure ra	nge MPa [psi.]	0.1~0.8	[15~116]	
Proof pressure	MPa [psi.]	1.2 [174]	
Operating temperatur	e range °C [°F]	0~60 [3	32~140]	
Operating speed range mm/s [in./sec.]		100~1500 [3.9~59.1] Note1		
Cushion		Both sides (Variable cushion)		
Lubrication		Requir	ed Note2	
Port size		Rc3/8	Rc1/2	
Maximum stroke mm		50	00	
1000 or less		+2 [+0.079]		
Stroke tolerance	1001~3000	00 +3 [+0.118]		
mm [in.]	3001~5000	+4 [+	0.157	

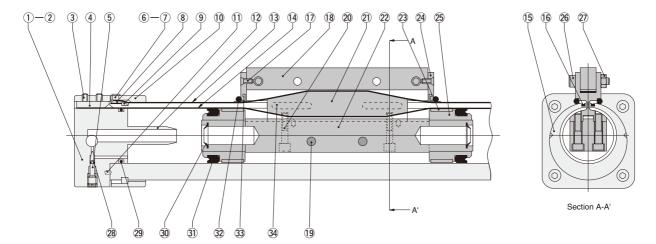

Notes: 1. Consult us when the cylinder speed exceeds 1500mm/s [59.1in./sec.].

> 2. However, it is not required for a cylinder speed of 500mm/s [19.7in./sec.] or less. For the recommended oil, see the recommended oil list.

> > • For details of sensor switches, see p.1544.

Remark: For details of sensor switches, see p.1544.

Order Codes



Bore Size and Stroke

_		mm
Bore	Standard strokes	Available strokes
63	500, 600, 700, 800, 1000	
03	1200, 1400, 1600, 1800, 2000	100∼5000 ^{Note}
80	Manufactured upon receipt of order	

Remark: Non-standard strokes are available at 1mm pitch intervals. For delivery, consult us. Note: Consult us for strokes over 5000mm.

ϕ 63, ϕ 80

Major Parts and Materials

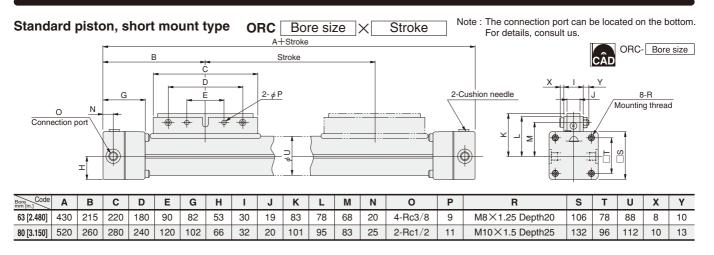
No.	Parts	Materials	Number	Remarks
1	End cover RNote1	Aluminum (anodized)	1	
2	End cover LNote2	Aluminum (anodized)	1	
3	Inner seal band setscrew	Alloy steel	4	Hexagon socket setscrew
4	Inner seal band lock	Aluminum (anodized)	2	
(5)	Cushion needle	Steel	2	
6	Outer seal band setscrew	Alloy steel	4	Slotted countersunk head screw
7	Сар	Nylon	2	
8	Outer seal band lock	Steel	2	
9	Lock ring	Zinc alloy	2	
10	Cap ring	Aluminum (anodized)	2	
11)	Pin	Steel	6	
12	Cushion pipe	Aluminum (anodized)	2	
13	Outer seal band	Stainless chrome steel	1	For standard or long piston
14)	Inner seal band	Stainless chrome steel	1	For standard or long piston
15	Cylinder barrel	Aluminum (anodized)	1	For standard or long piston
16	Magnet strip	Rubber magnet	2	For standard or long piston
17	Piston mount setscrew	Alloy steel	2	

Remark: Specify the bore size and the piston specification when ordering the parts.

Notes: 1. The end cover of **ORC63** can be used for right and left ends. In the case of **ORC80**, when facing connection ports, this is the left side one.

The end cover of ORC63 can be used for right and left ends. In the case of ORC80, when facing connection ports, this is the right side one.

