

KOGANEI

ACTUATORS GENERAL CATALOG

JIG CYLINDERS HC SERIES

CONTENTS

Series Introduction	-133
Cylinder Thrust	-135
	
Standard Cylinders Double Acting Ty	vpe.
Single Acting Push Type, and	,
Cingle Acting Bull Type	
Specifications —	-137
Order Codes —	-138
Inner Construction and	
	-139
Major Parts — — — — — — — — — — — — — — — — — — —	-141
Non-rotating Cylinders Double Acting	Туре
Specifications — Order Codes —	-145
Order Codes -	-146
Inner Construction and	
Major Parts — — — — — — — — — — — — — — — — — — —	-147
Dimensions —	-148
Square Rod Cylinders Double Acting	Туре
Specifications —	-149
Specifications — Order Codes —	-150
Inner Construction and	
Major Parts —	-151
Dimensions —	-152
Double Rod Cylinders	
Double Acting Type and	
Single Acting Type	
Specifications — Order Codes —	-154
	-155
Inner Construction and	
Major Parts ————	-156
Major Parts — — — — — — — — — — — — — — — — — — —	-158
Tandem Cylinders Double Acting Ty	pe
and Single Acting Push Type	
Specifications — Order Codes —	-161
	-162
Inner Construction and	
Major Parts — Dimensions — —	-163
Dimensions —	-165

Dual Stroke Cylinders Double Acting	Гуре,
Single Acting Push Type, and	
Single Acting Pull Type	
Specifications —	-170
Order Codes —	-171
Inner Construction and	
Major Parts —	-172
Dimensions —	-174
Lateral Load Resistant Cylinders	
Double Acting Type	
Specifications —	-180
Order Codes —	-181
Inner Construction and	
Major Parts —	-182
Dimensions —	-183
Long Stroke Cylinders Double Acting	Туре
Specifications — — — Order Codes — — — — — — — — — — — — — — — — — — —	-185
Order Codes -	-186
Inner Construction and	
Major Parts	-187
Dimensions —	-188
End Keep Cylinders Double Acting T	ype
Specifications —	-190
Order Codes —	-191
Inner Construction and	
Major Parts —	
Dimensions —	-194
Mounting Brackets Sensor Switches	-197
Sensor Switches —	-199
Handling Instructions and	
Precautions —	-205
Optional Rod End	
Shape Patterns —	-208
Mounting Screws for Jig Cylinders –	

Square body demonstrates powerful downsizing capacity.

JIG CYLINDERS HC SERIES

Richly abundant series of 9 different types and 69 models

A rich series configuration spanning from ϕ 6 [0.236in.] to ϕ 100 [3.940in.] responds to diverse needs far better than previous thin type cylinders.

Moreover, Non-ion specification is also available as standard.

(Excludes $\phi 6$ [0.236in.], $\phi 8$ [0.315in.], and $\phi 10$ [0.394in.])

Provides powerful back-up for device miniaturization

Exhibits no protrusions in its external shape even after a sensor switch has been mounted, for easy mounting in tight spaces.

This cylinder is one step up on cylinders of the same class in terms of size, mass, and performance.

φ 100 [3.940in.]

New Line-Up Includes ϕ 6 [0.236in.], ϕ 8 [0.315in.], and ϕ 10 [0.394in.]


For a greater selection in response to needs for miniaturization, 3 new bore sizes at ϕ 6, ϕ 8, and ϕ 10 have been added, increasing the range of sizes to choose from.

Standard Cylinders *ф*6 [0.236in.]∼*ф*100 [3.940in.]

Non-rotating Cylinders ϕ 6 [0.236in.] $\sim \phi$ 10 [0.394in.]

Double Rod Cylinders ϕ 6 [0.236in.] $\sim \phi$ 100 [3.940in.]

The Jig Cylinders HC Series Includes the 9 Types Shown Below.

Standard Cylinders

p.137

Square Rod Cylinders

p.149

p.154

■ Tandem Cylinders p.161

■ Dual Stroke Cylinders

Lateral Load Resistant Cylinders p.180

Long Stroke Cylinders p.185

■ End Keep Cylinders

■Mounting Brackets p.197

Cylinder specifications Rod end specifications Bumpers Centering location Operation type Mounting brackets

Sensor Switches p.199

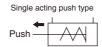
	acting type	acting push type	acting pull type	with magnet	resistant type	Female thread	Male thread	able for heat resistant type	able for heat resistant type	mounting bracket	mounting bracket	
Standard Cylinders												
Non-rotating Cylinders	Note			Note		Note	Note					
Square Rod Cylinders												
Double Rod Cylinders												
Tandem Cylinders												
Dual Stroke Cylinders												
Lateral Load Resistant Cylinders												
Long Stroke Cylinders												
End Keep												

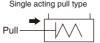
The colored areas include bore sizes of ϕ 6, ϕ 8, and ϕ 10. Note: Non-rotating cylinders are set at bore sizes ϕ 6, ϕ 8, and ϕ 10 only.

Cylinder Thrust

Select a suitable bore size considering the load and air pressure to obtain the required thrust.

Since the figures in the table are calculated values, select a bore size that results in a load ratio (load ratio = $\frac{\text{Load}}{\text{Calculated value}}$) of 70% or less (50% or less for high speed).


Double acting type



N [lbf.]

Bore size	Piston rod	0	Pressure area				,	Air pressure	MPa [psi.]			
mm [in.]	diameter mm [in.]	Operation	mm² [in?]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
0.10.0001	4 [0 4 [7]	Push side	28.3 [0.0439]	2.8 [0.63]	5.7 [1.28]	8.5 [1.91]	11.3 [2.54]	14.1 [3.17]	17.0 [3.82]	19.8 [4.45]	22.6 [5.08]	25.4 [5.71]	-
6 [0.236]	4 [0.157]	Pull side	15.7 [0.0243]	1.6 [0.36]	3.1 [0.7]	4.7 [1.06]	6.3 [1.42]	7.9 [1.78]	9.4 [2.11]	11.0 [2.47]	12.6 [2.83]	14.1 [3.17]	-
0 [0 045]	E [0 107]	Push side	50.3 [0.0780]	5.0 [1.12]	10.1 [2.27]	15.1 [3.39]	20.1 [4.52]	25.1 [5.64]	30.2 [6.79]	35.2 [7.91]	40.2 [9.04]	45.2 [10.2]	-
8 [0.315]	5 [0.197]	Pull side	30.6 [0.0474]	3.1 [0.70]	6.1 [1.37]	9.2 [2.07]	12.3 [2.77]	15.3 [3.44]	18.4 [4.14]	21.4 [4.81]	24.5 [5.51]	27.6 [6.20]	-
10 [0 204]	E [0 107]	Push side	78.5 [0.1217]	7.9 [1.78]	15.7 [3.53]	23.6 [5.31]	31.4 [7.06]	39.3 [8.83]	47.1 [10.6]	55.0 [12.4]	62.8 [14.1]	70.7 [15.9]	-
10 [0.394]	5 [0.197]	Pull side	58.9 [0.0913]	5.9 [1.33]	11.8 [2.65]	17.7 [3.98]	23.6 [5.31]	29.5 [6.63]	35.3 [7.94]	41.2 [9.26]	47.1 [10.6]	53.0 [11.9]	_
12 [0.472]	6 [0 006]	Push side	113.0 [0.175]	11.3 [2.54]	22.6 [5.08]	33.9 [7.62]	45.2 [10.2]	56.5 [12.7]	67.8 [15.2]	79.1 [17.8]	90.4 [20.3]	101.7 [22.86]	113.0 [25.40]
12 [0.472]	6 [0.236]	Pull side	84.8 [0.131]	8.5 [1.91]	17.0 [3.82]	25.4 [5.71]	33.9 [7.62]	42.4 [9.53]	50.9 [11.4]	59.3 [13.3]	67.8 [15.2]	76.3 [17.2]	84.8 [19.1]
16 [0.630]	8 [0.315]	Push side	201.0 [0.312]	20.1 [4.52]	40.2 [9.04]	60.3 [13.6]	80.4 [18.1]	100.5 [22.59]	120.6 [27.11]	140.7 [31.63]	160.8 [36.15]	180.9 [40.67]	201.0 [45.18]
16 [0.630]	6 [0.313]	Pull side	150.0 [0.233]	15.1 [3.39]	30.1 [6.77]	45.2 [10.2]	60.3 [13.6]	75.4 [16.9]	90.4 [20.3]	105.5 [23.72]	120.6 [27.11]	135.6 [30.48]	150.7 [33.88]
20 [0.787]	10 [0.394]	Push side	314.0 [0.487]	31.4 [7.06]	62.8 [14.1]	94.2 [21.2]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]
20 [0.767]	10 [0.394]	Pull side	235.5 [0.365]	23.6 [5.31]	47.1 [10.6]	70.7 [15.9]	94.2 [21.2]	117.8 [26.48]	141.3 [31.76]	164.9 [37.07]	188.4 [42.35]	212.0 [47.66]	235.5 [52.94]
25 [0.984]	12 [0.472]	Push side	490.6 [0.760]	49.1 [11.0]	98.1 [22.1]	147.2 [33.09]	196.3 [44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.23]	441.6 [99.27]	490.6 [110.3]
25 [0.964]	12 [0.472]	Pull side	377.6 [0.585]	37.8 [8.50]	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.88]
32 [1.260]	16 [0.630]	Push side	803.8 [1.246]	80.4 [18.1]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]
32 [1.200]	10 [0.030]	Pull side	602.9 [0.934]	60.3 [13.6]	120.6 [27.11]	180.9 [40.67]	241.2 [54.22]	301.4 [67.75]	361.7 [81.31]	422.0 [94.87]	482.3 [108.4]	542.6 [122.0]	602.9 [135.5]
40 [1.575]	16 [0.630]	Push side	1256.0 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]
40 [1.575]	10 [0.000]	Pull side	1055.0 [1.635]	105.5 [23.72]	211.0 [47.43]	316.5 [71.15]	422.0 [94.87]	527.5 [118.6]	633.0 [142.3]	738.5 [166.0]	844.0 [189.7]	949.5 [213.4]	1055.0 [237.2]
50 [1.969]	20 [0.787]	Push side	1962.5 [3.042]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]
30 [1.903]	20 [0.707]	Pull side	1648.5 [2.555]	164.9 [37.07]	329.7 [74.12]	494.6 [111.2]	659.4 [148.2]	824.3 [185.3]	989.1 [222.3]	1154.0 [259.4]	1318.8 [296.5]	1483.7 [333.5]	1648.5 [370.6]
63 [2.480]	20 [0.787]	Push side	3115.7 [4.829]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]
03 [2.700]	20 [0.707]	Pull side	2801.7 [4.343]	280.2 [62.99]	560.3 [126.0]	840.5 [188.9]	1120.7 [251.9]	1400.8 [314.9]	1681.0 [377.9]	1961.2 [440.9]	2241.3 [503.8]		2801.7 [629.8]
80 [3.150]	25 [0.984]	Push side	5024.0 [7.787]	502.4 [112.9]	1004.8 [225.9]	1507.2 [338.8]	2009.6 [451.8]	2512.0 [564.7]	3014.4 [677.6]	3516.8 [790.6]			5024.0 [1129.4]
50 [5.150]	23 [0.304]	Pull side	4533.4 [7.027]	453.3 [101.9]	906.7 [203.8]	1360.0 [305.7]	1813.4 [407.7]	2266.7 [509.6]	2720.0 [611.5]		3626.7 [815.3]		4533.4 [1019.1]
100 [3.940]	32 [1 181]	Push side	7850.0 [12.168]	785.0 [176.5]	1570.0 [352.9]	2355.0 [529.4]	3140.0 [705.9]						7850.0 [1764.7]
100 [3.940]	02 [1.101]	Pull side	7046.2 [10.922]	704.6 [158.4]	1409.2 [316.8]	2113.8 [475.2]	2818.5 [633.6]	3523.1 [792.0]	4227.7 [950.4]	4932.3 [1108.8]	5636.9 [1267.2]	6341.5 [1425.6]	7046.2 [1584.0]

Single acting type

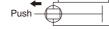
N [lbf.]

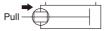
													14 [101.]
Operation	Bore size	Piston rod diameter	Pressure area					Air pressure	MPa [psi.]			
type	mm [in.]	mm [in.]	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
	6 [0.236]	4 [0.157]	28.3 [0.0439]	-	_	5.6 [1.26]	8.4 [1.89]	11.2 [2.52]	14.1 [3.17]	16.9 [3.80]	19.7 [4.43]	22.5 [5.06]	-
	8 [0.315]	5 [0.197]	50.3 [0.0780]	-	-	10.4 [2.34]	15.4 [3.46]	20.4 [4.59]	25.5 [5.73]	30.5 [6.86]	35.5 [7.98]	40.5 [9.10]	-
	10 [0.394]	5 [0.197]	78.5 [0.1217]	-	-	18.9 [4.25]	26.7 [6.00]	34.6 [7.78]	42.4 [9.53]	50.3 [11.3]	58.1 [13.1]	66.0 [14.8]	-
	12 [0.472]	6 [0.236]	113.0 [0.175]	-	12.8 [2.88]	24.1 [5.42]	35.4 [7.96]	46.7 [10.5]	58.0 [13.0]	69.3 [15.6]	80.6 [18.1]	91.9 [20.7]	103.2 [23.20]
Single	16 [0.630]	6 [0.236]	201.0 [0.312]	-	26.1 [5.87]	46.2 [10.4]	66.3 [14.9]	86.4 [19.4]	106.5 [23.94]	126.6 [28.46]	146.7 [32.98]	166.8 [37.50]	186.9 [42.02]
acting push type	20 [0.787]	8 [0.315]	314.0 [0.487]	-	49.0 [11.0]	80.4 [18.1]	111.8 [25.13]	143.2 [32.19]	174.6 [39.25]	206.0 [46.31]	237.4 [53.37]	268.8 [60.43]	300.2 [67.48]
pusitiyee	25 [0.984]	10 [0.394]	490.6 [0.760]	-	76.3 [17.2]	125.4 [28.19]	174.5 [39.23]	223.5 [50.24]	272.6 [61.28]	321.6 [72.30]	370.7 [83.33]	419.8 [94.37]	468.8 [105.4]
	32 [1.260]	12 [0.472]	803.8 [1.246]	-	123.4 [27.74]	203.8 [45.81]	284.1 [63.87]	364.5 [81.94]	444.9 [100.0]	525.3 [118.1]	605.7 [136.2]	686.1 [154.2]	766.4 [172.3]
	40 [1.575]	16 [0.630]	1256.0 [1.947]	-	205.9 [46.29]	331.5 [74.52]	457.1 [102.8]	582.7 [131.0]	708.3 [159.2]	833.9 [187.5]	959.5 [215.7]	1085.1 [243.9]	1210.5 [272.1]
	50 [1.969]	20 [0.787]	1962.5 [3.042]	141.0 [31.70]	337.2 [75.80]	533.5 [119.9]	729.7 [164.0]	926.0 [208.2]	1122.2 [252.3]	1318.5 [296.4]	1514.7 [340.5]	1711.0 [384.6]	1907.2 [428.7]
	6 [0.236]	4 [0.157]	15.7 [0.0243]	-	-	1.8 [0.40]	3.4 [0.76]	5.0 [1.12]	6.5 [1.46]	8.1 [1.82]	9.7 [2.18]	11.2 [2.52]	-
	8 [0.315]	5 [0.197]	30.6 [0.0474]	-	-	4.5 [1.01]	7.6 [1.71]	10.6 [2.38]	13.7 [3.08]	16.7 [3.75]	19.8 [4.45]	22.9 [5.15]	-
	10 [0.394]	5 [0.197]	58.9 [0.0913]	-	-	13.0 [2.92]	18.9 [4.25]	24.8 [5.58]	30.6 [6.88]	36.5 [8.21]	42.4 [9.53]	48.3 [10.9]	-
a	12 [0.472]	6 [0.236]	84.8 [0.131]	-	7.2 [1.62]	15.6 [3.51]	24.1 [5.42]	32.6 [7.33]	41.1 [9.24]	49.5 [11.1]	58.0 [13.0]	66.5 [14.9]	75.0 [16.9]
Single	16 [0.630]	6 [0.236]	150.7 [0.234]	-	16.0 [3.60]	31.1 [6.99]	46.2 [10.4]	61.3 [13.8]	76.3 [17.2]	91.4 [20.5]	106.5 [23.94]	121.5 [27.31]	136.6 [30.71]
acting pull type	20 [0.787]	8 [0.315]	235.5 [0.365]	-	33.3 [7.49]	56.9 [12.8]	80.4 [18.1]	104.0 [23.38]	127.5 [28.66]	151.1 [33.97]	174.6 [39.25]	198.2 [44.56]	221.7 [49.84]
puii type	25 [0.984]	10 [0.394]	377.6 [0.585]	-	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.88]
	32 [1.260]	12 [0.472]	602.9 [0.934]	-	61.4 [13.8]	121.7 [27.36]	182.0 [40.91]	242.2 [54.45]	302.5 [68.00]	362.8 [81.56]	423.1 [95.11]	483.4 [108.7]	543.7 [122.2]
	40 [1.575]	16 [0.630]	1055.0 [1.635]	-	165.7 [37.25]	271.2 [60.97]	376.7 [84.68]	482.2 [108.4]	587.7 [132.1]	693.2 [155.8]	798.7 [179.5]	904.2 [203.3]	1009.7 [227.0]
	50 [1.969]	20 [0.787]	1648.5 [2.555]	109.6 [24.64]	274.4 [61.69]	439.3 [98.75]	604.1 [135.8]	769.0 [172.9]	933.8 [209.9]	1098.7 [247.0]	1263.5 [284.0]	1428.4 [321.1]	1593.2 [358.2]

Spring return force

	_		N [lbf.]
Bore size mm	Stroke mm	Zero stroke	End of stroke
6	X 5 X10	2.1 [0.47] 1.2 [0.27]	2.9 [0.65]
8	X 5 X10	3.3 [0.74] 1.9 [0.43]	4.7 [1.06]
10	X 5 X10	3.3 [0.74] 1.9 [0.43]	4.7 [1.06]
12	X 5 X10 X15 X20 X25 X30	7.7 [1.73] 5.7 [1.28] 3.7 [0.83] 5.7 [1.28] 4.7 [1.06] 3.7 [0.83]	9.8 [2.20]
16	× 5 ×10 ×15 ×20 ×25 ×30	11.1 [2.50] 8.2 [1.84] 5.3 [1.19] 8.2 [1.84] 6.7 [1.51] 5.3 [1.19]	14.1 [3.17]
20	X 5 X10 X15 X20 X25 X30	11.6 [2.61] 9.5 [2.14] 7.3 [1.64] 9.5 [2.14] 8.4 [1.89] 7.3 [1.64]	13.8 [3.10]

			N [lbf.]		
Bore size mm	Stroke mm	Zero stroke	End of stroke		
25	× 5 ×10 ×15 ×20 ×25 ×30	18.1 [4.07] 14.5 [3.26] 10.7 [2.41] 14.5 [3.26] 12.7 [2.85] 10.9 [2.45]	21.8 [4.90]		
32	× 5 ×10 ×15 ×20 ×25 ×30	32.0 [7.19] 26.7 [6.00] 21.3 [4.79] 26.7 [6.00] 24.0 [5.40] 21.3 [4.79]	37.4 [8.41]		
40	× 5 ×10 ×15 ×20 ×25 ×30	37.7 [8.47] 30.2 [6.79] 22.6 [5.08] 30.2 [6.79] 26.4 [5.93] 22.6 [5.08]	45.3 [10.18]		
50	×10 ×15 ×20 ×25 ×30 ×35 ×40	45.4 [10.21] 40.5 [9.10] 35.5 [7.98] 43.0 [9.67] 40.5 [9.10] 38.0 [8.54] 35.5 [7.98]	55.3 [12.43]		


How to read the thrust table


- 1. For the thrust of the double rod cylinder double acting type, see the pull side of the double acting type thrust table. For the thrust of the single acting type, see the single acting pull type thrust table.
- 2. The thrust of the tandem cylinder is double that of the standard type when air is supplied simultaneously to Port A and Port B, for any operation type before the stroke in Cylinder 1 is complete. When air is supplied to any of Ports A, B, or C alone, then the thrust is the same as for the standard type.

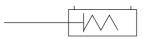
- 3. The thrust for dual stroke cylinders is the same as for the standard type, for any operation type.
- 4. When directly carrying a load, care must be exercised of a lateral load.

For details, see p.206 "Lateral Load."

Square rod cylinders

													N [lbf.]											
Bore size	Piston rod	Operation	Pressure area	Air pressure MPa																				
mm [in.]	size mm [in.]	Operation	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]											
20 [0.787]		Push side	314.0 [0.487]	31.4 [7.06]	62.8 [14.1]	94.2 [21.2]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]											
20 [0.767]	□7.4	Pull side	259.2 [0.402]	25.9 [5.82]	51.8 [11.6]	77.8 [17.5]	103.7 [23.3]	129.6 [29.13]	155.5 [34.96]	181.5 [40.80]	207.4 [46.62]	233.3 [52.45]	259.2 [58.27]											
25 [0.984]	[0.291]	Push side	490.6 [0.760]	49.1 [11.0]	98.1 [22.1]	147.2 [33.09]	196.3 [44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.23]	441.6 [99.27]	490.6 [110.3]											
25 [0.964]		Pull side	435.9 [0.676]	43.6 [9.80]	87.2 [19.6]	130.8 [29.40]	174.3 [39.18]	217.9 [48.98]	261.5 [58.79]	305.1 [68.59]	348.7 [78.39]	392.3 [88.19]	435.9 [97.99]											
32 [1.260]	□13		Push side	803.8 [1.246]	80.4 [18.1]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]										
32 [1.200]		Pull side	634.8 [0.984]	63.5 [14.3]	127.0 [28.55]	190.5 [42.82]	253.9 [57.08]	317.4 [71.35]	380.9 [85.63]	444.4 [99.90]	507.9 [114.2]	571.4 [128.5]	634.8 [142.7]											
40 [1.575]	[0.512]	Push side	1256.0 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]											
40[1.575]	[_0.012]	[,		,	[_0.0.2]	[_0.012]	,	[[0.0.2]	[_0.012]	, , , ,	Pull side	1087.0 [1.685]	108.7 [24.44]	217.4 [48.87]	326.1 [73.31]	434.8 [97.74]	543.5 [122.2]	652.2 [146.6]	760.9 [171.1]	869.6 [195.5]	978.3 [219.9]	1087.0 [244.4]
50 [1.969]		Push side	1962.5 [3.042]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]											
50 [1.909]	□18	Pull side	1638.5 [2.540]	163.9 [36.84]	327.7 [73.67]	491.6 [110.5]	655.4 [147.3]	819.3 [184.2]	983.1 [221.0]	1147.0 [257.8]	1310.8 [294.7]	1474.7 [331.5]	1638.5 [368.3]											
63 [2.480]	[0.709]	Push side	3115.7 [4.829]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]											
03 [2.460]		Pull side	2791.7 [4.327]	279.2 [62.76]	558.3 [125.5]	837.5 [188.3]	1116.7 [251.0]	1395.8 [313.8]	1675.0 [376.5]	1954.2 [439.3]	2233.3 [502.0]	2512.5 [564.8]	2791.7 [627.6]											

JIG CYLINDERS HC SERIES STANDARD CYLINDERS


Double Acting Type,
Single Acting Push Type, Single Acting Pull Type

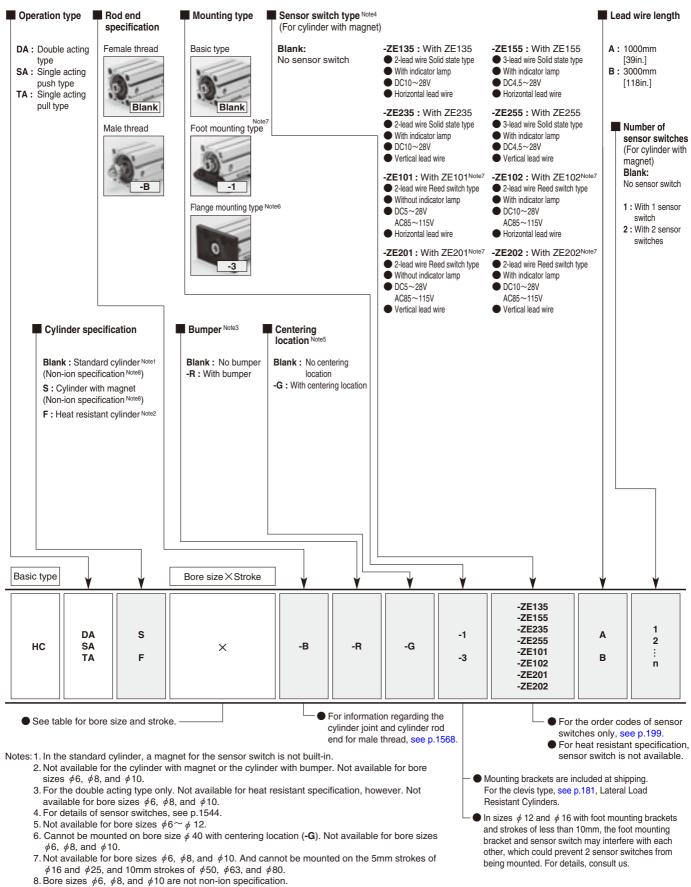
Symbols

Specifications

Item Bo	ore size mm [in.]	6 [0 236] 8 [0 315] 10 [0 394]	12 [0.472] 16 [0.630] 20 [0.787] 25 [0.984]	32 [1 260] 40 [1 575]	50 [1 969]	63 [2 480]	80 [3.150] 100 [3.940]	
Operation type			type, Single acting push type, Single		00 [11000]	-	ole acting type	
Media			Air					
Operating pressure range	Double acting type	0.15~0.9 [22~131]	0.1~1.0 [15~145]				0.05~1.0 [7~145]	
MPa [psi.]	Single acting type	0.25~0.9 [36~131]	0.15~1.0 Note1 [22~145]		0.1~1.0 [15~145]		_	
Proof pressure	MPa [psi.]	1.35 [196]		1.5 [218]				
Operating temperature range	°C [°F]	$0\sim$ 60 [32 \sim 140] (The heat resistant specification is 120 [248]. Note2)						
Operating speed range	Double acting type	30~500 [1.2~19.7]	30~500 [1.2~19.7	7]	3	30~300 [1.2~11.8]		
mm/s [in./sec.]	Single acting type	50~500 [2.0~19.7]	100~500 [3.9~19.	7]	100~300 [3.9~11.8]			
Overhiere	Double acting type	None	Rubb	er bumper (Optior	Note3)			
Cushion	Single acting type		None				_	
Lubrication		Not required	(If lubrication is required, use Turbin	e Oil Class 1 [ISO	VG32] o	r equivale	ent.)	
Port size		M3×0.5	10-32 UNF	NPT 1/8	NP	T 1/4	NPT 3/8	

Remark: For Handling Instructions and Precautions, see p.205.

- Notes: 1. The single acting pull type of ϕ 12 is 0.18 \sim 1.0MPa [26 \sim 145psi.].
 - 2. For heat resistant specification, it is not available with the sensor switch. Not available for bore sizes ϕ 6, ϕ 8, and ϕ 10.
 - 3. Not available for bore sizes ϕ 6, ϕ 8, and ϕ 10, and heat resistant specification.


Note: For strokes that exceed the maximum standard strokes for each double acting type cylinder's bore size, use the long stroke cylinders on p.185~189.

Bore Size and Stroke

For non-standard strokes, see p.206. mm Standard strokes Operation type Bore size Standard cylinder Cylinder with magnet 6 8 5, 10, 15, 20 5, 10, 15, 20 10 12 5, 10, 15, 20, 25, 30 5, 10, 15, 20, 25, 30 16 20 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 Double 25 acting type 32 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100 40 50 63 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100 80 100 6 8 5. 10 5.10 10 12 16 Single acting type 20 5, 10, 15, 20, 25, 30 5, 10, 15, 20, 25, 30 25 32 40 50 10, 15, 20, 25, 30, 35, 40 10, 15, 20, 25, 30, 35, 40

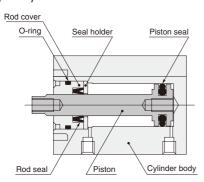
Remarks: 1. Stroke tolerance $^{+1}_{0}$ [$^{+0.039in.}_{0}$]

^{2.} In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 12 $\sim \phi$ 40, and strokes of less than 10mm for ϕ 50 $\sim \phi$ 100. The collar packed is used for these cases.

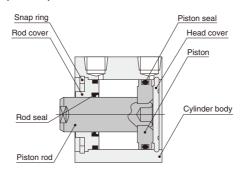
Additional Parts (To be ordered separately)

Foot mounting bracket (p.197)

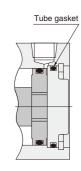
Flange mounting bracket (p.198)

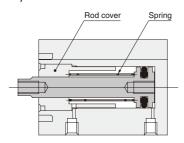


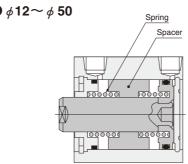
Mounting screws (p.209)

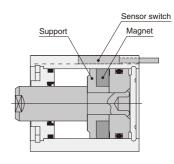

Inner Construction and Major Parts

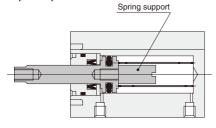
● Double acting type (HCDA)



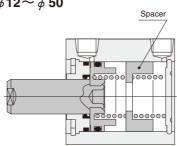

 \bullet ϕ 12 \sim ϕ 40



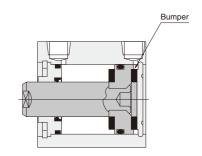

Single acting push type (HCSA)



Cylinder with magnet



• The diagram is for ϕ 12 \sim ϕ 100.


Single acting pull type (HCTA)

 \bullet ϕ 12 \sim ϕ 50

With bumper

• The diagram is for ϕ 12 \sim ϕ 100.

Major Parts and Materials

Parts Bore mm	φ6	φ8	φ 10	φ 12	φ 16	φ 20	φ 25	φ 32	ϕ 40	ϕ 50	ϕ 63	ϕ 80	φ 100
Cylinder body					Alum	inum	alloy	(and	odize	d)			
Piston	Stai	nless	steel	Alu	ıminu	m allo	y (sp	ecial r	ust pr	event	ion tr	eatme	ent)
Piston rod		_		Stainle	ss steel	(chrome	plated)		Steel	(chro	me p	lated)
Seal		Synthetic rubber (NBR)											
Rod cover		Aluminum alloy (special wear-resistant treatment)											
Head cover		_			Alum	inum	alloy	(and	odize	d)			
Snap ring		_			Stee	l (pho	ospha	ate co	ating	J)			
Spring						Pia	ano w	rire				_	
Spacer		_		Alumin	num allo	y (spec	ial rust	prevent	tion trea	itment)		_	
Bumper		- Synthetic rubber (NBR; urethane for ϕ 12 only)											
Magnet	Neody	odymium magnet Plastic magnet											
Support	Cop	pera	alloy	Alu	ıminu	m allo	y (sp	ecial r	ust pr	event	ion tre	eatme	nt)

Seals

Parts	Rod seal	Piston seal	Tube	gasket
Bore mm	nou seai	ristori seai	Rod side	Head side
φ 12	MYR-6	COP-12	Y090260	None
φ 16	MYR-8	COP-16	Y090207	None
φ 20	MYR-10	COP-20(MYA-16)	Y090216	None
φ 25	MYR-12	COP-25(MYA-21)	Y090210	None
φ 32	MYR-16	COP-32	L090084	None
φ 40	MYR-16	COP-40	L090151	None
ϕ 50	MYR-20	COP-50	L090174	L090106
φ 63	MYR-20	COP-63	L090180	L090107
φ 80	PNY-25	COP-80	L090171	L090108
φ 100	PNY-32	COP-100	L090172	L090109

Note: Items in parentheses () are for the single acting type.

Double acting type

g [oz.]

A LUCY L						
Additional mass for each 1mm	Additional mass of	Additional mass of			Additional mass of	
[0.0394in.] stroke	cylinder with bumper	cylinder with magnet	Foot bracket	Flange bracket	ZE 🗆 🗆 A	ZE□□□B
0.74 [0.0261]		3.9 [0.138]				
0.95 [0.0335]	-	5.4 [0.190]	_	_	l i	I
1.12 [0.0395]		6.8 [0.240]			l i	I
1.28 [0.0451]	6.42 [0.226]	6.59 [0.232]	50 [1.76]	55 [1.94]	l i	l
1.62 [0.0571]	8.08 [0.285]	9.93 [0.350]	62 [2.19]	71 [2.50]	l i	I
2.26 [0.0797]	11.29 [0.398]	25.71 [0.907]	84 [2.96]	101 [3.56]	l i	I
3.11 [0.110]	15.53 [0.548]	37.47 [1.322]	104 [3.67]	160 [5.64]	15 [0.53]	35 [1.23]
4.11 [0.145]	20.57 [0.726]	52.43 [1.849]	126 [4.44]	186 [6.56]	1	I
4.77 [0.168]	0	69.15 [2.439]	160 [5.64]	335 [11.82]	l i	l
7.03 [0.248]	0	108 [3.81]	220 [7.76]	447 [15.77]	l i	l
8.69 [0.307]	0	159 [5.61]	300 [10.58]	591 [20.85]	1	l
13.06 [0.461]	0	245 [8.64]	644 [22.72]	1414 [49.88]	1	I
] 18.61 [0.656]	0	360 [12.70]	1172 [41.34]	2606 [91.92]	<u> </u>	
]	each 1mm [0.0394in.] stroke 0.74 [0.0261] 0.95 [0.0335] 1.12 [0.0395] 1.28 [0.0451] 1.62 [0.0571] 2.26 [0.0797] 3.11 [0.110] 4.11 [0.145] 4.77 [0.168] 7.03 [0.248] 8.69 [0.307] 13.06 [0.461]	ss each 1mm [0.0394in.] stroke cylinder with bumper 0.74 [0.0261] — 0.95 [0.0335] — 1.12 [0.0395] — 1.28 [0.0451] 6.42 [0.226] 1.62 [0.0571] 8.08 [0.285] 2.26 [0.0797] 11.29 [0.398] 3.11 [0.110] 15.53 [0.548] 4.11 [0.145] 20.57 [0.726] 4.77 [0.168] 0 7.03 [0.248] 0 8.69 [0.307] 0 9 [13.06 [0.461] 0	ss each 1mm [0.0394in.] stroke cylinder with bumper cylinder with magnet 0.74 [0.0261] — 3.9 [0.138] 0.95 [0.0335] — 5.4 [0.190] 1.12 [0.0395] — 6.8 [0.240] 1.28 [0.0451] 6.42 [0.226] 6.59 [0.232] 1.62 [0.0571] 8.08 [0.285] 9.93 [0.350] 2.26 [0.0797] 11.29 [0.398] 25.71 [0.907] 3.11 [0.110] 15.53 [0.548] 37.47 [1.322] 4.11 [0.145] 20.57 [0.726] 52.43 [1.849] 4.77 [0.168] 0 69.15 [2.439] 3 7.03 [0.248] 0 108 [3.81] 3 8.69 [0.307] 0 159 [5.61] 3 13.06 [0.461] 0 245 [8.64]	Additional mass of cylinder with bumper cylinder with magnet cylinder with magnet cylinder with magnet polyinder with magnet cylinder with mag	ss each 1mm [0.0394in.] stroke cylinder with bumper cylinder with magnet Foot bracket Flange bracket 0.74 [0.0261] — 3.9 [0.138] — — 0.95 [0.0335] — 5.4 [0.190] — — 1.12 [0.0395] — 6.8 [0.240] — — 2.28 [0.0451] 6.42 [0.226] 6.59 [0.232] 50 [1.76] 55 [1.94] 3.1 [0.0571] 8.08 [0.285] 9.93 [0.350] 62 [2.19] 71 [2.50] 3.26 [0.0797] 11.29 [0.398] 25.71 [0.907] 84 [2.96] 101 [3.56] 3.11 [0.110] 15.53 [0.548] 37.47 [1.322] 104 [3.67] 160 [5.64] 4.11 [0.145] 20.57 [0.726] 52.43 [1.849] 126 [4.44] 186 [6.56] 3.1 [0.168] 0 69.15 [2.439] 160 [5.64] 335 [11.82] 3.1 [0.168] 0 108 [3.81] 220 [7.76] 447 [15.77] 3.1 [0.168] 0 159 [5.61] 300 [10.58] 591 [20.85] 3.1 [0.168] 0 245 [8.64] 644 [22.72]	ss each 1mm [0.0394in.] stroke cylinder with bumper cylinder with magnet Foot bracket Flange bracket ZE Administration 0.74 [0.0261] — 3.9 [0.138] — — — 0.95 [0.0335] — 5.4 [0.190] — — — 1.12 [0.0395] — 6.8 [0.240] — — — 1.28 [0.0451] 6.42 [0.226] 6.59 [0.232] 50 [1.76] 55 [1.94] — 1.62 [0.0571] 8.08 [0.285] 9.93 [0.350] 62 [2.19] 71 [2.50] 71 [2.50] 1.226 [0.0797] 11.29 [0.398] 25.71 [0.907] 84 [2.96] 101 [3.56] 15 [0.53] 1.31 [0.110] 15.53 [0.548] 37.47 [1.322] 104 [3.67] 160 [5.64] 15 [0.53] 1.41 [0.145] 20.57 [0.726] 52.43 [1.849] 126 [4.44] 186 [6.56] 15 [0.53] 1.31 [0.10] 0 69.15 [2.439] 160 [5.64] 335 [11.82] 160 [5.64] 335 [11.82] 160 [5.64] 335 [11.82] 160 [5.64] 36 [7.76] 447 [15.77]

Note: Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Single acting push type

g [oz.]

Item				Basic m	ass Note1				Additional mass of	Mass of mou	inting bracket	Additional mass of	sensor switch Note2
Bore mm	5	10	15	20	25	30	35	40	cylinder with magnet	Foot bracket	Flange bracket	ZEA	ZE B
6	20.8 [0.734]	24.5 [0.864]	_	_	_	_	_	_	3.9 [0.138]	_	_		
8	28.3 [0.998]	33.1 [1.167]	_	-	_	_	_	_	5.4 [0.190]	_	_		
10	36.2 [1.277]	41.8 [1.474]	_	_	_	_	_	_	6.8 [0.240]	_	_		
12	32.81 [1.157]	39.22 [1.383]	45.64 [1.610]	67 [2.36]	73.42 [2.590]	79.83 [2.816]	_	_	7.78 [0.274]	50 [1.76]	55 [1.94]		
16	46.6 [1.644]	54.68 [1.929]	62.75 [2.213]	91 [3.21]	99.08 [3.495]	107.15 [3.780]	_	_	10.32 [0.364]	62 [2.19]	71 [2.50]	15 [0.53]	35 [1.23]
20	58.33 [2.057]	69.62 [2.456]	80.91 [2.854]	121 [4.27]	132.29 [4.666]	143.58 [5.065]	_	_	25.38 [0.895]	84 [2.96]	101 [3.56]	15 [0.55]	33 [1.23]
25	86.37 [3.047]	101.9 [3.594]	117.43 [4.142]	173 [6.10]	188.53 [6.650]	204.06 [7.198]	_	_	39.1 [1.379]	104 [3.67]	160 [5.64]		
32	128.85 [4.545]	149.42 [5.271]	169.99 [5.996]	276 [9.74]	296.57 [10.461]	317.14 [11.187]	_	_	50.58 [1.784]	126 [4.44]	186 [6.56]		
40	190.73 [6.728]	214.58 [7.569]	238.43 [8.410]	373 [13.16]	396.85 [13.998]	420.7 [14.84]	_	_	69.42 [2.449]	160 [5.64]	335 [11.82]		
50	_	343.95 [12.132]	379.11 [13.372]	414.26 [14.61]	582 [20.53]	617.16 [21.769]	652.31 [23.009]	687.47 [24.249]	106.05 [3.741]	220 [7.76]	447 [15.77]		

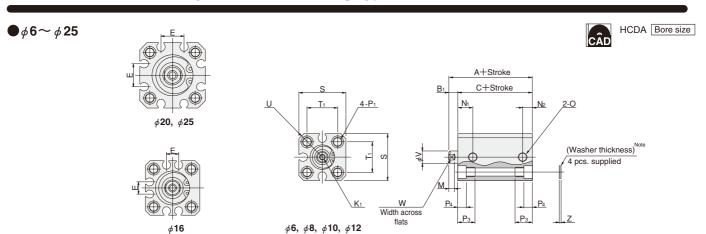
Notes: 1. The above table is for the standard strokes.