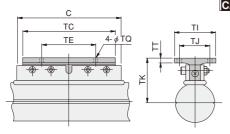
No.	Parts	Materials	Number	Remarks
18	Piston mount	Aluminum (anodized)	1	For standard or long piston
19	Magnet	Alnico magnet	2	
20	Piston yoke setscrew	Alloy steel	4	8 pieces for a long piston type
21)	Piston yoke	Aluminum (anodized)	1	For standard or long piston
22	Piston axle	Aluminum (anodized)	1	For standard or long piston
23	Wear ring	Polyethylene	2	
24)	End plate	Aluminum (anodized)	2	
25	Piston end	Aluminum (anodized)	2	
26	Mount fixing bolt	Alloy steel	2	Hexagon socket head bolt
27)	Mount fixing nut	Alloy steel	2	
28★	Cushion gasket	Synthetic rubber (NBR)	2	FPM for fluoro rubber specification
29★	Cylinder gasket	Synthetic rubber (NBR)	2	FPM for fluoro rubber specification
30★	Cushion seal	Synthetic rubber (NBR)	2	FPM for fluoro rubber specification
31)★	Piston seal	Synthetic rubber (NBR)	2	FPM for fluoro rubber specification
32★	Scraper holding O-ring	Synthetic rubber (CR)	1	For standard or long piston
33★	Scraper	Polyacetal	2	
34)★	Bearing strip	Polyethylene	4	8 pieces for a long piston type


★: Available as a seal repair kit.

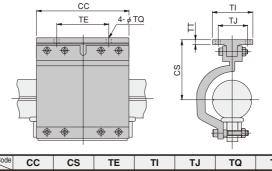
Mass

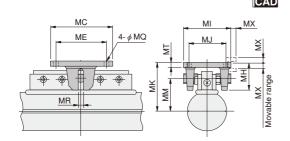
Standard piston kg [lb.]

Bore size	Zero stroke mass	Additional mass for each 1mm [0.0394in.]		Addition	al mass of mo	unt for piston r	nount, mountir	ng bracket, and	l adapter	
mm [in.]	(With short mount)	stroke	T mount	M mount	C mount	CT mount	CM mount	Foot mounting bracket	U type adapter	G type adapter
63 [2.480]	9.3 [20.5]	0.0080 [0.0176]	0.2 [0.4]	1.0 [2.2]	2.4 [5.3]	2.6 [5.7]	3.4 [7.5]	0.3 [0.7]	1.7 [3.7]	1.7 [3.7]
80 [3.150]	16.1 [35.5]	0.0128 [0.0282]	0.6 [1.3]	1.2 [2.6]	4.3 [9.5]	4.9 [10.8]	5.5 [12.1]	0.6 [1.3]	2.9 [6.4]	3.3 [7.3]

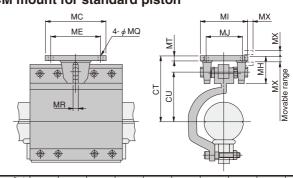

	Long pis	ton							kg [lb.]
ľ	Bore size	Zero stroke mass	Additional mass for each 1mm [0.0394in.]	Addition	al mass of mo	unt for piston n	nount, mountin	g bracket, and	adapter
	mm [in.]	(With long mount)	stroke	LT mount	CL mount	CLT mount	Foot mounting bracket	U type adapter	G type adapter
	63 [2.480]	13.9 [30.6]	0.0080 [0.0176]	0.7 [1.5]	5.2 [11.5]	5.9 [13.0]	0.3 [0.7]	1.7 [3.7]	1.7 [3.7]
	80 [3.150]	23.2 [51.2]	0.0128 [0.0282]	1.2 [2.6]	8.8 [19.4]	10.0 [22.1]	0.6 [1.3]	2.9 [6.4]	3.3 [7.3]