2. Sensor switch codes A and B show the lead wire lengths.

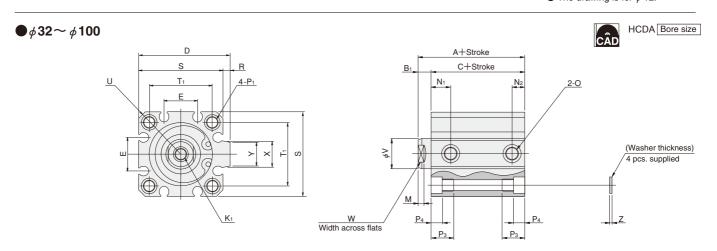
A: 1000mm [39in.] B: 3000mm [118in.]

Single acting pull type

g [oz.]


Item				Basic m	nass Note1				Additional mass of	Mass of mou	nting bracket	Additional mass of	sensor switch Note2
Bore mm	5	10	15	20	25	30	35	40	cylinder with magnet	Foot bracket	Flange bracket	ZEA	ZE B
6	20.5 [0.723]	24.2 [0.854]	_	_	_	_	_	_	3.9 [0.138]	_	_		
8	27.6 [0.974]	32.4 [1.143]	_	_	_	_	_	_	5.5 [0.194]	_	_		
10	35.1 [1.238]	40.7 [1.436]	_	_	_	_	_	_	6.7 [0.236]	_	_		
12	32.03 [1.130]	38.44 [1.356]	44.86 [1.582]	64 [2.26]	70.42 [2.484]	76.83 [2.710]	-	_	8.56 [0.302]	50 [1.76]	55 [1.94]		
16	45.55 [1.607]	53.63 [1.892]	61.7 [2.176]	86 [3.03]	94.08 [3.319]	102.15 [3.603]	-	_	11.37 [0.401]	62 [2.19]	71 [2.50]	15 [0.53]	35 [1.23]
20	68.4 [2.413]	79.69 [2.811]	90.98 [3.209]	125 [4.41]	136.29 [4.807]	147.58 [5.206]	_	_	26.31 [0.928]	84 [2.96]	101 [3.56]	15 [0.55]	33 [1.23]
25	100.02 [3.528]	115.55 [4.076]	131.08 [4.623]	178 [6.28]	193.53 [6.826]	209.06 [7.374]	_	_	38.45 [1.356]	104 [3.67]	160 [5.64]		
32	144.73 [5.105]	165.3 [5.831]	185.87 [6.556]	269 [9.49]	289.57 [10.214]	310.14 [10.940]	_	_	51.71 [1.824]	126 [4.44]	186 [6.56]		
40	215.24 [7.592]	239.09 [8.434]	262.94 [9.275]	374 [13.19]	397.85 [14.034]	421.7 [14.875]	_	_	67.91 [2.395]	160 [5.64]	335 [11.82]		
50	_	378.94 [13.366]	414.1 [14.61]	449.25 [15.847]	580 [20.46]	615.16 [21.699]	650.31 [22.939]	685.47 [24.179]	70.06 [2.471]	220 [7.76]	447 [15.77]		

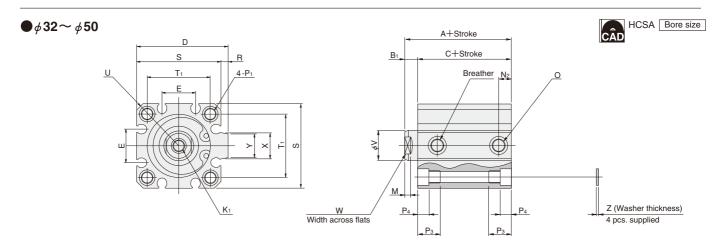
Notes: 1. The above table is for the standard strokes.


2. Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches (**ZE135A**) $70.47 + (3.11 \times 30) + 37.47 + (15 \times 2) = 231.24g [8.157oz.]$

Note: Bore sizes ϕ 6, ϕ 8, and ϕ 10 are not available with washers. lacktriangle The drawing is for ϕ 12.



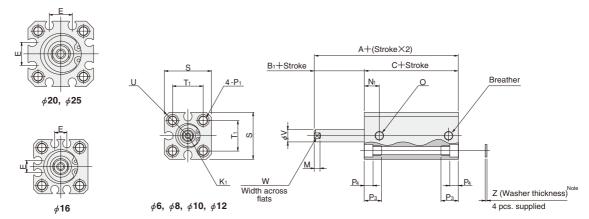
Туре	Standard	d cylinder	(HCDA)	Cylinder w	ith magnet	(HCDAS)	Standard cylin	der with bumpe	r (HCDA-R)	Cylinder with m	agnet and bumpe	er (HCDAS-R)	D	E	K 1	М	N ₁	N ₂
Bore Code	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	ע		N 1	IVI	IN1	IN2
6 [0.236]	19	5	14	24	5	19	_	_	_	-	_	_	_	_	M2.5×0.45 Depth5	3	6.5	3.5
8 [0.315]	20	5	15	25	5	20	_	_	_	_	_	_	_	_	M3 X 0.5 Depth5	3	7.5	3.5
10 [0.394]	21	5	16	26	5	21	_	_	_	_	_	_	_	_	M3 X 0.5 Depth5	3	8	4
12 [0.472]	22	5	17	27	5	22	27	5	22	32	5	27	_	_	M3X0.5 Depth6	3.5	8	5
16 [0.630]	22.5	5.5	17	27.5	5.5	22	27.5	5.5	22	32.5	5.5	27	_	6.2	M4X0.7 Depth8	3.5	8	5
20 [0.787]	25	5.5	19.5	35	5.5	29.5	30	5.5	24.5	40	5.5	34.5	_	12.2	M5X0.8 Depth10	4.5	9.5	5
25 [0.984]	27	6	21	37	6	31	32	6	26	42	6	36	-	12.2	M6X1 Depth10	5	10.5	5
32 [1.260]	30	7	23	40	7	33	35	7	28	40	7	33	48.5	18.2	M8X1.25 Depth12	6	9.5	7.5(6)
40 [1.575]	33	7	26	43	7	36	33	7	26	43	7	36	56.5	18.2	M8X1.25 Depth12	6	10.5	7.5
50 [1.969]	37	9	28	47	9	38	37	9	28	47	9	38	70	24.8	M10X1.5 Depth15	7	11	9.5
63 [2.480]	41	9	32	51	9	42	41	9	32	51	9	42	83	26.8	M10X1.5 Depth15	7	12.5	11
80 [3.150]	52	11	41	62	11	51	52	11	41	62	11	51	102	32.8	M14X2 Depth20	9	18	12
100 [3.940]	63	12	51	73	12	61	63	12	51	73	12	61	122	32.8	M18×2.5 Depth20	9	22.5	16.5

Bore Type mm [in.]	0	P ₁	Рз	P ₄	R	S	T ₁	U	٧	w	Х	Υ	Z	Appropriate through bolt
6 [0.236]	M3×0.5	ϕ 3.3 (Thru hole) C'bore ϕ 6 (Both sides) and M4 $ imes$ 0.7 (Both sides)	9.5	3.5	_	19	11	R12	4	3.5	_	_	_	M3
8 [0.315]	M3×0.5	φ 3.3 (Thru hole) C'bore φ 6.2 (Both sides) and M4×0.7 (Both sides)	9.5	3.5	_	21	13	R13.5	5	4	_	_	_	M3
10 [0.394]	M3×0.5	φ 3.3 (Thru hole) C'bore φ 6.2 (Both sides) and M4×0.7 (Both sides)	9.5	3.5	_	23	15	R15	5	4	_	_	_	M3
12 [0.472]	10-32 UNF	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	10-32 UNF	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	10-32 UNF	φ 4.3 (Thru hole) C'bore φ 6.5 (Both sides) and M5×0.8 (Both sides)	9.5	4.5	_	34	24	R22	10	8	_	_	1	M3
25 [0.984]	10-32 UNF	φ 5.1 (Thru hole) C'bore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	NPT 1/8	φ 5.1 (Thru hole) C'bore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	NPT1 /8	φ 6.9 (Thru hole) C'bore φ 9.5 (Both sides) and M8×1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	NPT 1/4	φ 6.9 (Thru hole) C'bore φ 11 (Both sides) and M8×1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	NPT1 /4	φ 6.9 (Thru hole) C'bore φ 11 (Both sides) and M8×1.25 (Both sides)	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 [3.150]	NPT 3/8	ϕ 10.5 (Thru hole) C'bore ϕ 14 (Both sides) and M12 \times 1.75 (Both sides)	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 [3.940]	NPT 3/8	ϕ 12.3 (Thru hole) C'bore ϕ 17.5 (Both sides) and M14 $ imes$ 2 (Both sides)	27	13	8	114	90	R75	32	27	27.6	25	2	M10

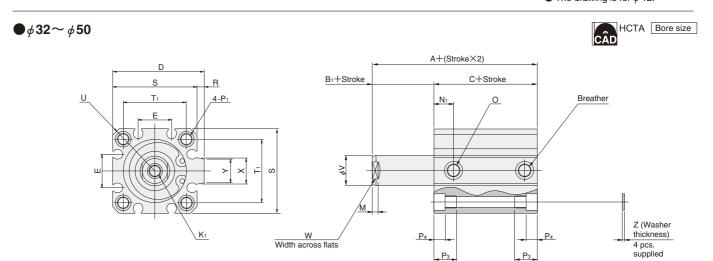
Note: Figure in parentheses () is for the standard cylinder (HCDA) with 5mm stroke. Remark: If using a through bolt to directly mount the body in place, see p.205.

Note: Bore sizes ϕ 6, ϕ 8, and ϕ 10 are not available with washers. • The drawing is for ϕ 12.

Туре		Star	dard cy	linder (H	CSA)			Cylind	er with n	nagnet (I	HCSAS))						
Stroke	5∼15	(φ 50 : 1 0)∼ 20)	16~30	(φ 50: 2	1~40)	5~15	(φ 50 : 1 0	0 ∼20)	16~30) (φ 50 : 2	1~40)	D	E	K 1	M	N ₂	0
Bore Code	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С						
6 [0.236]	29	5	24	_	_	_	34	5	29	_	_	_	_	_	M2.5 X 0.45 Depth5	3	3.5	M3×0.5
8 [0.315]	30	5	25	_	_	_	35	5	30	_	_	_	_	_	M3×0.5 Depth5	3	3.5	M3×0.5
10 [0.394]	31	5	26	_	_	_	36	5	31	_	_	_	_	_	M3×0.5 Depth5	3	4	M3×0.5
12 [0.472]	27	5	22	37	5	32	32	5	27	42	5	37	_	_	M3×0.5 Depth6	3.5	5	10-32 UNF
16 [0.630]	27.5	5.5	22	37.5	5.5	32	32.5	5.5	27	42.5	5.5	37	_	6.2	M4×0.7 Depth8	3.5	5	10-32 UNF
20 [0.787]	25	5.5	19.5	35	5.5	29.5	35	5.5	29.5	45	5.5	39.5	_	12.2	M5×0.8 Depth10	4.5	5	10-32 UNF
25 [0.984]	27	6	21	37	6	31	37	6	31	47	6	41	_	12.2	M6X1 Depth10	5	5	10-32 UNF
32 [1.260]	30	7	23	45	7	38	40	7	33	55	7	48	48.5	18.2	M8 X 1.25 Depth12	6	7.5(6)	NPT 1/8
40 [1.575]	33	7	26	48	7	41	43	7	36	58	7	51	56.5	18.2	M8 X 1.25 Depth12	6	7.5	NPT 1/8
50 [1.969]	37	9	28	52	9	43	47	9	38	62	9	53	70	24.8	M10×1.5 Depth15	7	9.5	NPT 1/4


Bore Code mm [in.]	P ₁	P 3	P ₄	R	s	T ₁	U	٧	W	Х	Υ	Z	Appropriate through bolt **
6 [0.236]	φ 3.3 (Thru hole) C'bore φ 6 (Both sides) and M4×0.7 (Both sides)	9.5	3.5	_	19	11	R12	4	3.5	_	_	_	M3
8 [0.315]	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 $ imes$ 0.7 (Both sides)	9.5	3.5	_	21	13	R13.5	5	4	_	_	_	M3
10 [0.394]	φ 3.3 (Thru hole) C'bore φ 6.2 (Both sides) and M4×0.7 (Both sides)	9.5	3.5	_	23	15	R15	5	4	_	_	_	M3
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	34	24	R22	10	8	_	_	1	M3
25 [0.984]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	φ 5.1 (Thru hole) C'bore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore ϕ 9.5 (Both sides) and M8 $ imes$ 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6

Note: Figure in parentheses [] is for the standard cylinder (HCSA) with 5mm stroke. Remark: If using a through bolt to directly mount the body in place, see p.205.


**Some types of mounting screws are available (to be ordered separately). See p.209.

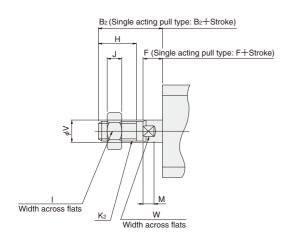
● *φ* 6 ~ *φ* 25

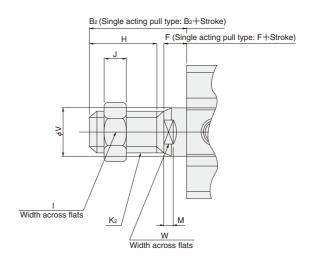
Note: Bore sizes $\,\phi$ 6, $\,\phi$ 8, and $\,\phi$ 10 are not available with washers. • The drawing is for ϕ 12.

Туре		Star	ndard cy	linder (H	CTA)			Cylind	er with n	nagnet (HCTAS)							
Stroke	5~15 (φ 50: 10~	~20)**1	16~30	(φ 50: 2	1~40)	5~15	φ 50: 10 -	~20)**1	16~30) (φ 50 : 2	1~40)	D	Е	K 1	M	N ₁	0
Bore Code	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С						
6 [0.236]	29	5	24	_	_	_	34	5	29	_	_	_	_	_	M2.5×0.45 Depth5	3	6.5	M3×0.5
8 [0.315]	30	5	25	_	_	_	35	5	30	_	_	_	_	_	M3×0.5 Depth5	3	7.5	M3×0.5
10 [0.394]	31	5	26	_	_	_	36	5	31	_	_	_	_	_	M3X0.5 Depth5	3	8	M3×0.5
12 [0.472]	27	5	22	37	5	32	32	5	27	42	5	37	_	_	M3X0.5 Depth6	3.5	8	10-32 UNF
16 [0.630]	27.5	5.5	22	37.5	5.5	32	32.5	5.5	27	42.5	5.5	37	_	6.2	M4X0.7 Depth8	3.5	8	10-32 UNF
20 [0.787]	30	5.5	24.5	40	5.5	34.5	40	5.5	34.5	50	5.5	44.5	_	12.2	M5X0.8 Depth10	4.5	9.5	10-32 UNF
25 [0.984]	32	6	26	42	6	36	42	6	36	52	6	46	_	12.2	M6X1 Depth10	5	10.5	10-32 UNF
32 [1.260]	35	7	28	50	7	43	45	7	38	60	7	53	48.5	18.2	M8X1.25 Depth12	6	9.5	NPT 1/8
40 [1.575]	38	7	31	53	7	46	48	7	41	63	7	56	56.5	18.2	M8X1.25 Depth12	6	10.5	NPT 1/8
50 [1.969]	37	9	28	52	9	43	47	9	38	62	9	53	70	24.8	M10X1.5 Depth15	7	11	NPT 1/4

Bore Code mm [in.]	P ₁	P 3	P ₄	R	s	T ₁	U	٧	w	х	Υ	Z	Appropriate through bolt *2
6 [0.236]	φ 3.3 (Thru hole) C'bore φ 6 (Both sides) and M4×0.7 (Both sides)	9.5	3.5	_	19	11	R12	4	3.5	_	_	_	M3
8 [0.315]	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 \times 0.7 (Both sides)	9.5	3.5	_	21	13	R13.5	5	4	_	_	_	M3
10 [0.394]	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 \times 0.7 (Both sides)	9.5	3.5	_	23	15	R15	5	4	_	_	_	M3
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	34	24	R22	10	8	_	_	1	M3
25 [0.984]	φ 5.1 (Thru hole) C'bore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	φ 5.1 (Thru hole) C'bore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore ϕ 9.5 (Both sides) and M8 $ imes$ 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6

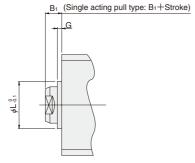
Remark: If using a through bolt to directly mount the body in place, see p.205.


^{** 1.} Bore sizes ϕ 6, ϕ 8, and ϕ 10 are 5 \sim 10 strokes.


2. Some types of mounting screws are available (to be ordered separately). See p.209.

● Double acting type, Single acting push type, Single acting pull type

(Single acting type available up to ϕ 50)



Bore Code	B ₂	F	Н	I	J	K ₂	М	V	W
6 [0.236]	15	5	8	5.5	1.8	M3×0.5	3	4	3.5
8 [0.315]	15	5	8	7	2.4	M4×0.7	3	5	4
10 [0.394]	15	5	8	7	2.4	M4×0.7	3	5	4
12 [0.472]	17	5	10	8	4	10-32-UNF	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

•Not available for bore sizes ϕ 6, ϕ 8, ϕ 10 and ϕ 12.

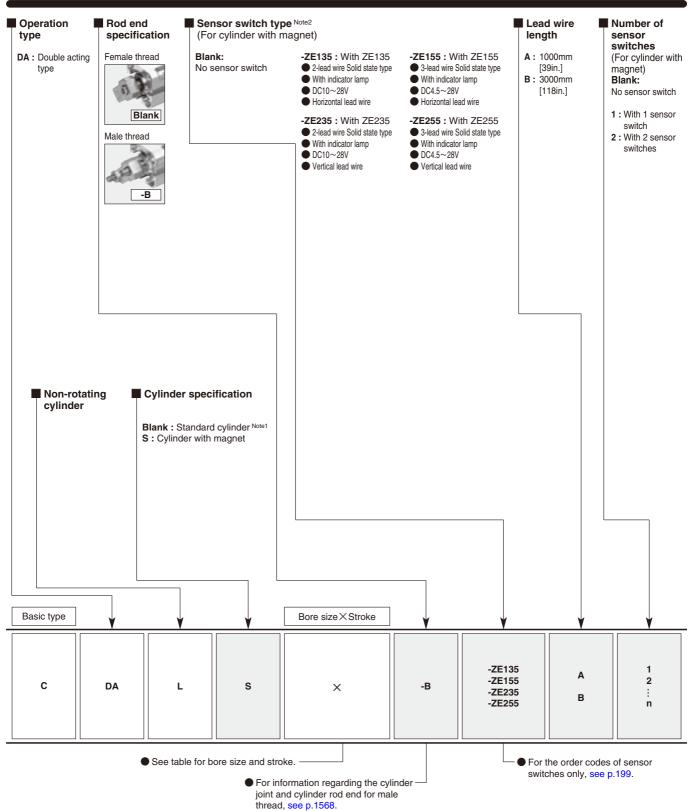
Bore Code mm [in.]	B ₁	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

JIG CYLINDERS HC SERIES NON-ROTATING CYLINDERS

Double Acting Type

Symbol

Specifications

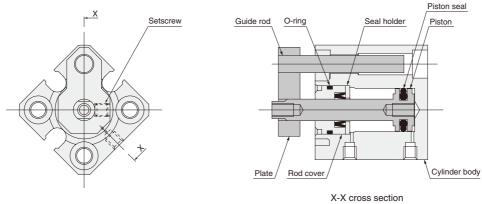

Item Bore size mm [in.]	6 [0.236]	8 [0.315]	10 [0.394]
Operation type		Double acting type	
Media		Air	
Operating pressure range MPa [psi.]		0.15~0.9 [22~131]	
Proof pressure MPa[psi.]		1.35 [196]	
Operating temperature range °C [°F]		0~60 [32~140]	
Operating speed range mm/s [in./sec.]		50~500 [2.0~19.7]	
Cushion		_	
Lubrication	Not required (If lubricatio	n is required, use Turbine Oil Class 1 [IS	SO VG32] or equivalent.)
Non-rotating accuracy	±2°	±1.6°	±1.4°
Port size		M3×0.5	

Remark: For Handling Instructions and Precautions, see p.205.

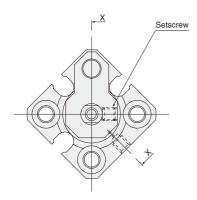
Bore Size and Stroke

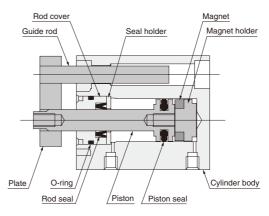
For non-standard strokes, see p	For non-standard strokes, see p.206.										
Bore size	Standard	d strokes									
Dore Size	Standard cylinder	Cylinder with magnet									
6											
8	5, 10	5, 10									
10											

Remark: Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$]


Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in.

2. For details of sensor switches, see p.1544.


Inner Construction and Major Parts


Double acting type

● *φ* 6 ~ *φ* 10

Cylinder with magnet

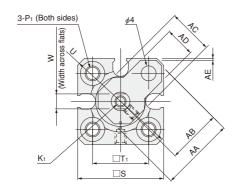
X-X cross section

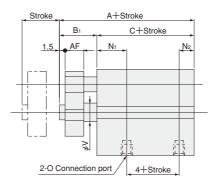
Major Parts and Materials

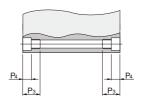
Parts Bore mm	ϕ 6 \sim ϕ 10
Cylinder body	Aluminum alloy (anodized)
Piston	Stainless steel
Seal	Synthetic rubber (NBR)
Seal holder	Copper alloy
Rod cover	Aluminum alloy (special wear resistant treatment)
Plate	Copper alloy (nickel plated)
Setscrew	Steel
Magnet	Neodymium magnet
Magnet holder	Copper alloy
Guide rod	Stainless steel

Mass

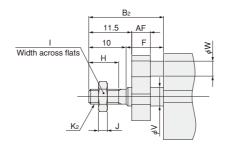
						g [oz.]
Bore size	Basic m	ass Note1	Mass wit	h sensor	Additional mass of	sensor switch Note2
mm [in.]	5mm stroke	10mm stroke	5mm stroke	10mm stroke	ZE 🗆 🗆 A	ZE B
6 [0.236]	19.8 [0.698]	23.4 [0.825]	23.1 [0.815]	27.1 [0.956]		
8 [0.315]	26.4 [0.931]	31.1 [1.097]	31.2 [1.101]	36.3 [1.280]	15 [0.53]	35 [1.23]
10 [0.394]	33.7 [1.189]	39.2 [1.383]	39.9 [1.407]	45.9 [1.619]		


Notes: 1. The above table is for the standard strokes.


2. Sensor switch codes A and B show the lead wire lengths.


A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 8mm, stroke of 10mm, and with 2 sensor switches (**ZE135A**) $36.3+(15\times2)=66.3g$ [2.339oz.]



Туре	Standar	d cylinder	(CDAL)	Cylinder v	vith magnet	(CDALS) K ₁ N ₁ N ₂		NI.		p.		
Bore Code	Α	B ₁	С	Α	B ₁	С	K1		IN1	IN2	U	PI
6 [0.236]	24	10	14	29	10	19	M2.5×0.45	Depth5	6.5	3.5	M3×0.5	ϕ 3.3 (Thru hole) C'bore ϕ 6 (Both sides) and M4 \times 0.7 (Both sides)
8 [0.315]	25	10	15	30	10	20	M3×0.5	Depth5	7.5	3.5	M3×0.5	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 \times 0.7 (Both sides)
10 [0.394]	26	10	16	31	10	21	M3×0.5	Depth5	8	4	M3×0.5	

Bore Code	Рз	P ₄	S	T ₁	U	٧	W	Appropriate through bolt	AA	AB	AC	AD	AE	AF
6 [0.236]	9.5	3.5	19	11	R12	4	3.5	M3	15	11.5	9.5	7	0.3	5
8 [0.315]	9.5	3.5	21	13	R13.5	5	4	M3	17	12.5	11	7	0.6	5
10 [0.394]	9.5	3.5	23	15	R15	5	4	M3	20	14.5	12	8	0.5	5

Dimensions of Male Rod End Thread Specification (mm)

Bore Code	B ₂	F	Н	I	J	K ₂	V	W	AF
6 [0.236]	20	10	8	5.5	1.8	M3×0.5	4	4	5
8 [0.315]	20	10	8	7	2.4	M4×0.7	5	4	5
10 [0.394]	20	10	8	7	2.4	M4×0.7	5	4	5

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

JIG CYLINDERS HC SERIES SQUARE ROD CYLINDERS

Double Acting Type

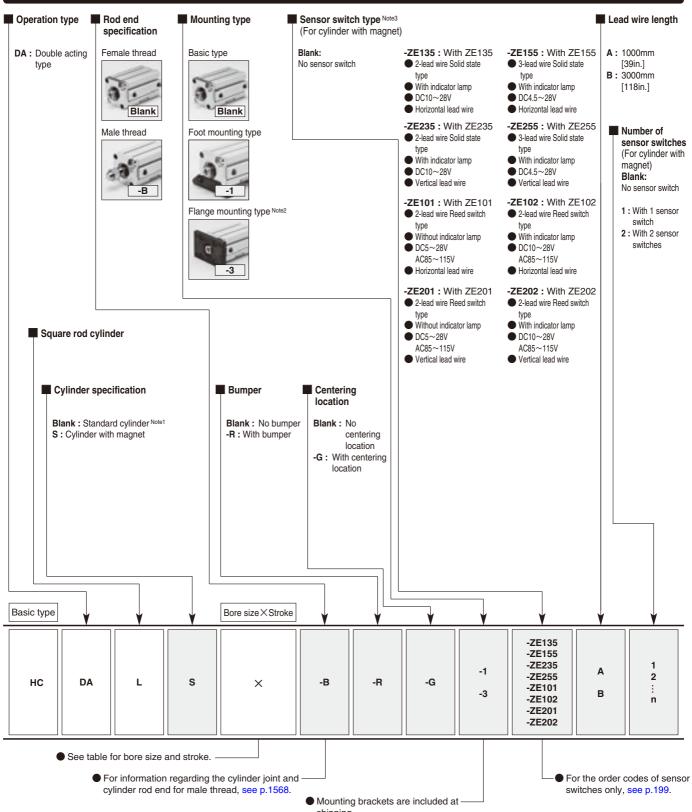
Symbol

Specifications

Item Bore size mm [in.]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]				
Operation type			Double a	cting type						
Media		Air								
Operating pressure range MPa [psi.]			0.1~1.0	[15~145]						
Proof pressure MPa [psi.] 1.5 [218]										
Operating temperature range °C [°F]	0~60 [32~140]									
Operating speed range mm/s [in./sec.]	30~500 [1.2~19.7] 30~300 [1.2~11.8]									
Cushion		Rubber bumper (Optional)								
Lubrication	Not	required (If lubrication	n is required, use T	urbine Oil Class 1 [I	SO VG32] or equiva	lent.)				
Non-rotating accuracy $\pm 1.5^{\circ}$ $\pm 0.8^{\circ}$ $\pm 0.6^{\circ}$										
Allowable torque Note N·cm [in·lbf]	2 [0.18]	2.4 [0.21]		4.4 [0.39]					
Port size	10-3	2 UNF	NP	T1/8	NP	T1/4				

Remark: For Handling Instructions and Precautions, see p.205.

Note: Maximum torque allowed on piston rod.


Bore Size and Stroke

For non-standard strokes, see p	206									
Tor non-standard strokes, see		mm								
Bore size	Standard strokes									
Bole Size	Standard cylinder	Cylinder with magnet								
20	E 10 15 00 05 00 05 40 45 50	E 10 1E 00 0E 20 2E 40 4E E0								
25	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50								
32	5 10 15 20 25 20 25 40 45 50 75 100	5 10 15 20 25 20 25 40 45 50 75 100								
40	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100								
50	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100								
63	10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100	10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100								

Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$]

2. In most cases, body cutting is used for the non-standard strokes.

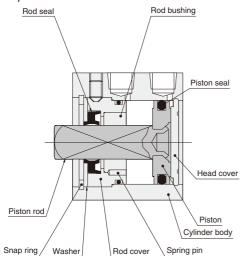
However, body cutting is not used for strokes of less than 5mm for ϕ 12 \sim ϕ 40, and strokes of less than 10mm for ϕ 50 and ϕ 63. The collar packed is used for these cases.

- Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in.
 - When using with a centering location (-G), the flange mounting bracket can be mounted on the head side only.
 - 3. For details of sensor switches, see p.1544.

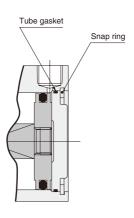
Additional Parts (To be ordered separately)

Foot mounting bracket (p.197)

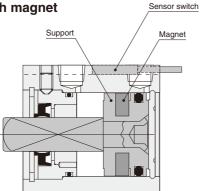
Flange mounting bracket (p.198)

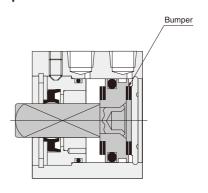


Mounting screws (p.209)


Inner Construction and Major Parts

Double acting type




 \bullet ϕ 50, ϕ 63

Cylinder with magnet

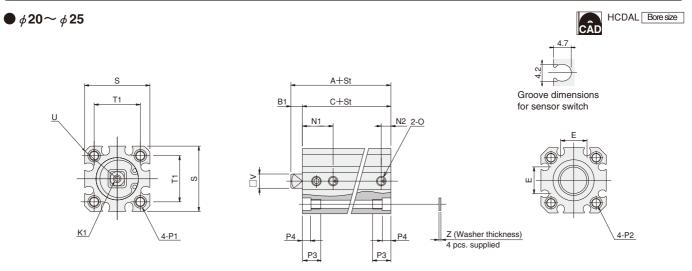
With bumper

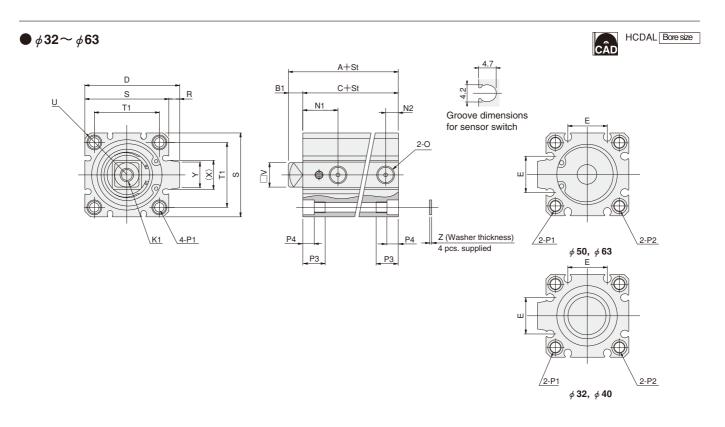
Major Parts and Materials

Parts Bore mm	ϕ 20 \sim ϕ 63						
Cylinder body	Aluminum alloy (anodized)						
Piston	Aluminum alloy (special rust prevention treatmer						
Piston rod	Steel (chrome plated)						
Seal	Synthetic rubber (NBR; urethane for the rod seal)						
Rod bushing	Oil impregnated bronze						
Rod cover	Aluminum alloy (anodized)						
Head cover	Aluminum alloy (anodized)						
Spring pin	Steel						
Washer	Steel (nickel plated)						
Snap ring	Steel (phosphate coating)						
Bumper	Synthetic rubber (NBR)						
Magnet	Plastic magnet						
Support	Aluminum alloy (special rust prevention treatment)						

Seals

Parts	D. J J	D'	Tube	gasket
Bore mm	Rod seal	Piston seal	Rod side	Head side
φ 20	KC-7.4	COP-20	Y090216	None
φ 25	KC-7.4	COP-25	Y090210	None
φ 32	KC-13	COP-32	L090084	None
φ 40	KC-13	COP-40	L090151	None
φ 50	KC-18	COP-50	L090174	L090106
φ 63	KC-18	COP-63	L090180	L090107

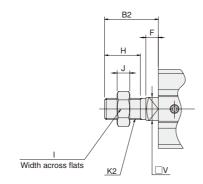

Mass


								g [oz.]
Bore size	Zero stroke	Additional mass for each 1mm	Additional mass of	Additional mass of	Mass of mou	inting bracket	Additional mass of	sensor switch Note2
mm [in.]	mass Note1	[0.0394in.] stroke	cylinder with bumper	cylinder with magnet	Foot bracket	Flange bracket	ZEA	ZE B
20 [0.787]	63.89 [2.254]	2.07 [0.0730]	10.36 [0.365]	25.71 [0.907]	87 [3.07]	105 [3.70]		
25 [0.984]	96.54 [3.405]	2.65 [0.0935]	13.24 [0.467]	37.47 [1.322]	108 [3.81]	165 [5.82]		
32 [1.260]	160.05 [5.646]	3.86 [0.136]	19.31 [0.681]	52.43 [1.849]	131 [4.62]	196 [6.91]	15 [0 52]	35 [1.23]
40 [1.575]	241.47 [8.517]	4.52 [0.159]	0	69.15 [2.439]	168 [5.93]	351 [12.38]	15 [0.53]	35 [1.23]
50 [1.969]	477.70 [16.850]	7.11 [0.251]	0	108 [3.81]	232 [8.18]	471 [16.61]		
63 [2.480]	706.58 [24.923]	8.77 [0.309]	0	159 [5.61]	312 [11.01]	615 [21.69]		

Notes: 1. The above table is for the standard strokes.

2. Sensor switch codes A and B show the lead wire lengths. A: 1000mm [39in.] B: 3000mm [118in.]

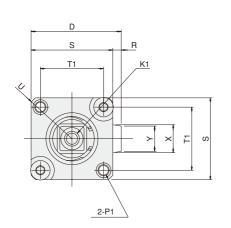
Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 32mm, stroke of 30mm, and with 2 sensor switches (**ZE135A**) $167.38 + (3.86 \times 30) + 52.43 + (15 \times 2) = 365.61g$ [12.896oz.]

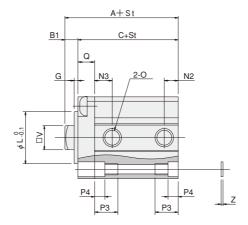


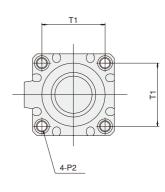
Туре	Type Standard cylinder (HCDAI			Cylinder with magnet (HCDALS)			Standard cylin	Standard cylinder with bumper (HCDAL-R)		Cylinder with ma	agnet and bumper	(HCDALS-R)	_	Е	K 1	NI.	N ₂	
Bore Code	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	D	E	K1	N ₁	IN2	0
20 [0.787]	32	6	26	42	6	36	37	6	31	47	6	41	ı	12.2	M4X0.7 Depth8	16	5	10-32 UNF
25 [0.984]	33.5	6	27.5	43.5	6	37.5	38.5	6	32.5	48.5	6	42.5	1	12.2	M4×0.7 Depth8	17	5	10-32 UNF
32 [1.260]	39	7	32	49	7	42	44	7	37	49	7	42	48.5	18.2	M8×1.25 Depth12	18.5	7.5(6)	NPT 1/8
40 [1.575]	43	7	36	53	7	46	43	7	36	53	7	46	56.5	18.2	M8 X 1.25 Depth12	20.5	7.5	NPT 1/8
50 [1.969]	53.7	10.7	43	63.7	10.7	53	53.7	10.7	43	63.7	10.7	53	70	24.8	M10×1.5 Depth15	26	9.5	NPT 1/4
63 [2.480]	56.2	9.2	47	66.2	9.2	57	56.2	9.2	47	66.2	9.2	57	83	26.8	M10×1.5 Depth15	27.5	11	NPT 1/4

Bore Code mm [in.]	P ₁	P ₂	Рз	P ₄	R	Ø	T 1	U	٧	Х	Υ	Z	Appropriate through bolt **
20 [0.787]	ϕ 4.3 (Thru hole) $$ C'bore ϕ 6.5 (Both sides) and M5 $\!\times$ 0.8 (Both sides)	Counterbore	9.5	4.5	_	34	24	R22	7.4	_	_	1	M3
25 [0.984]	ϕ 5.1 (Thru hole) $$ C'bore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	Counterbore	11.5	5.5	_	40	28	R25	7.4	_	_	1	M4
32 [1.260]	ϕ 5.1 (Thru hole) $$ C'bore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	Counterbore	11.5	5.5	4.5	44	34	R29.5	13	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) $$ C'bore ϕ 9.5 (Both sides) and M8 $\!\times$ 1.25 (Both sides)	Counterbore	15.5	7.5	4.5	52	40	R35	13	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) $$ C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	Counterbore	16.5	8.5	8	62	48	R41	18	21.6	19	1.6	M6
63 [2.480]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)	Counterbore	16.5	8.5	8	75	60	R50	18	21.6	19	1.6	M6

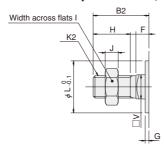
Note: Figure in parentheses () is for the standard cylinder (HCDAL) with 5mm stroke. **Some types of mounting screws are available (to be ordered separately). See p.209.



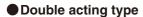

Bore Code	B ₂	F	Н	I	J	K ₂	V
20 [0.787]	21	6	13	10	5	M6×1	7.4
25 [0.984]	23	6	15	12	5	M8×1	7.4
32 [1.260]	30	7	20	17	7	M12×1.25	13
40 [1.575]	35	7	25	19	8	M14×1.5	13
50 [1.969]	38.7	10.7	25	27	11	M18×1.5	18
63 [2.480]	37.2	9.2	25	27	11	M18×1.5	18


Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)


● Female thread specification, with centering location

Male thread specification, with centering location


Bore Code	B ₁	G	L	Nз	Q
20 [0.787]	6	1.5	18	9.5	6.5
25 [0.984]	6	2	18	10.5	6.5
32 [1.260]	7	2	28	9.5	9
40 [1.575]	7	2	28	10.5	10
50 [1.969]	10.7	2	38	11	15
63 [2.480]	9.2	2	40	12.5	15

• The outward view of the square rod cylinder with centering location differs from the view in the case of no centering location, in that a rod cover is mounted on the piston rod side, as shown in the dimension above. For the dimension tables for female thread specification with centering location, also use the table on p.152, while for male thread specification with centering location, see the above this page.