ORC-ST

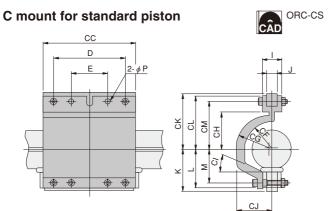

ORC-SM


Bore Code	С	TC	TE	TI	TJ	TK	TQ	TT
63 [2.480]	220	208	130	80	60	89	9	7
80 [3.150]	280	268	180	100	75	108	11	8

CT mount for standard piston


Bore Code	СС	cs	TE	TI	TJ	TQ	TT
63 [2.480]	208	123	130	80	60	9	7
80 [3.150]	268	150	180	100	75	11	8

M mount for standard piston

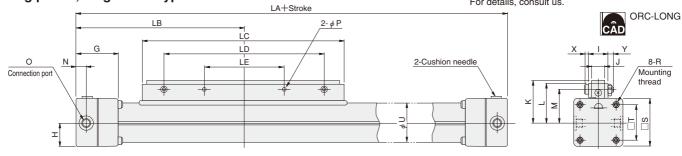


Bore Code	МС	ME	МН	MI	MJ	MK	MM	MQ	MR	MT	MX
63 [2.480]	120	100	48	90	70	100	70	9	10	6	10
80 [3.150]	150	125	60	110	85	122	86	11	13	8	12

CM mount for standard piston

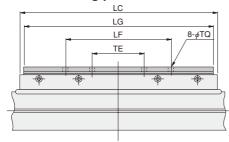
Bore Code	СТ	CU	МС	ME	МН	MI	MQ	MR	MT	MX
63 [2.480]	134	104.5	120	100	48	90	9	10	6	10
80 [3.150]	163	128	150	125	60	110	11	13	8	12

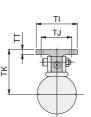
E	Bore Code	D	Е	I	J	K				СС	-		-	-		-	-	-
	63 [2.480]	180	90	30	19	83	78	68	9	208	62	71	82	15°	77	117	112	102
	80 [3.150]	240	120	32	20	101	95	83	11	268	78	88	102	15°	96	143	137	125


ORC-U

CÂD

ORC-FOOT

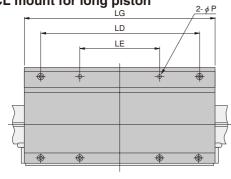

Note: The connection port can be located on the bottom. For details, consult us.

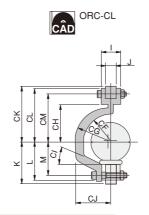


Bore Code	G	Н	ı	J	K	L	M	N	0	Р	R	S	Т	U	Х	Υ	LA	LB	LC	LD	LE
63 [2.480]	82	53	30	19	83	78	68	20	4-Rc3/8	9	M8×1.25 Depth20	106	78	88	8	10	730	365	480	400	200
80 [3.150]	102	66	32	20	101	95	83	25	2-Rc1/2	11	M10×1.5 Depth25	132	96	112	10	13	820	410	560	480	240

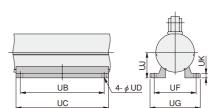
ORC-LT

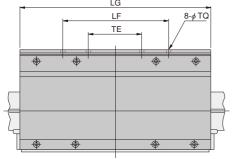
LT mount for long piston

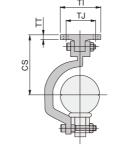



Foot mounting bracket

Bore Code	LC	LF	LG	TE	TI	TJ	TK	TQ	TT
63 [2.480]	480	260	468	130	80	60	89	9	7
80 [3.150]	560	360	548	180	100	75	108	11	8

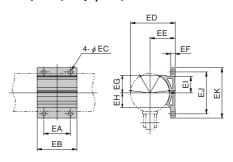

Bore Code	AD	AE	AF	AG	AH	AP	AT
63 [2.480]	30	104	48	15	57	11	40
80 [3.150]	35	130	60	17.5	72	14	50

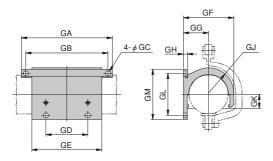

U	type	adapter	



Bore Code	ı	J	K	L	M	Р	CF	CG	СН	CI	CJ	СК	CL	СМ	LD	LE	LG
63 [2.480]	30	19	83	78	68	9	62	71	82	15°	77	117	112	102	400	200	468
80 [3.150]	32	20	101	95	83	11	78	88	102	15°	96	143	137	125	480	240	548