JIG CYLINDERS HC SERIES DOUBLE ROD CYLINDERS

Double Acting Type, Single Acting Type

Symbols

Single acting type

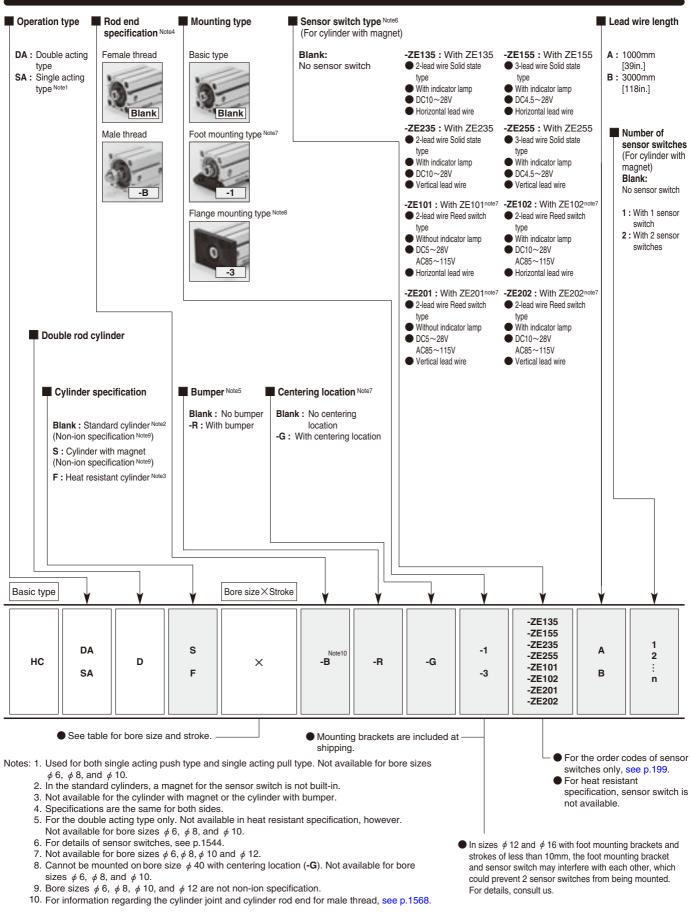
Specifications

Item B	ore size mm [in.]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
Operation type		Doub	ole acting	type		Doubl	e acting	type, Sin	gle actin	g type		Doub	le acting	type
Media								Air						
Operating pressure range	Double acting type	I	0.15~0.9 22~131					~1.0 ~145]				0.05 [7~		
MPa [psi.]	Single acting type		_		0.18~1.0 [26~145]			0.15~1.0 [22~145			0.1~1.0 [15~145]		_	
Proof pressure	MPa [psi.]	-	1.35 [196	i]					1.5	[218]				
Operating temperature range	°C [°F]		$0\sim60$ [32 \sim 140] (The heat resistant specification is 120 [248]. Note1)									⁹¹)		
Operating speed range	Double acting type	50~5	00 [2.0~	~19.7]	30~500 [1.2~19.7]						3	0~300 [1.2~11.8]		3]
mm/s [in./sec.]	Single acting type		_			10	0~500	[3.9~19	.7]		100~300 [3.9~11.8]			
Cushion	Double acting type		None		Rubber bumper (Op						Note2)			
Custilon	Single acting type						None					_		
Lubrication			Not	required	(If lubrica	ation is red	quired, u	se Turbir	e Oil Cla	ss 1 [ISO	VG32] o	r equivale	ent.)	
Port size			M3×0.5	;	10-32 UNF NPT 1/8					PT 1/8	8 NPT 1/		NP.	T 3/8

Remark: For Handling Instructions and Precautions, see p.205.

Notes: 1. For heat resistant specification, consult us. Not available for bore sizes ϕ 6, ϕ 8, and ϕ 10.

2. Not available for heat resistant specification.


Bore Size and Stroke

0	Dava sina	Standard	d strokes
Operation type	Bore size	Standard cylinder	Cylinder with magnet
	6		
	8	5, 10, 15, 20	5, 10, 15, 20
	10		
	12	E 10 15 00 05 00	E 10 1E 00 0E 00
	16	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
Davible	20	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Double acting type	25	5, 10, 15, 20, 25, 50, 55, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50
doing type	32	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	40	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	50		
	63	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	80	10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100	10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100
	100		
	12		
	16		
Cinalo	20	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
Single acting type	25	3, 10, 13, 20, 23, 30	3, 10, 13, 20, 23, 30
	32		
	40		
	50	10, 15, 20, 25, 30, 35, 40	10, 15, 20, 25, 30, 35, 40

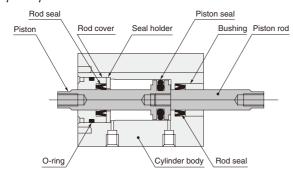
Remarks: 1. Stroke tolerance ${}^{+1}_0$ $\left[{}^{+0.039in.}_0 \right]$

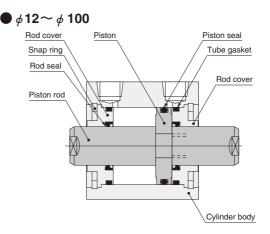
^{2.} In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 12 \sim ϕ 40, and strokes of less than 10mm for ϕ 50 \sim ϕ 100. The collar packed is used for these cases. Bore sizes ϕ 6 to ϕ 10 are collar packed only.

Order Codes for Double Rod Cylinders

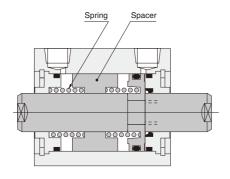
Additional Parts (To be ordered separately)

Foot mounting bracket (p.197)

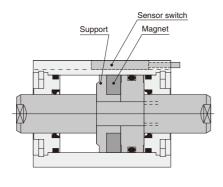

Flange mounting bracket (p.198)



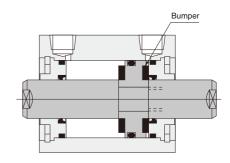
screws (p.209)


● Double acting type (HCDAD)

• φ6~ φ 10



Single acting type (HCSAD)



Note: Bore sizes ϕ 6 to ϕ 10 are not available as single acting cylinders.

Cylinder with magnet

With bumper

Note: Bore sizes ϕ 6 to ϕ 10 are not available with bumpers.

Major Parts and Materials

Parts Bore mm	φ6	φ8	φ 10	φ 12	φ 16	φ 20	φ 25	φ 32	ϕ 40	ϕ 50	ϕ 63	ϕ 80	φ 100	
Cylinder body					Alum	inum	alloy	(and	dize	d)				
Piston	Stai	nless	steel	Alun	ninun	n allo	y (spe	ecial r	ust p	reven	tion t	reatm	ent)	
Piston rod	Stai	nless	steel	Stainle	ss steel	(chrome	plated)	5	Steel	(chro	me p	lated)	
Seal					Syr	theti	c rubl	ber (l	NBR)					
Rod cover		Aluminum alloy (special wear-resistant treatment)												
Snap ring	Steel (phosphate coating)													
Spring		_				Pia	ano w	rire				_		
Spacer		_		Alumir	num allo	y (spec	ial rust	prevent	ion trea	tment)		_		
Bumper	 Synthetic rubber (NBR; urethane for φ12 only) 												nly)	
Magnet	Neody	/mium ı	magnet				Pla	astic	magr	net				
Support		_		Alun	ninun	n allo	y (spe	ecial r	ust p	reven	tion t	reatm	ent)	
Bushing	Copper alloy —													

Seals

Parts Bore mm	Rod seal	Piston seal	Tube gasket
φ 12	MYR-6	COP-12	Y090260
φ 16	MYR-8	COP-16	Y090207
φ 20	MYR-10	COP-20(MYA-16)	Y090216
φ 25	MYR-12	COP-25(MYA-21)	Y090210
φ 32	MYR-16	COP-32	L090084
φ 40	MYR-16	COP-40	L090151
φ 50	MYR-20	COP-50	L090174
φ 63	MYR-20	COP-63	L090180
φ 80	PNY-25	COP-80	L090171
φ 100	PNY-32	COP-100	L090172

Note: Items in parentheses () are for the single acting type.

Double acting type

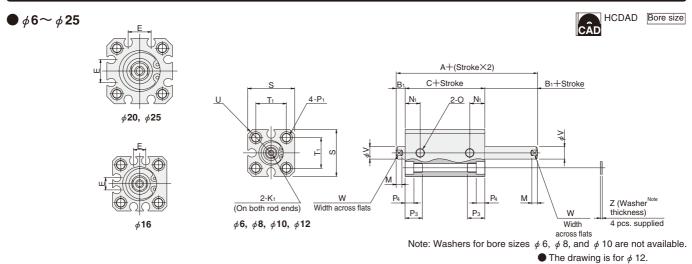
g [oz.]

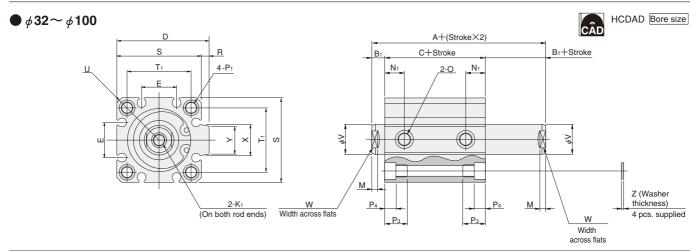
Bore size	Zero stroke mass	Additional mass for each 1mm	Additional mass of	Additional mass of	Mass of mou	nting bracket	Additional mass of	sensor switch Note	
mm [in.]	Zeio siioke iiiass	[0.0394in.] stroke	cylinder with bumper	cylinder with magnet	Foot bracket	Flange bracket	ZEA	ZE B	
6 [0.236]	12.7 [0.448]	0.84 [0.0296]	_	3.9 [0.138]	_	_			
8 [0.315]	19.2 [0.677]	1.11 [0.0392]	_	5.3 [0.187]	_	_			
10 [0.394]	21.0 [0.741]	1.27 [0.0448]	_	6.7 [0.236]	_	_			
12 [0.472]	30.41 [1.073]	1.51 [0.0533]	7.53 [0.266]	6.59 [0.232]	50 [1.76]	55 [1.94]			
16 [0.630]	44.4 [1.566]	2.01 [0.0709]	10.05 [0.354]	9.93 [0.350]	62 [2.19]	71 [2.50]			
20 [0.787]	73.31 [2.586]	2.88 [0.102]	14.38 [0.507]	25.71 [0.907]	84 [2.96]	101 [3.56]			
25 [0.984]	104.2 [3.675]	3.99 [0.141]	19.97 [0.704]	37.47 [1.322]	104 [3.67]	160 [5.64]	15 [0.53]	35 [1.23]	
32 [1.260]	165.44 [5.836]	5.69 [0.201]	28.47 [1.004]	52.43 [1.849]	126 [4.44]	186 [6.56]			
40 [1.575]	241.43 [8.516]	6.35 [0.224]	0	69.15 [2.439]	160 [5.64]	335 [11.82]			
50 [1.969]	328.92 [11.602]	9.5 [0.335]	0	108 [3.81]	220 [7.76]	447 [15.77]			
63 [2.480]	499.3 [17.61]	11.16 [0.394]	0	159 [5.61]	300 [10.58]	591 [20.85]			
80 [3.150]	1029.17 [36.302]	16.91 [0.596]	0	245 [8.64]	644 [22.72] 1414 [49.88]				
100 [3.940]	1872.15 [66.037]	24.93 [0.879]	0	360 [12.70]	1172 [41.34]	2606 [91.92]			

Note: Sensor switch codes A and B show the lead wire lengths.
A: 1000mm [39in.] B: 3000mm [118in.]

Single acting type

g [oz.]

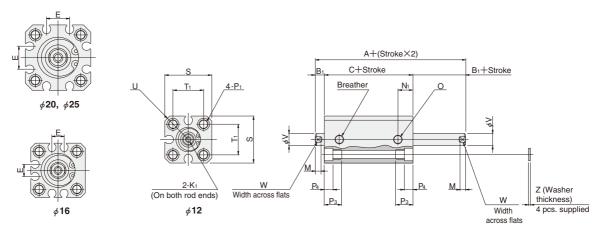

Item	Basic mass Note1								Additional mass of cylinder with magnet	Mass of mou	ınting bracket	Additional mass of sensor switch Note2		
Bore Stroke mm mm [in.]	5	10	15	20	25	30	35	40	5~30 (<i>ϕ</i> 50: 10~40.)	Foot bracket	oot bracket Flange bracket		ZE	
12 [0.472]	42.64 [1.504]	50.16 [1.769]	57.69 [2.035]	76.83 [2.710]	84.35 [2.975]	91.88 [3.241]	_	_	7.78 [0.274]	50 [1.76]	55 [1.94]			
16 [0.630]	62.08 [2.190]	72.13 [2.544]	82.18 [2.899]	106.48 [3.756]	116.53 [4.110]	126.58 [4.465]	_	_	10.32 [0.364]	62 [2.19]	71 [2.50]			
20 [0.787]	84.93 [2.996]	99.31 [3.503]	113.68 [4.010]	147.6 [5.206]	161.98 [5.714]	176.35 [6.220]	_	_	23.38 [0.825]	84 [2.96]	101 [3.56]			
25 [0.984]	120.1 [4.236]	140.07 [4.941]	160.04 [5.645]	206.73 [7.292]	226.7 [7.996]	246.67 [8.701]	_	_	39.1 [1.379]	104 [3.67]	160 [5.64]	15 [0.53]	35 [1.23]	
32 [1.260]	187.86 [6.626]	216.33 [7.631]	244.79 [8.635]	335.01 [11.817]	363.48 [12.821]	391.94 [13.825]	_	_	50.58 [1.784]	126 [4.44]	186 [6.56]			
40 [1.575]	266 [9.38]	297.75 [10.503]	329.49 [11.622]	448.28 [15.812]	480.02 [16.932]	511.77 [18.052]	_	_	69.42 [2.449]	160 [5.64]	335 [11.82]			
50 [1.969]	_	401.18 [14.151]	448.67 [15.826]	496.15 [17.501]	639.23 [22.548]	686.72 [24.223]	734.2 [25.898]	781.69 [27.573]	106.05 [3.741]	220 [7.76]	447 [15.77]			


Notes: 1. The above table is for the standard strokes.

2. Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

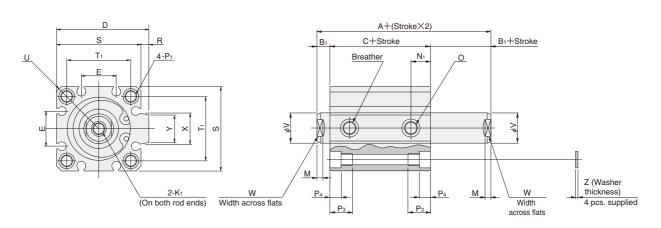
Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches (**ZE135A**) $104.2 + (3.99 \times 30) + 37.47 + (15 \times 2) = 291.37g [10.278oz.]$


Туре	Standard	cylinder (HCDAD)	Cylinder w	ith magnet (I	HCDADS)	Standard cylin	der with bumper	(HCDAD-R)	Cylinder with ma	agnet and bumper	(HCDADS-R)		_			N.	
Bore Code mm [in.]	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	D	E	K 1	М	N ₁	0
6 [0.236]	28.5	5	18.5	33.5	5	23.5	_	_	_	_	_	_	_	_	M2.5×0.45 Depth5	3	7	M3×0.5
8 [0.315]	30.5	5	20.5	35.5	5	25.5	_	_	_	-	-	_	-	_	M3 X 0.5 Depth5	3	7.5	M3×0.5
10 [0.394]	31	5	21	36	5	26	_	_	_	_	_	_	_	-	M3 X 0.5 Depth5	3	8.5	M3×0.5
12 [0.472]	33	5	23	38	5	28	38	5	28	43	5	33	_	_	M3 X 0.5 Depth6	3.5	8	10-32-UNF
16 [0.630]	34	5.5	23	39	5.5	28	39	5.5	28	44	5.5	33	_	6.2	M4X0.7 Depth8	3.5	8	10-32-UNF
20 [0.787]	37	5.5	26	47	5.5	36	42	5.5	31	52	5.5	41	-	12.2	M5 X 0.8 Depth10	4.5	9.5	10-32-UNF
25 [0.984]	38.5	6	26.5	48.5	6	36.5	43.5	6	31.5	53.5	6	41.5	_	12.2	M6X1 Depth10	5	10.5	10-32-UNF
32 [1.260]	44	7	30	54	7	40	49	7	35	54	7	40	48.5	18.2	M8 X 1.25 Depth12	6	9.5	NPT 1/8
40 [1.575]	47	7	33	57	7	43	47	7	33	57	7	43	56.5	18.2	M8 X 1.25 Depth 12	6	10.5	NPT 1/8
50 [1.969]	48	9	30	58	9	40	48	9	30	58	9	40	70	24.8	M10 X 1.5 Depth15	7	11	NPT 1/4
63 [2.480]	52.5	9	34.5	62.5	9	44.5	52.5	9	34.5	62.5	9	44.5	83	26.8	M10 X 1.5 Depth15	7	12.5	NPT 1/4
80 [3.150]	69.5	11	47.5	79.5	11	57.5	69.5	11	47.5	79.5	11	57.5	102	32.8	M14X2 Depth20	9	18	NPT 3/8
100 [3.940]	81.5	12	57.5	91.5	12	67.5	81.5	12	57.5	91.5	12	67.5	122	32.8	M18X2.5 Depth20	9	22.5	NPT 3/8

Bore Code mm [in.]	P ₁	P ₃	P ₄	R	S	T ₁	U	٧	W	Х	Υ	Z	Appropriate through bolt %
6 [0.236]	ϕ 3.3 (Thru hole) C'bore ϕ 6 (Both sides) and M4 $ imes$ 0.7 (Both sides)	9.5	3.5	_	19	11	R12	4	3.5	_	_	_	M3
8 [0.315]	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 $ imes$ 0.7 (Both sides)	9.5	3.5	_	21	13	R13.5	5	4	_	_	_	МЗ
10 [0.394]	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 $ imes$ 0.7 (Both sides)	9.5	3.5	_	23	15	R15	5	4	_	_	_	M3
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	34	24	R22	10	8	-	_	1	M3
25 [0.984]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore ϕ 9.5 (Both sides) and M8 $ imes$ 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 [3.150]	ϕ 10.5 (Thru hole) C'bore ϕ 14 (Both sides) and M12 $ imes$ 1.75 (Both sides)	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 [3.940]	ϕ 12.3 (Thru hole) C'bore ϕ 17.5 (Both sides) and M14 $ imes$ 2 (Both sides)	27	13	8	114	90	R75	32	27	27.6	25	2	M10

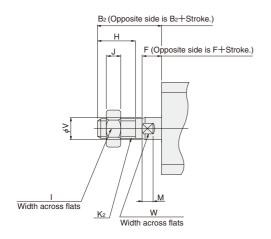
 $[\]ensuremath{\%}$ Some types of mounting screws are available (to be ordered separately). See p.209.

\bullet ϕ 12 \sim ϕ 25

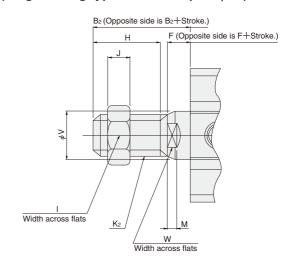


• The drawing is for ϕ 12.

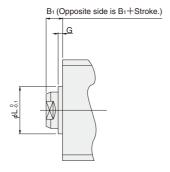
Туре		Stan	dard cyl	inder (H	CSAD)			Cylinde	er with m	agnet (F	ICSADS	5)						
Stroke	5∼15	(φ 50 : 10	0~20)	16~30) (φ 50 : 2	1~40)	5∼15	(φ 50 : 1 0	0~20)	16~30	Ο (φ 50: 2	21~40)	D	Е	K 1	M	N ₁	0
Bore Code mm [in.]	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С						
12 [0.472]	38	5	28	48	5	38	43	5	33	53	5	43	_	_	M3×0.5 Depth6	3.5	8	10-32 UNF
16 [0.630]	39	5.5	28	49	5.5	38	44	5.5	33	54	5.5	43	_	6.2	M4X0.7 Depth8	3.5	8	10-32 UNF
20 [0.787]	37	5.5	26	47	5.5	36	47	5.5	36	57	5.5	46	_	12.2	M5×0.8 Depth10	4.5	9.5	10-32 UNF
25 [0.984]	38.5	6	26.5	48.5	6	36.5	48.5	6	36.5	58.5	6	46.5	_	12.2	M6X1 Depth10	5	10.5	10-32 UNF
32 [1.260]	44	7	30	59	7	45	54	7	40	69	7	55	48.5	18.2	M8×1.25 Depth12	6	9.5	NPT 1/8
40 [1.575]	47	7	33	62	7	48	57	7	43	72	7	58	56.5	18.2	M8 X 1.25 Depth12	6	10.5	NPT 1/8
50 [1.969]	48	9	30	63	9	45	58	9	40	73	9	55	70	24.8	M10×1.5 Depth15	7	11	NPT1/4


Bore Code mm [in.]	P ₁	P ₃	P ₄	R	S	T ₁	U	٧	w	х	Υ	z	Appropriate through bolt %
12 [0.472]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	φ 4.3 (Thru hole) Counterbore φ 6.5 (Both sides) and M5×0.8 (Both sides)	9.5	4.5	ı	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	φ 4.3 (Thru hole) Counterbore φ 6.5 (Both sides) and M5×0.8 (Both sides)	9.5	4.5	ı	34	24	R22	10	8	_	_	1	M3
25 [0.984]	φ 5.1 (Thru hole) Counterbore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	1	40	28	R25	12	10	_	_	1	M4
32 [1.260]	φ 5.1 (Thru hole) Counterbore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) Counterbore ϕ 9.5 (Both sides) and M8 \times 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6

^{*} Some types of mounting screws are available (to be ordered separately). See p.209.



Double acting type, Single acting type


(Single acting type available up to ϕ 50)

Bore Code mm [in.]	B ₂	F	Н	I	J	K ₂	М	V	W
6 [0.236]	15	5	8	5.5	1.8	M3×0.5	3	4	3.5
8 [0.315]	15	5	8	7	2.4	M4×0.7	3	5	4
10 [0.394]	15	5	8	7	2.4	M4×0.7	3	5	4
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

•Not available for bore sizes ϕ 6, ϕ 8, ϕ 10 and ϕ 12.

Bore Code mm [in.]	B ₁	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

JIG CYLINDERS HC SERIES TANDEM CYLINDERS

Double Acting Type, Single Acting Push Type

Symbols

Double acting type

Single acting push type

Specifications

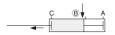
Bore	size	e mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]			
Operation typ	е		Do	ouble ac	ting typ	e, Single	e acting	push ty	ре	Doub	le actino	type			
Media			Air												
Operating		Double acting type				~1.0 ~145]					~1.0 ~145]				
pressure rang MPa [ps	_	Single acting type				~1.0 ~145]			0.2~1.0 [29~145]	_					
Proof pressure	· N	IPa [psi.]		1.5 [218]											
Operating temperatu	re ra	nge °C [°F]	$0\sim$ 60 [32 \sim 140] (The heat resistant specification is 120 [248]. Note1)												
Operating speed	Dou	uble acting type		30	~500 [30~300 [1.2~11.8]									
range mm/s [in./sec.]	Sin	gle acting type		100	~500	100~300 [3.9~11.8]									
Cuahian	Dou	uble acting type	Rubber bumper (Option Note2)												
Cushion	Sin	gle acting type	None -												
Lubrication			Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)												
Port size				10-3	2 UNF		NPT	1/8	NPT	1/4	NPT	3/8			

Remark: For Handling Instructions and Precautions, see p.205.

Notes: 1. For heat resistant specification, consult us.

2. Not available for heat resistant specification.

Operation of Tandem Cylinders


Tandem Cylinders are a set of 2 cylinders joined end to end.

It can be used as a two-stage stroke cylinder by supplying air to either Port A or Port B. It can also obtain twice the thrust within the "stroke I" range.

The rod moves stroke I when air is supplied from Port (A)

The rod moves stroke ${\rm I\hspace{-.1em}I}$ when air is supplied from Port ${}^{\textstyle \textcircled{\tiny B}}$.

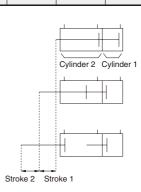
Twice the thrust is obtained within the stroke I range when air is supplied from Ports A and B.

Bore Size and Stroke

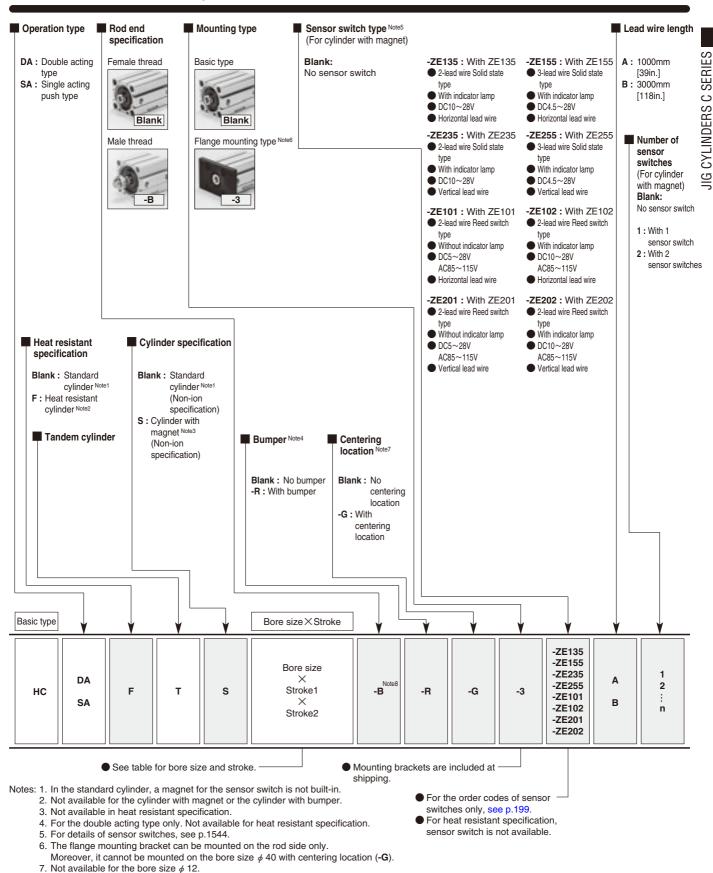
For non-standard strokes, see p.206. mm Stroke1 Operation 5 10 15 20 25 30 35 40 45 50 75 100 type Bore size 0,5,10 0,5,10 12, 16 0.5.10.15 0.5.10 0,5 0 15,20,25 15.20 0,5,10,15 0,5,10 0.5.10.15 0,5,10,15 0,5,10 0,5,10 20, 25 0.5.10.15 0 20.25.30 20.25.30 15.20.25 0.5.10 0.5 Double 20,25,30 15,20,25 15,20 35,40,45 35.40 30.35 acting type 0,5,10,15 0,5,10,15 0,5,10,15 0,5,10,15 0,5,10 0,5,10 0.5,10,15 0.5.10 CDAT 32, 40 20,25,30,35 20,25,30,35 20,25,30 20,25,30 15,20,25 15,20 0,5,30,55 0,25,50 0,25 0 **CDATS** 40.65 35.60 40,45,70,95 40,65,90 35,60,85 55,80 50,75 45,70 0.5.10.15 0,5,10,15 0.5,10,15 0.5.10 50. 63 0,5,10,15 0,5,10,15 0,5,10 20 25 30 35 20.25.30 0.5.30.55 0.25.50 0.25 0 20.25.30 15.20.25 20,45,70 40,65 35.60 80. 100 40,65,90 35,60,85 55,80 50,75 Single 12, 16, 20 0,5,10 0,5,10 0.5.10.15 0.5.10 0.5 0 15,20 25, 32, 40 15,20,25 type CSAT 0,5,10,15 0,5,10 0,5,10 0,5,10,15 0,5,10 0 0.5 CSATS 20,25,30 15,20,25

Remarks: 1. Stroke tolerance: Stroke 1 side $^{+1}_{-0.2}[^{+0.039in.}_{-0.008in.}]$, stroke 2 side $^{+1}_{0}[^{+0.039in.}_{0}]$

- 2. The figures in the table are combinations of stroke 2 (standard) responding to stroke 1 (standard).
- 3. In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for "Stroke 1" or "Stroke 1 + Stroke 2" under the condition mentioned below. The collar packed is used for these cases.


 ϕ 12 \sim ϕ 40: less than 5mm

 ϕ 50 \sim ϕ 100: less than 10mm


About stroke 1 and stroke 2

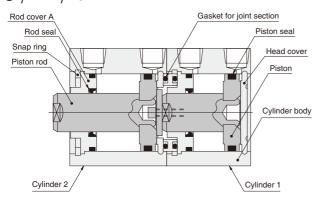
Stroke 1 is the stroke of cylinder 1.

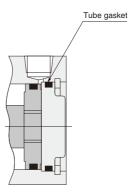
Stroke 2 is obtained by subtracting stroke 1 from the stroke of cylinder 2.

Order Codes for Tandem Cylinders

Additional Parts (To be ordered separately)

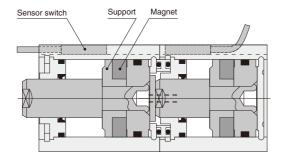
8. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

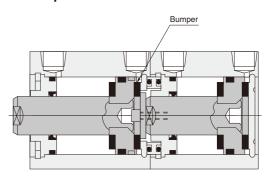

(p.198)


Inner Construction and Major Parts

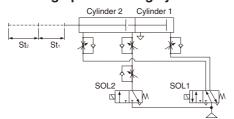
● Double acting type (HCDAT)

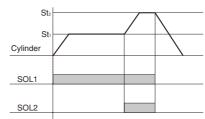
φ12~ φ40



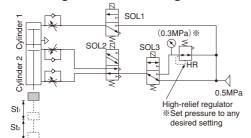

● Single acting push type (HCSAT)

●Cylinder with magnet

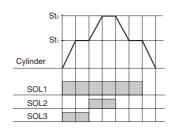

With bumper



Tandem Cylinder Air Circuit Examples


When using a tandem cylinder as a 2-stage stroke cylinder, refer to the air circuits shown below. For application of other air circuits not shown below, consult us.

For mounting upward-facing cylinders



For mounting downward-facing or horizontal cylinders

163

Major Parts and Materials

Poro mm														
Parts Bore mm	φ 12	ϕ 16	ϕ 20	φ 25	φ 32	ϕ 40	ϕ 50	φ 63	φ 80	ϕ 100				
Cylinder body		Aluminum alloy (anodized)												
Piston		Alumii	num al	loy (sp	ecial r	ust pre	eventio	n trea	tment)					
Piston rod	Stainle	ss steel	(chrome	plated)		Stee	l (chro	me pla	ated)					
Seal				Synth	netic ru	ıbber (NBR)							
Rod cover		Alumi	num a	lloy (s _l	oecial v	wear-r	esistar	nt treat	ment)					
Head cover			1	Alumin	um allo	oy (and	odized)						
Snap ring				Steel (phosp	hate c	oating)							
Spring			Pi	ano w	re				_					
Spacer	Alum	inum all	oy (spec	cial rust	preventi	on treati	ment)		_					
Bumper	Synthetic rubber (NBR; urethane for ϕ 12 only)													
Magnet	Plastic magnet													
Support		Aluminum alloy (special rust prevention treatment)												

Seals

Parts	Rod seal	Piston seal	Tube	gasket	Gasket for
Bore mm	nou seai	Fision seal	Rod side	Head side	joint section
φ 12	MYR-6	COP-12	Y090260	None	Y090119
φ 16	MYR-8	COP-16	Y090207	None	M202208
φ 20	MYR-10	COP-20(MYA-16)	Y090216	None	L090134
φ 25	MYR-12	COP-25(MYA-21)	Y090210	None	Y090196
φ 32	MYR-16	COP-32	L090084	None	L090015
φ 40	MYR-16	COP-40	L090151	None	L090028
φ 50	MYR-20	COP-50	L090174	L090106	None
φ 63	MYR-20	COP-63	L090180	L090107	None
φ 80	PNY-25	COP-80	L090171	L090108	None
φ 100	PNY-32	COP-100	L090172	L090109	None

Note: Items in parentheses () are for the single acting type.

Mass

Double acting type

g [oz.]

Bore size	Zero stroke	Additional mass for each 1mm [0.0394in.]	Additional mass for each 1mm [0.0394in.]	Additional mass of	Additional mass of	Mass of mounting bracket	Additional mass of	sensor switch Note2
mm [in.]	mass Note1	of stroke1	of stroke2	cylinder with bumper	cylinder with magnet	Flange bracket	ZE□□□A	ZE B
12 [0.472]	44.26 [1.561]	2.68 [0.095]	1.28 [0.045]	13.39 [0.472]	13.73 [0.484]	55 [1.94]		
16 [0.630]	61.11 [2.156]	3.34 [0.118]	1.62 [0.057]	16.71 [0.589]	20.41 [0.720]	71 [2.50]		
20 [0.787]	96.79 [3.414]	4.63 [0.163]	2.26 [0.080]	23.14 [0.816]	52.54 [1.853]	101 [3.56]		
25 [0.984]	147.69 [5.210]	6.41 [0.226]	3.11 [0.110]	32.05 [1.131]	76.92 [2.713]	160 [5.64]		
32 [1.260]	220.3 [7.771]	8.43 [0.297]	4.11 [0.145]	42.13 [1.486]	106.84 [3.769]	186 [6.56]	15 [0.53]	35 [1.23]
40 [1.575]	345.12 [12.174]	9.85 [0.347]	4.77 [0.168]	0	141.38 [4.987]	335 [11.82]	15 [0.55]	33 [1.23]
50 [1.969]	562.47 [19.840]	14.51 [0.512]	7.03 [0.248]	0	220.44 [7.776]	447 [15.77]		
63 [2.480]	890.99 [31.428]	17.83 [0.629]	8.69 [0.307]	0	322.44 [11.374]	591 [20.85]		
80 [3.150]	1770.07 [62.436]	26.91 [0.949]	13.06 [0.461]	0	497.9 [17.563]	1414 [49.88]		
100 [3.940]	3252 [114.7]	38.46 [1.357]	18.61 [0.656]	0	732.34 [25.832]	2606 [91.92]		

Notes: 1. The above table is for the standard strokes.

2. Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 25mm, 30mm

for stroke 1, 10mm for stroke 2, and 2 sensor switches (ZE135A) $\,$

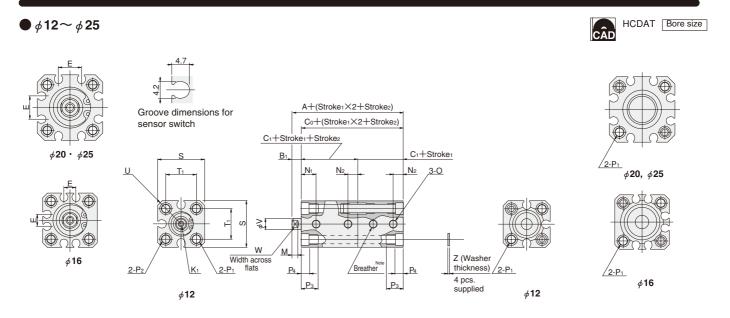
 $147.69 + (6.41 \times 30) + (3.11 \times 10) + 76.92 + (15 \times 2) = 478.01g [16.861oz.]$

Single acting push type

g [oz.]

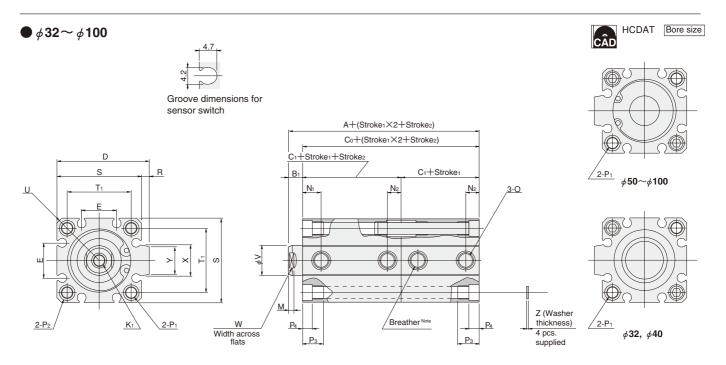
	31 71								9 [02.]	
		Zero stroke mass Note1 Stroke1		Additional mass for	Additional mass for	Additional	Mass of mounting bracket	Additional mass of sensor switch Note2		
Bore size mm [in.]	5~15 (¢ 5	50: 10~20)	16~30 (ϕ 50: 21~40)	each 1mm	each 1mm	mass of cylinder with				
[]		Stroke1+Stroke2		[0.0394in.] of stroke1		magnet	Flange bracket	ZE 🗆 🗆 A	ZE B	
	5~15 (<i>φ</i> 50: 10~20)	16∼30 (<i>ϕ</i> 5	i0: 21∼40)	OI SHOKE I	OI SHOKEZ		bracket			
12 [0.472]	55.88 [1.971]	69.98 [2.468]	85.21 [3.006]	2.68 [0.0945]	1.28 [0.0451]	16.11 [0.568]	55 [1.94]			
16 [0.630]	80.31 [2.833]	99.64 [3.515]	120.1 [4.236]	3.34 [0.118]	1.62 [0.0571]	21.21 [0.748]	71 [2.50]			
20 [0.787]	96.88 [3.417]	124.84 [4.404]	153.93 [5.430]	4.63 [0.163]	2.26 [0.0797]	51.89 [1.830]	101 [3.56]			
25 [0.984]	147.45 [5.201]	186 [6.561]	226.53 [7.990]	6.41 [0.226]	3.11 [0.110]	80.18 [2.828]	160 [5.64]	15 [0.53]	35 [1.23]	
32 [1.260]	223.01 [7.866]	306.96 [10.828]	393.89 [13.894]	8.43 [0.297]	4.11 [0.145]	103.14 [3.638]	186 [6.56]			
40 [1.575]	345.03 [12.170]	453.44 [15.994]	566.48 [19.982]	9.85 [0.347]	4.77 [0.168]	141.93 [5.006]	335 [11.82]			
50 [1.969]	561.93 [19.821]	691.19 [24.381]	827.1 [29.175]	14.51 [0.512]	7.03 [0.248]	216.54 [7.638]	447 [15.77]			

Notes 1: The above table is for the standard strokes.


2: Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

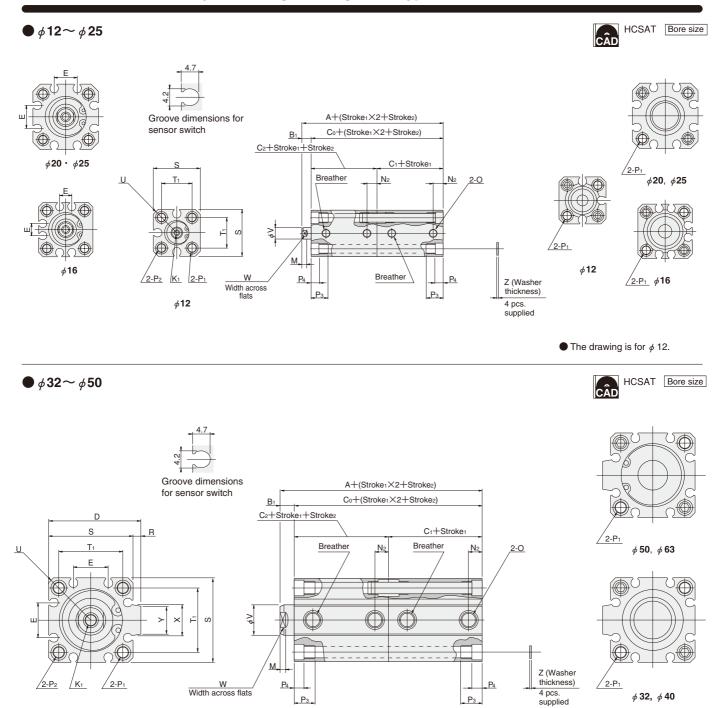
Calculation example: For the mass of a single acting push type cylinder with magnet, bore size of 25mm,


10mm for stroke 1, 20mm for stroke 2, and 2 sensor switches (**ZE135A**)

 $186+(6.41\times10)+(3.11\times20)+80.18+(15\times2)=422.48g$ [14.902oz.]