Bore Code	UB	UC	UD	UF	UG	UJ	UK
63 [2.480]	190	210	11	95	114	57	10
80 [3.150]	235	260	14	120	144	72	12

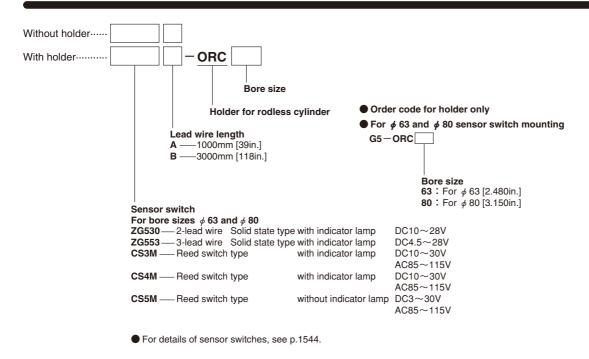

CLT mount for long piston


Bore Code	cs	LF	LG	TE	TI	TJ	TQ	TT
63 [2.480]	123	260	468	130	80	60	9	7
80 [3.150]	150	360	548	180	100	75	11	8

E type adapter (only ϕ 63)

Model	EA	EB	EC	ED	EE	EF	EG	EH	EI	EJ	EK
ORC63	60	90	9	101	57	10	39.5	32.9	37.5	95	114

G type adapter (only ϕ 80)


Model	GA	GB	GC	GD	GE	GF	GG	GH	GJ	GK	GL	GM
ORC80	260	235	14	120	200	144	72	12	72	40	120	144

SENSOR SWITCHES

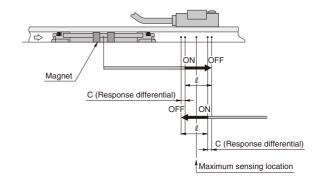
 ϕ 63, ϕ 80

Since a magnet is already standard equipment on the each size's rodless cylinder, mounting a sensor switch will enable use in sensor switch applications.

Order Codes for Sensor Switch

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

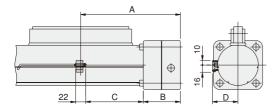
Operating range

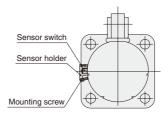

The distance the piston travels in one direction, while the switch is in the ON position. The center of the operating range is approximately the maximum sensing location.

Response differential

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Maximum sensing location mm [i									
Sensor switch model	ZG530,	ZG553	CS□M						
Bore size	63 [2.480]	80 [3.150]	63 [2.480]	80 [3.150]					
Operating range: ℓ	9.2~15.3 [0.362~0.602]	11.7~19.5 [0.461~0.768]	15~29 [0.591~1.142]	21~34 [0.827~1.339]					
Response differential: C	1.0 [0.03	9] or less	3 [0.118]						
Maximum sensing locationNote	11 [0	.433]	11 [0	.433]					


Note: This is the length measured from the switch's opposite end side to the lead wire.

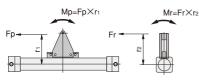

Mounting Location of Sensor Switch

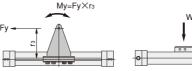
ϕ 63 [2.480in.], ϕ 80 [3.150in.]

When the sensor switch is mounted in the locations shown below (the figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Code	F	4	()		
Piston Specification mm [in.]	Standard piston	Long piston	Standard piston	Long piston	В	D
63	215	365	124	274	80	56
[2.480]	[8.46]	[14.37]	[4.88]	[10.79]	[3.15]	[2.20]
80	260	410	149	299	100	68
[3.150]	[10.24]	[16.14]	[5.87]	[11.77]	[3.94]	[2.68]

- Loosening the sensor holder mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- Tighten the mounting screw with a tightening torque of 0.2N·m [1.8in·lbf].