Note: Mufflers, etc. are not included.
Install a muffler when using in places exposed to dust, etc.

lacktriangle The drawing is for ϕ 12.



Note: Mufflers, etc. are not included. Install a muffler when using in places exposed to dust, etc.

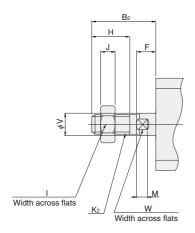
Туре	Standa	ard cylin	nder (HC	DAT)	Cylinder	with mag	gnet (HC	DATS)	Standard c	ylinder with	bumper (H	CDAT-R)	Cylinder wit	h magnet with	bumper (HC	DATS-R)	_	_	.,				
Bore Code	Α	B ₁	Co	C ₁	Α	Bı	Co	C ₁	Α	Вı	Co	C ₁	Α	B ₁	Co	C ₁	D	E	K 1	M	N ₁	N ₂	0
12 [0.472]	39	5	34	17	49	5	44	22	49	5	44	22	59	5	54	27	_	_	M3×0.5 Depth6	3.5	8	5	10-32 UNF
16 [0.630]	39.5	5.5	34	17	49.5	5.5	44	22	49.5	5.5	44	22	59.5	5.5	54	27	_	6.2	M4×0.7 Depth8	3.5	8	5	10-32 UNF
20 [0.787]	44.5	5.5	39	19.5	64.5	5.5	59	29.5	54.5	5.5	49	24.5	74.5	5.5	69	34.5	_	12.2	M5×0.8 Depth10	4.5	9.5	5	10-32 UNF
25 [0.984]	48	6	42	21	68	6	62	31	58	6	52	26	78	6	72	36	_	12.2	M6X1 Depth10	5	10.5	5	10-32 UNF
32 [1.260]	53	7	46	23	73	7	66	33	63	7	56	28	73	7	66	33	48.5	18.2	M8×1.25 Depth12	6	9.5	7.5(6)	NPT1/8
40 [1.575]	59	7	52	26	79	7	72	36	59	7	52	26	79	7	72	36	56.5	18.2	M8×1.25 Depth12	6	10.5	7.5	NPT1/8
50 [1.969]	65	9	56	28	85	9	76	38	65	9	56	28	85	9	76	38	70	24.8	M10×1.5 Depth15	7	11	9.5	NPT1/4
63 [2.480]	73	9	64	32	93	9	84	42	73	9	64	32	93	9	84	42	83	26.8	M10×1.5 Depth15	7	12.5	11	NPT1/4
80 [3.150]	93	11	82	41	113	11	102	51	93	11	82	41	113	11	102	51	102	32.8	M14X2 Depth20	9	18	12	NPT3/8
100 [3.940]	114	12	102	51	134	12	122	61	114	12	102	51	134	12	122	61	122	32.8	M18×2.5 Depth20	9	22.5	16.5	NPT3/8

Bore Code	P ₁	P ₂	P ₃	P ₄	R	s	T ₁	U	٧	w	Х	Υ	Z	Appropriate through bolt **
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	Counterbore	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	Counterbore	9.5	4.5	-	29	19.8	R19	8	6	_		1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	Counterbore	9.5	4.5	_	34	24	R22	10	8	_		1	M3
25 [0.984]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	Counterbore	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	Counterbore	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore ϕ 9.5 (Both sides) and M8 $ imes$ 1.25 (Both sides)	Counterbore	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	Counterbore	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	Counterbore \$ 11 and M8 X 1.25	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 [3.150]	ϕ 10.5 (Thru hole) C'bore ϕ 14 (Both sides) and M12 $ imes$ 1.75 (Both sides)	Counterbore \$ 14 and M12 X 1.75	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 [3.940]	ϕ 12.3 (Thru hole) C'bore ϕ 17.5 (Both sides) and M14 $ imes$ 2 (Both sides)	Counterbore	27	13	8	114	90	R75	32	27	27.6	25	2	M10

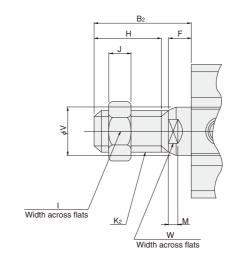
Note: Figure in parentheses () is for the standard cylinder (HCDAT) when stroke 1, or stroke 1 + stroke 2 is 5mm. **Some types of mounting screws are available (to be ordered separately). See p.209.

	Туре				Stand	dard cyli	inder (H	CSAT)				Cylinder with magnet (HCSATS)									
Sti	oke1		5~15	φ 50 : 1	0~20)			16~30	(φ 50 : 2	21~40)			5~15 (φ 50 : 1	0~20)		-	16∼30	(φ 50 : 2	21~40)
Bore mm [in.] Note	Code	Α	B ₁	Co	C ₁	C ₂	Α	B ₁	C₀	C ₁	C ₂	Α	B ₁	Co	C ₁	C ₂	Α	B ₁	Co	C ₁	C ₂
12	D1	49	5	44	22	22	_	_	_	_	_	59	5	54	27	27	_	-	_	_	_
[0.472]	D2	59) 	54	22	32	69	5	64	32	32	69	5	64	21	37	79	5	74	37	37
16	D1	49.5	5.5	44	22	22	_	_	-	_	_	59.5	5.5	54	27	27	_	-	_	_	_
[0.630]	D2	59.5	5.5	54	22	32	69.5	5.5	64	32	32	69.5	5.5	64	21	37	79.5	5.5	74	37	37
20	D1	44.5	5.5	39	19.5	19.5	_	_	_	_	_	64.5	5.5	59	29.5	29.5	_	_	_	_	_
[0.787]	D2	54.5	5.5	49	19.5	29.5	64.5	5.5	59	29.5	29.5	74.5	5.5	69	29.5	39.5	84.5	5.5	79	39.5	39.5
25	D1	48	6	42	21	21	_	_	-	_	_	68	6	62	31	31	_	-	_	_	_
[0.984]	D2	58	0	52	21	31	68	6	62	31	31	78	0	72	31	41	88	6	82	41	41
32	D1	53	7	46	23	23	_	_	_	_	_	73	7	66	33	33	_	_	_	_	_
[1.260]	D2	68	<i>'</i>	61	23	38	83	7	76	38	38	88	'	81	33	48	103	7	96	48	48
40	D1	59	7	52	26	26	_	_	-	_	_	79	7	72	36	36	_	-	_	_	_
[1.575]	D2	74	/	67	20	41	89	7	82	41	41	94	,	87	30	51	109	7	102	51	51
50	D1	65	0	56	28	28	_	_	_	_	_	85	9	76	20	38	_	_	_	_	_
[1.969]	D2	80	9	71	28	43	95	9	86	43	43	100	y	91	38	53	115	9	106	53	53

Bore mm [in.]	Code	D	E	K 1	M	N ₂	0	P ₁
12 [0.472]	D1 D2	_	_	M3×0.5 Depth6	3.5	5	10-32 UNF	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)
16 [0.630]	D1 D2	-	6.2	M4×0.7 Depth8	3.5	5	10-32 UNF	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)
20 [0.787]	D1 D2	-	12.2	M5×0.8 Depth10	4.5	5	10-32 UNF	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)
25 [0.984]	D1 D2	-	12.2	M6×1 Depth10	5	5	10-32 UNF	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 \times 1 (Both sides)
32 [1.260]	D1 D2	48.5	18.2	M8×1.25 Depth12	6	7.5	NPT 1/8	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 \times 1 (Both sides)
40 [1.575]	D1 D2	56.5	18.2	M8×1.25 Depth12	6	7.5	NPT 1/8	ϕ 6.9 (Thru hole) Counterbore ϕ 9.5 (Both sides) and M8 \times 1.25 (Both sides)
50 [1.969]	D1 D2	70	24.8	M10×1.5 Depth15	7	9.5	NPT 1/4	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)

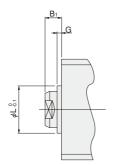

Bore mm [in.]	Code	P ₂	P 3	P 4	R	S	T 1	U	V	w	х	Υ	Z	Appropriate through bolt **
12 [0.472]	D1 D2	Counterbore ϕ 6.5 and M5 \times 0.8	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	М3
16 [0.630]	D1 D2	Counterbore ϕ 6.5 and M5 \times 0.8	9.5	4.5	_	29	19.8	R19	8	6	_	_	1	МЗ
20 [0.787]	D1 D2	Counterbore ϕ 6.5 and M5 \times 0.8	9.5	4.5	_	34	24	R22	10	8	_	_	1	МЗ
25 [0.984]	D1 D2	Counterbore ϕ 8 and M6 \times 1	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	D1 D2	Counterbore ϕ 8 and M6 $ imes$ 1	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	D1 D2	Counterbore <i>φ</i> 9.5 and M8 × 1.25	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	D1 D2	Counterbore <i>ϕ</i> 11 and M8 × 1.25	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6

Notes: D1 is when stroke1 + stroke2 is 5~15 (φ 50: 10~20) mm.


D2 is when stroke1 + stroke2 is 16~30 (φ 50: 21~40) mm.

** Some types of mounting screws are available (to be ordered separately). See p.209.

- Double acting type, Single acting push type


• ϕ 32 ~ ϕ 100 (Single acting type available up to ϕ 50)

Bore Code mm [in.]	B ₂	F	Н	I	J	K ₂	М	V	W
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

lacktriangle Not available for bore size ϕ 12.

Bore Code mm [in.]	B 1	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

JIG CYLINDERS HC SERIES DUAL STROKE CYLINDERS

Double Acting Type,
Single Acting Push Type, Single Acting Pull Type

Symbols

● Double acting type ● Single acting push type ● Single acting pull type

	 <u> </u>
	

Specifications

		10	10	00	0.5	00	40			00	100	
Item	size mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]	
Operation typ	е	Double a	acting type	, Single a	cting push	type, Sin	gle acting	pull type	Doub	le actino	g type	
Media			Air									
Operating	Double acting type				~1.0 ~145]				0.05~1.0 [7~145]			
pressure rang MPa [ps	0'	0.15~1.0 Note1 0.1~1.1 [22~145]							_			
Proof pressure	MPa [psi.]					1.5 [[218]					
Operating temperatu	re range °C [°F]	0~	0~60 [32~140] (The heat resistant specification is 120 [248]. Note2)									
Operating speed	Double acting type		30	~500 [1.2~19	.7]		30~300 [1.2~11.8]			.8]	
range mm/s [in./sec.]	Single acting type	100~500 [3.9~19.7]						100~300				
Cushion	Double acting type	Rubber bumper (Option Note2)										
Custilott	None							_				
Lubrication		Not requ	Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)									
Port size	10-32 UNF NPT 1/8 NPT 1/4 NPT 3/8						3/8					

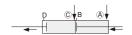
Remark: For Handling Instructions and Precautions, see p.205.

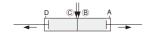
Notes: 1. The single acting pull type of ϕ 12 is 0.18 \sim 1.0MPa [26 \sim 145psi.].

- 2. For heat resistant specification, consult us.
- 3. Not available for heat resistant specification.


Operation of Dual Stroke Cylinders

Dual Stroke Cylinders are a set of 2 cylinders connected back to back.

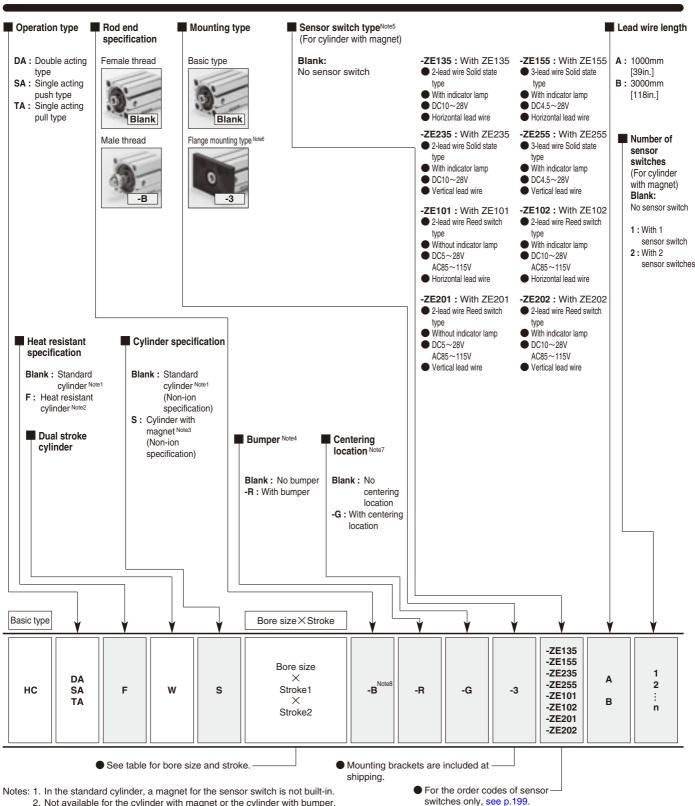

The cylinder body can be secured in place and each stroke can be controlled separately. It can also be used to obtain 2-stage or 3-stage strokes by securing the piston rod on one side in place.


The rods retract stroke 1 and stroke 2 when air is supplied from Ports (\hat{A}) and (\hat{D}) .

The rod moves stroke 1 when air is supplied from Ports ® and D.

The rod moves stroke 2 when air is supplied from Ports (A) and (C).

The rod moves stroke 1 and stroke 2 when air is supplied from Ports B and c.


Bore Size and Stroke

For non-standard	strokes, see p	2.206.	mm
O	Dava sina	Standard	d strokes
Operation type	Bore size	Standard cylinder	Cylinder with magnet
	12	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
	16	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
	20	E 10 1E 20 2E 20 2E 40 4E E0	E 10 15 00 05 00 05 40 45 50
	25	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Double	32	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
acting type	40	5, 10, 15, 20, 25, 50, 55, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	50		
	63	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	80	10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100	10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100
	100		
	12		
	16		
Circ elle	20	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
Single acting type	25	5, 10, 13, 20, 25, 30	3, 10, 13, 20, 23, 30
doming type	32		
	40		
	50	10, 15, 20, 25, 30, 35, 40	10, 15, 20, 25, 30, 35, 40

Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in}_{0}$]

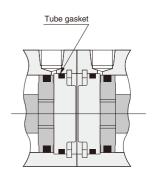
^{2.} In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 12 $\sim \phi$ 40, and strokes of less than 10mm for ϕ 50 $\sim \phi$ 100. The collar packed is used for these cases.

Order Codes for Dual Stroke Cylinders

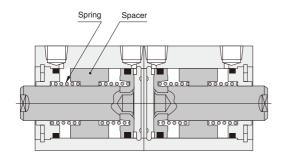
- 2. Not available for the cylinder with magnet or the cylinder with bumper.
- 3. Not available in heat resistant specification.
- 4. For the double acting type only. Not available for heat resistant specification.
- 5. For details of sensor switches, see p.1544.
- 6. The flange mounting bracket can be mounted on the end of cylinder 2 only. Moreover, it cannot be mounted on the bore size ϕ 40 with centering location (-G).
- 7. Not available for the bore size ϕ 12.
- 8. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

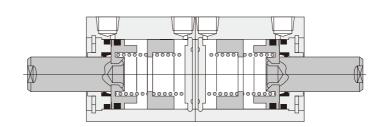
Additional Parts (To be ordered separately)



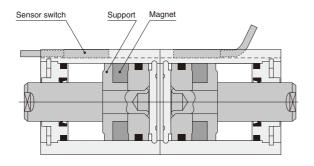

Mounting screws (p.209)

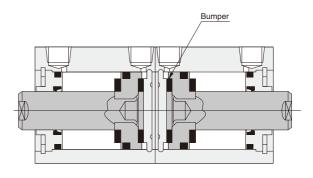
Double acting type (HCDAW)





Single acting push type (HCSAW)


● Single acting pull type (HCTAW)



Cylinder with magnet

With bumper

Major Parts and Materials

Seals

Parts Bore mm	φ 12	φ 16	φ 20	φ 25	φ 32	φ 40	φ 50	φ 63	φ 80	ϕ 100			
Cylinder body		Aluminum alloy (anodized)											
Piston		Aluminum alloy (special rust prevention treatment)											
Piston rod	Stainle	Stainless steel (chrome plated) Steel (chrome plated)											
Seal		Synthetic rubber (NBR)											
Rod cover		Aluminum alloy (special wear-resistant treatment)											
Head cover			1	Alumin	um all	oy (and	odized)					
Snap ring				Steel (phosp	hate c	oating)	1					
Spring			Pi	ano wi	re				_				
Spacer	Alum	inum alle	oy (spec	ial rust į	preventi	on treati	ment)		_				
Bumper		Synthetic rubber (NBR; urethane for ϕ 12 only)											
Magnet		Plastic magnet											
Support		Aluminum alloy (special rust prevention treatment)											

Parts	Rod seal	Distance of	Tube	gasket
Bore	Hou seal	Piston seal	Rod side	Head side
φ 12	MYR-6	COP-12	Y090260	None
φ 16	MYR-8	COP-16	Y090207	None
φ 20	MYR-10	COP-20(MYA-16)	Y090216	None
φ 25	MYR-12	COP-25(MYA-21)	Y090210	None
φ 32	MYR-16	COP-32	L090084	None
φ 40	MYR-16	COP-40	L090151	None
φ 50	MYR-20	COP-50	L090174	L090106
φ 63	MYR-20	COP-63	L090180	L090107
φ 80	PNY-25	COP-80	L090171	L090108
φ 100	PNY-32	COP-100	L090172	L090109

Note: Items in parentheses () are for the single acting type.

Dual stroke

Double acting type

g [oz.]

Bore size	Zero stroke	Additional mass for each 1mm [0.0394in.]	Additional mass for each 1mm [0.0394in.]	Additional mass of	Additional mass of	Mass of mounting bracket	Additional mass of	sensor switch Note2	
mm [in.]	mass Note1	of stroke1	of stroke2	cylinder with bumper	cylinder with magnet	Flange bracket	ZE \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ZE B	
12 [0.472]	44.26 [1.561]	1.4 [0.0494]	1.28 [0.0451]	13.39 [0.472]	13.73 [0.484]	55 [1.94]			
16 [0.630]	61.11 [2.156]	1.73 [0.0610]	1.62 [0.0571]	16.71 [0.589]	20.41 [0.720]	71 [2.50]			
20 [0.787]	96.79 [3.414]	2.37 [0.0836]	2.26 [0.0797]	23.14 [0.816]	52.54 [1.853]	101 [3.56]			
25 [0.984]	147.69 [5.210]	3.3 [0.116]	3.11 [0.110]	32.05 [1.131]	76.92 [2.713]	160 [5.64]		05 [4 00]	
32 [1.260]	220.3 [7.771]	4.31 [0.152]	4.11 [0.145]	42.13 [1.486]	106.84 [3.769]	186 [6.56]	15 [0.53]		
40 [1.575]	345.12 [12.174]	5.08 [0.179]	4.77 [0.168]	0	141.38 [4.987]	335 [11.82]	15 [0.55]	35 [1.23]	
50 [1.969]	562.47 [19.840]	7.48 [0.264]	7.03 [0.248]	0	220.44 [7.776]	447 [15.77]			
63 [2.480]	896.12 [31.609]	9.14 [0.322]	8.69 [0.307]	0	322.4 [11.37]	591 [20.85]			
80 [3.150]	1755.88 [61.936]	13.51 [0.477]	13.06 [0.461]	0	494.4 [17.44]	1414 [49.88]			
100 [3.940]	3207.76 [113.15]	19.06 [0.672]	18.61 [0.656]	0	724.4 [25.55]	2606 [91.92]			

Notes 1: The above table is for the standard strokes.

2: Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 25mm, 30mm for stroke 1, 10mm for stroke 2, and with 2 sensor switches (**ZE135A**)

for stroke 1, 10mm for stroke 2, and with 2 sensor switches (**ZE135A**) $147.69+(3.3\times30)+(3.11\times10)+76.92+(15\times2)=384.71g$ [13.570oz.]