Selection and Mounting

Allowable load and moment

Although the rodless cylinder can be used with directly applying loads, make sure that the load and moment do not exceed the values in the table below.

Pitching moment: Mp=Fp×r₁ [N·m] Rolling moment : $Mr = Fr \times r_2 [N \cdot m]$ Yawing moment : $My = Fy \times r_3[N \cdot m]$ Maximum load capacity: W[N]

Mounting

dust.

1. While any mounting direction is allowed, we

recommend that the rodless cylinder be

installed so that it faces downward when

mounting in locations subject to dripping

water or oil, etc., or to large amounts of

2. Avoid any electric welding after mounting the rodless cylinder. Current may flow into the cylinder, generate sparks between the inner seal band, outer seal band, and cylinder barrel, and damage the seal band. Caution: Avoid applying strong shocks to the cylinder barrel's slit portion.

Since for structural reasons external air leakage is inevitable for the rodless cylinder,

use of all port block 3-position valves, etc., for

intermediate stop control could result in failure

to maintain the stopping position, and the

piston speed could not be controlled when

restarting. We recommend, therefore, double-

sided pressure control circuits that use

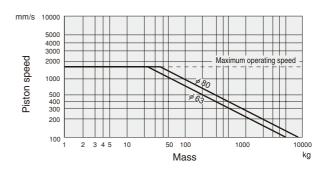
PAB-connection 3-position valves, etc. For intermediate stopping control under constant loads, such as vertical mountings, consult us.

Intermediate stop control

Bore size		Standar	d piston			Long	piston	
mm [in.]	Mp	Mr	My	W	Mp	Mr	My	W
	N·m [ft·lbf]	N⋅m [ft⋅lbf]	N⋅m [ft⋅lbf]	N [lbf.]	N·m [ft·lbf]	N·m [ft·lbf]	N⋅m [ft⋅lbf]	N [lbf.]
63	196	7.8	23.5	1618	441.3	15.7	73.6	1618
[2.480]	[144.6]	[5.8]	[17.3]	[363.7]	[325.5]	[11.6]	[54.3]	[363.7]
80	353	15.7	47.1	2354	706.1	31.4	137.3	2354
[3.150]	[260.4]	[11.6]	[34.7]	[529.2]	[520.8]	[23.2]	[101.3]	[529.2]

Remark: The inclined angle of the piston mount when applying the maximum moment in the rolling direction should be a total of 3 degrees or less for both swing directions.

Cautions: 1. The moment including the inertial force generated when the load is moved or stopped must not exceed the values in the above table. For the mass and piston speed, see the Cushioning capacity


2. Rolling moment: Mr should not be applied as much as possible.

Cushioning capacity

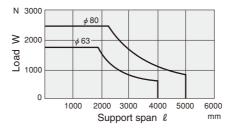
While variable cushions are standard equipment on all rodless cylinders, keep the maximum mass and speed within the ranges shown in the graph to the right. If load and speed exceed the ranges, install an external shock absorber, etc., to absorb the shock.

- Cautions: 1. The maximum operating speed of the rodless cylinders is 1500mm/s [59.1in./sec.]. Consult us when exceeding this.
 - 2. The mass shown in the graph is the total mass carried by the rodless cvlinder.
 - 3. Adjust cushions according to the piston speed and the mass, and absorb the impacts effectively.

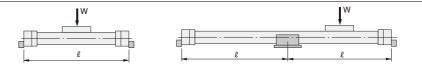
Cushioning	stroke mm [in.]
Bore size	Cushioning stroke
63 [2.480]	40 [1.575]
80 [3 150]	44 [1 732]

1mm/s = 0.0394in./sec. 1 kg = 2.205 lb

Adapter


When the stroke is long and the load is large, deflection might be caused on the cylinder barrel. When support span: ℓ exceeds the value in the graph, it should be supported by installing an adapter in the middle. U-type and G-type adapters are available for ϕ 63 [2.480in.] and ϕ 80 [3.150in.].

Support span . 0


Support Sp	mm [in.]			
Bore size	Support	span : ℓ		
Dole Size	Standard piston	Long piston		
63 [2.480]	Stroke+430 [16.93]	Stroke+730 [28.74]		
80 [3.150]	Stroke+520 [20.47]	Stroke+820 [32.28]		

Caution: If the support span exceeds 4000mm [157.48in.] with ϕ 63 [2.480in.], or 5000mm [196.85in.] with ϕ 80 [3.150in.], adapters must be installed in the middle regardless of the load.

1N = 0.2248lbf. 1mm = 0.0394in

Assembling instructions

Assembling the piston mount

T mount and **LT** mount for ϕ **63** and ϕ **80**

- ① Remove O-ring for holding the scraper and the mount fixing bolt, and detach the short mount which is standard equipment.
- ② Detach the scraper on the short mount and attach it to the T mount or LT mount.
- ③ Secure the T mount or LT mount to the piston yoke with fixing bolts and install scraper holding O-ring.

M mount for ϕ **63** and ϕ **80**

- Remove scraper holding O-ring and the mount fixing bolt, and detach the short mount which is standard equipment.
- ② Detach the scraper on the short mount and reattach it to the M mount.
- ③ Insert the pins into the M mount and assemble onto the piston yoke and secure it with fixing bolts, and install the scraper holding O-ring.
- 4 Align the grooves on the mount plate to the pin, and place the mount on the pin.

C mount, CT mount, CM mount,

CL mount and **CLT** mount for ϕ **63** and ϕ **80** Remove the mount fixing bolts, and install C mount to the piston yoke using C mount fixing bolts (long bolt).

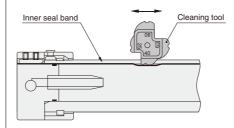
Sensor switch

Handling precautions

- 1. The sensor switch case is a magnetic shield type, but avoid using it in places with strong external magnetic field and keep it away from strong power lines or currents.
- Do not apply more than 98N [22lbf.] tensile force on the lead wire.
- 3. Avoid use in ambient chemical atmospheres.
- Consult us regarding application in environments subject to dripping water or oil.

5. The ON time of the sensor switch shortens

when the piston speed is fast and the sensor switch is installed in the middle of the stroke. Care should be taken because the relay etc. might not be able to follow.


ON time [ms]=(operation range mm [in.]/ piston speed mm/s [in./sec.]) × 10³

Maintenance

The rodless cylinder is structurally incapable of completely preventing air leakage to the outside. Nevertheless, particles adhering to the inner seal band are the most common cause of initial-staged air leakages, and this type of failure is easily remedied.

First, loosen the outer seal band setscrews, remove the outer seal band, and apply approx. 0.1MPa [15psi.] of air pressure to the rodless cylinder. Next, insert a cleaning tool inside the cylinder barrel slit and then, while pressing down the inner seal band and moving it along the slit, use air to blow off the particles.

Cautions: 1. Always use protective glasses.

- When performing maintenance, use the special cleaning tool. Use of a screwdriver or other tool could damage the inner seal band or cylinder barrel.
- If the above maintenance fails to stop the air leakage, follow instructions in the user's manual to perform a cylinder overhaul.

General precautions

Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the rodless cylinder. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

Atmosphere

- If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, the band may break or the life of the seals could be shortened. Use a cover to protect the unit or install with the mount facing downward.
- Do not engage in electric welding close to the rodless cylinder. The welding spatters could damage the outer seal band.
- 3. The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.
 - Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Lubrication

Though it is possible to use without lubricating oil when the cylinder speed is 500mm/s [19.7in./sec.] or less, it is recommended to use the following lubricating oils when using at a speed of 500mm/s [19.7in./sec.] or more.

Recommended oils

Idemitsu Kosan Co., Ltd.: Daphne Rockdrill 46 Showa Shell Sekiyu K.K.: Rock drill oil 32 Mobil Sekiyu K.K.: Almo 525

Others: Products equivalent to the above

Media

- 1. Use air for the media. For the use of any other media, consult us.
- 2. Air used for the rodless cylinder should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum 40 μm) near the rodless cylinder or valve to remove collected liquid or dust. In addition, drain the air filter periodically.