Dual stroke

Single acting push type

g [oz.]

		Zero stroke Stro			- Additional mass for	Additional mass for	Additional	Mass of mounting bracket		Il mass of witch Note2	
Bore size mm [in.]	5~15 (φ 5	60: 10~20) Stro	16~30 (φ soke2	50: 21~40)	each 1mm [0.0394in.] of stroke1	each 1mm [0.0394in.] of stroke2	mass of cylinder with magnet	Flange bracket	ZE \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ZE B	
	5~15 (¢ 50: 10~20)	16~30 (<i>ϕ</i> 50: 21~40)	5~15 (φ 50: 10~20)	16~30 (\$\phi\$ 50: 21~40)	OI STOKE I	OI STOKE2		Diacket			
12 [0.472]	55.88 [1.971]	69.98 [2.468]	71.1 [2.508]	85.21 [3.006]	1.4 [0.0494]	1.28 [0.0451]	16.11 [0.568]	55 [1.94]			
16 [0.630]	80.31 [2.833]	99.64 [3.515]	100.76 [3.554]	120.1 [4.236]	1.73 [0.0610]	1.62 [0.0571]	21.21 [0.748]	71 [2.50]			
20 [0.787]	96.88 [3.417]	124.84 [4.404]	125.96 [4.443]	153.93 [5.430]	2.37 [0.0836]	2.26 [0.0797]	51.89 [1.830]	101 [3.56]			
25 [0.984]	147.45 [5.201]	186 [6.561]	187.98 [6.631]	226.53 [7.990]	3.3 [0.116]	3.11 [0.110]	80.18 [2.828]	160 [5.64]	15 [0.53]	35 [1.23]	
32 [1.260]	223.01 [7.866]	306.96 [10.828]	309.93 [10.932]	393.89 [13.894]	4.31 [0.152]	4.11 [0.145]	103.14 [3.638]	186 [6.56]			
40 [1.575]	345.03 [12.170]	453.44 [15.994]	458.06 [16.157]	566.48 [19.982]	5.08 [0.179]	4.77 [0.168]	141.93 [5.006]	335 [11.82]			
50 [1.969]	561.93 [19.821]	691.19 [24.381]	697.85 [24.616]	827.1 [29.175]	7.48 [0.264]	7.03 [0.248]	216.54 [7.638]	447 [15.77]			

Notes 1: The above table is for the standard strokes.

2: Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a single acting push type cylinder with magnet, bore size of 25mm,

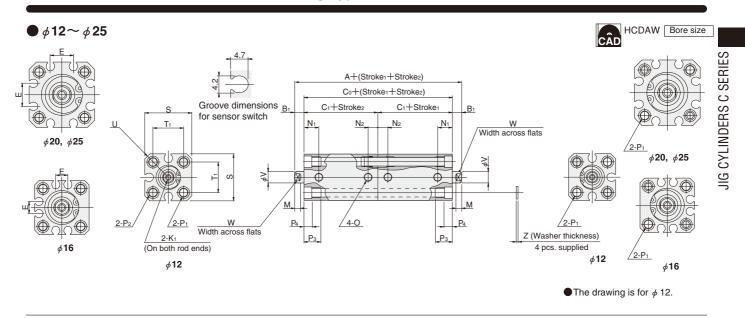
20mm for stroke 1, 20mm for stroke 2, and with 2 sensor switches (**ZE135A**) $226.53+(3.3\times20)+(3.11\times20)+80.18+(15\times2)=464.91g$ [16.399oz.]

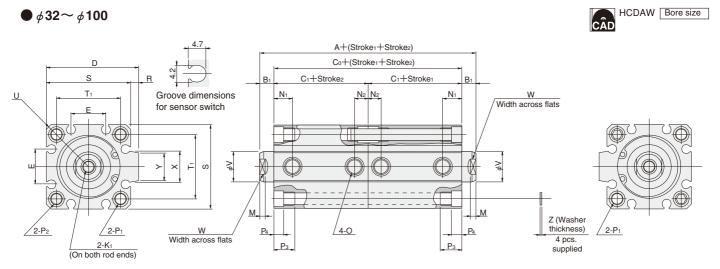
Dual stroke

Single acting pull type

g [oz.]

		Zero stroke Stro	e mass Note1		Additional	Additional	Additional	Mass of mounting bracket	Additional sensor s	
Bore size mm [in.]	5~15 (φ 5	60: 10~20)	1	50: 21 ~40)	mass for each 1mm	mass for each 1mm	mass of cylinder with			
111111 [111.]		Stro	ke2		[0.0394in.] of stroke1	[0.0394in.] of stroke2	magnet	Flange bracket	ZE 🗆 🗆 A	ZE B
	5~15 (<i>ϕ</i> 50: 10~20)	16~30 (<i>ϕ</i> 50: 21~40)	5~15 (φ 50: 10~20)	16∼30 (<i>ϕ</i> 50: 21∼40)	OFSHOKET	OI SHOKEZ		bracket		
12 [0.472]	54.88 [1.936]	66.76 [2.355]	67.88 [2.394]	79.77 [2.814]	1.4 [0.0494]	1.28 [0.0451]	17.67 [0.623]	55 [1.94]		
16 [0.630]	78.77 [2.778]	94.15 [3.321]	95.27 [3.360]	110.66 [3.903]	1.73 [0.0610]	1.62 [0.0571]	23.31 [0.822]	71 [2.50]		
20 [0.787]	117.58 [4.147]	139.48 [4.920]	140.6 [4.959]	162.49 [5.732]	2.37 [0.0836]	2.26 [0.0797]	53.74 [1.896]	101 [3.56]		
25 [0.984]	175.72 [6.198]	205.63 [7.253]	207.61 [7.323]	237.52 [8.378]	3.3 [0.116]	3.11 [0.110]	78.89 [2.783]	160 [5.64]	15 [0.53]	35 [1.23]
32 [1.260]	255.75 [9.021]	316.83 [11.176]	319.8 [11.280]	380.88 [13.435]	4.31 [0.152]	4.11 [0.145]	105.39 [3.717]	186 [6.56]		
40 [1.575]	395.6 [13.954]	480.5 [16.949]	485.12 [17.112]	570.02 [20.107]	5.08 [0.179]	4.77 [0.168]	138.9 [4.899]	335 [11.82]		
50 [1.969]	634.13 [22.368]	726.4 [25.623]	733.06 [25.857]	825.32 [29.112]	7.48 [0.264]	7.03 [0.248]	144.56 [5.099]	447 [15.77]		

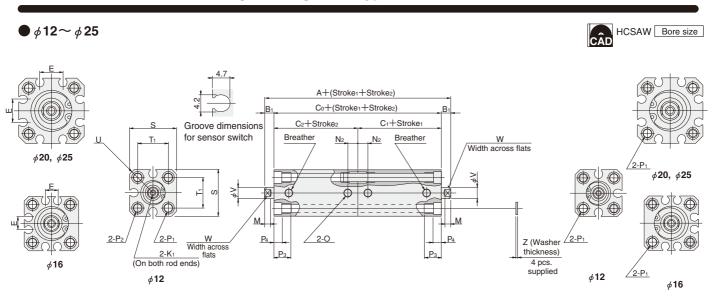

Notes 1: The above table is for the standard strokes.

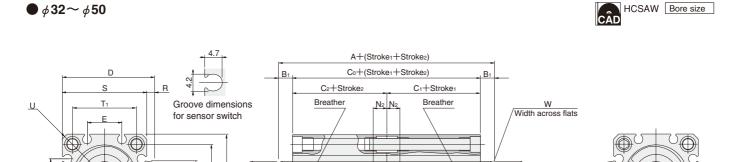

2: Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a single acting pull type cylinder with magnet, bore size of 25mm, 20mm for stroke 1, 20mm for stroke 2, and with 2 sensor switches (**ZE135A**)

 $237.52 + (3.3 \times 20) + (3.11 \times 20) + 78.89 + (15 \times 2) = 474.61g [16.741oz.]$




Туре	Standa	ırd cylin	der (HC	DAW)	Cylinder	with mag	net (HCI	DAWS)	Standard o	ylinder with	bumper (HC	DAW-R)	Cylinder wit	h magnet and	bumper (HCI	DAWS-R)	_	_	V	8.4	N	NI.	
Bore Code mm [in.]	Α	B ₁	Co	C ₁	Α	B ₁	Co	C ₁	Α	B ₁	Co	C ₁	Α	B ₁	Co	C ₁	D	E	K 1	М	N ₁	N ₂	0
12 [0.472]	44	5	34	17	54	5	44	22	54	5	44	22	64	5	54	27	_	_	M3 X 0.5 Depth6	3.5	8	5	10-32 UNF
16 [0.630]	45	5.5	34	17	55	5.5	44	22	55	5.5	44	22	65	5.5	54	27	-	6.2	M4X0.7 Depth8	3.5	8	5	10-32 UNF
20 [0.787]	50	5.5	39	19.5	70	5.5	59	29.5	60	5.5	49	24.5	80	5.5	69	34.5	-	12.2	M5×0.8 Depth10	4.5	9.5	5	10-32 UNF
25 [0.984]	54	6	42	21	74	6	62	31	64	6	52	26	84	6	72	36	1	12.2	M6X1 Depth10	5	10.5	5	10-32 UNF
32 [1.260]	60	7	46	23	80	7	66	33	70	7	56	28	80	7	66	33	48.5	18.2	M8×1.25 Depth12	6	9.5	7.5(6)	NPT1/8
40 [1.575]	66	7	52	26	86	7	72	36	66	7	52	26	86	7	72	36	56.5	18.2	M8×1.25 Depth12	6	10.5	7.5	NPT1/8
50 [1.969]	74	9	56	28	94	9	76	38	74	9	56	28	94	9	76	38	70	24.8	M10×1.5 Depth15	7	11	9.5	NPT1/4
63 [2.480]	82	9	64	32	102	9	84	42	82	9	64	32	102	9	84	42	83	26.8	M10×1.5 Depth15	7	12.5	11	NPT1/4
80 [3.150]	104	11	82	41	124	11	102	51	104	11	82	41	124	11	102	51	102	32.8	M14×2 Depth20	9	18	12	NPT3/8
100 [3.940]	126	12	102	51	146	12	122	61	126	12	102	51	146	12	122	61	122	32.8	M18×2.5 Depth20	9	22.5	16.5	NPT3/8

Bore Code mm [in.]	P ₁	P ₂	P ₃	P ₄	R	S	T ₁	U	V	w	Х	Υ	Z	Appropriate through bolt %
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	Counterbore	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	Counterbore	9.5	4.5	_	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	Counterbore	9.5	4.5	_	34	24	R22	10	8	_	_	1	M3
25 [0.984]	φ 5.1 (Thru hole) C'bore φ 8 (Both sides) and M6×1 (Both sides)	Counterbore	11.5	5.5	_	40	28	R25	12	10	-	_	1	M4
32 [1.260]	φ 5.1 (Thru hole) C'bore φ 8 (Both sides) and M6×1 (Both sides)	Counterbore	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore ϕ 9.5 (Both sides) and M8 $ imes$ 1.25 (Both sides)	Counterbore	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	Counterbore	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	Counterbore	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 [3.150]	ϕ 10.5 (Thru hole) C'bore ϕ 14 (Both sides) and M12 \times 1.75 (Both sides)	Counterbore	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 [3.940]	φ 12.3 (Thru hole) C'bore φ 17.5 (Both sides) and M14 × 2 (Both sides)	Counterbore \$\phi\$ 17.5and M14\times2	27	13	8	114	90	R75	32	27	27.6	25	2	M10

Note: Figure in parentheses () is for the standard cylinder (**HCDAW**) with 5mm stroke. **Some types of mounting screws are available (to be ordered separately). See p.209.

lacktriangle The drawing is for ϕ 12.

<u> 2-0</u>

_ P₃

M

Z (Washer thickness)

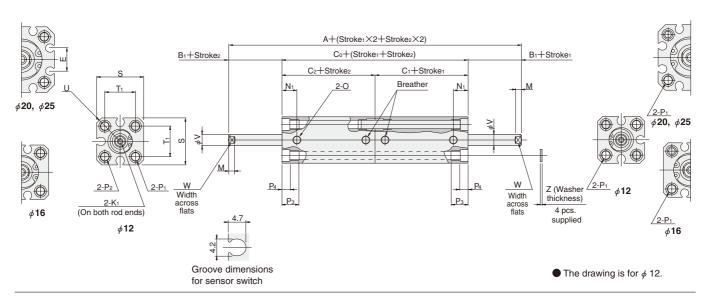
4 pcs. supplied <u>/2-P1</u>

<u>/2-P2</u>

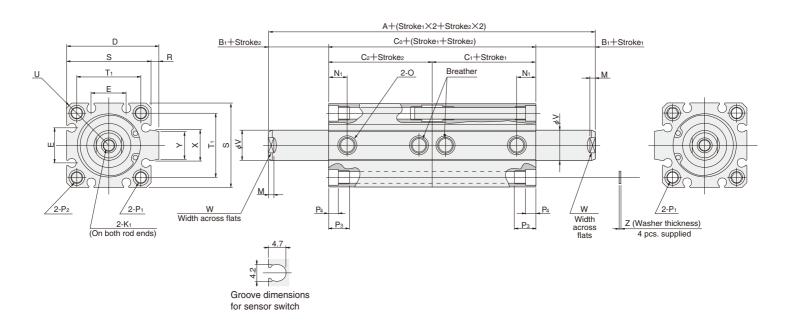
<u> 2-P1</u>

2-K₁ (On both rod ends) W Width across flats

	Туре				Stand	lard cylii	nder (H	CSAW)						(Cylinder	with ma	agnet (F	ICSAW	/S)		
Str	oke1		5~15	(φ 50 : 1	0~20)			16~30	(φ 50: 2	21~40)		5~15	(φ 50 : 1	0~20)			16~30	(φ 50 : 2	21~40)	
Bore mm [in.] Note	Code	Α	B ₁	Co	C ₁	C ₂	Α	B ₁	Co	C ₁	C ₂	Α	B ₁	Co	C ₁	C ₂	Α	B ₁	Co	C ₁	C ₂
12	D1	54	5	44	22	22	64	5	54	32	22	64	5	54	27	27	74	5	64	37	27
[0.472]	D2	64	Э	54	22	32	74	5	64	32	32	74	5	64	21	37	84	5	74	3/	37
16	D1	55	5.5	44	22	22	65	5.5	54	32	22	65	5.5	54	27	27	75	5.5	64	37	27
[0.630]	D2	65	5.5	54	22	32	75	5.5	64	32	32	75	5.5	64	21	37	85	5.5	74	37	37
20	D1	50	5.5	39	19.5	19.5	60	5.5	49	29.5	19.5	70	5.5	59	29.5	29.5	80	5.5	69	39.5	29.5
[0.787]	D2	60	5.5	49	19.5	29.5	70	5.5	59	29.5	29.5	80	5.5	69	29.5	39.5	90	5.5	79	39.5	39.5
25	D1	54	6	42	21	21	64	6	52	31	21	74	6	62	31	31	84	6	72	41	31
[0.984]	D2	64	0	52	21	31	74	0	62	31	31	84	0	72	31	41	94	0	82	41	41
32	D1	60	7	46	23	23	75	7	61	38	23	80	7	66	33	33	95	7	81	48	33
[1.260]	D2	75	/	61	23	38	90	/	76	30	38	95	/	81	33	48	110	/	96	40	48
40	D1	66	7	52	26	26	81	7	67	41	26	86	7	72	36	36	101	7	87	51	36
[1.575]	D2	81	/	67	20	41	96	,	82	41	41	101	′	87	30	51	116	′	102	31	51
50	D1	74	9	56	28	28	89	9	71	43	28	94	9	76	38	38	109	9	91	53	38
[1.969]	D2	89	Э	71	20	43	104	Э	86	43	43	109	9	91	30	53	124	9	106	53	53


Bore mm [in.]	Code	D	Е	K 1	М	N ₂	0	P ₁
12 [0.472]	D1 D2	-	-	M3×0.5 Depth6	3.5	5	10-32 UNF	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)
16 [0.630]	D1 D2	-	6.2	M4×0.7 Depth8	3.5	5	10-32 UNF	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)
20 [0.787]	D1 D2	-	12.2	M5×0.8 Depth10	4.5	5	10-32 UNF	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)
25 [0.984]	D1 D2	-	12.2	M6×1 Depth10	5	5	10-32 UNF	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)
32 [1.260]	D1 D2	48.5	18.2	M8×1.25 Depth12	6	7.5	NPT 1/8	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 \times 1 (Both sides)
40 [1.575]	D1 D2	56.5	18.2	M8×1.25 Depth12	6	7.5	NPT 1/8	ϕ 6.9 (Thru hole) Counterbore ϕ 9.5 (Both sides) and M8 $ imes$ 1.25 (Both sides)
50 [1.969]	D1 D2	70	24.8	M10×1.5 Depth15	7	9.5	NPT 1/4	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)

Bore mm [in.]	Code	P ₂	P 3	P ₄	R	S	T ₁	U	V	w	х	Υ	Z	Appropriate through bolt %
12 [0.472]	D1 D2	Counterbore ϕ 6.5 and M5 \times 0.8	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	D1 D2	Counterbore <i>φ</i> 6.5 and M5 × 0.8	9.5	4.5	_	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	D1 D2	Counterbore ϕ 6.5 and M5 \times 0.8	9.5	4.5	_	34	24	R22	10	8	_	_	1	МЗ
25 [0.984]	D1 D2	Counterbore <i>∲</i> 8 and M6 × 1	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	D1 D2	Counterbore <i>ϕ</i> 8 and M6 × 1	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	D1 D2	Counterbore φ 9.5 and M8×1.25	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	D1 D2	Counterbore _φ 11 and M8×1.25	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6


Note: D1 is when stroke 2 is $5\sim15$ (ϕ 50: $10\sim20$)mm. D2 is when stroke 2 is $16\sim30$ (ϕ 50: $21\sim40$)mm. % Some types of mounting screws are available (to be ordered separately). See p.209.

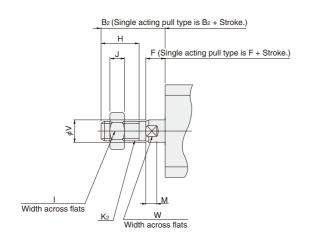
\bullet ϕ 12 \sim ϕ 25

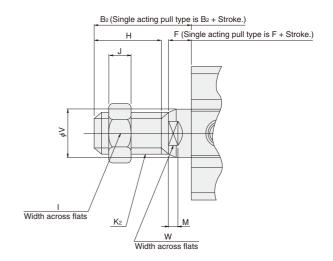
	Туре				Stand	ard cyli	nder (C	TAW)						(Cylinder	with ma	agnet (C	CTAWS)		
Str	oke1		5~15	(φ 50 : 1	0~20)			16~30	(φ 50 : 2	21~40)		5~15	(φ 50 : 1	0~20)			16~30	(φ 50 : 2	21~40)
Bore mm [in.] Note	Code	Α	B ₁	Co	C ₁	C ₂	Α	B ₁	Co	C ₁	C ₂	Α	B ₁	Co	C ₁	C ₂	Α	B ₁	Co	C ₁	C ₂
12	D1	54	5	44	22	22	64	5	54	32	22	64	5	54	27	27	74	5	64	37	27
[0.472]	D2	64	5	54	22	32	74	5	64	32	32	74	5	64	21	37	84	5	74	37	37
16	D1	55	5.5	44	22	22	65	5.5	54	32	22	65	5.5	54	27	27	75	5.5	64	37	27
[0.630]	D2	65	5.5	54	22	32	75	5.5	64	32	32	75	5.5	64	21	37	85	5.5	74	37	37
20	D1	60	5.5	49	24.5	24.5	70	5.5	59	34.5	24.5	80	5.5	69	34.5	34.5	90	5.5	79	44.5	34.5
[0.787]	D2	70	5.5	59	24.5	34.5	80	5.5	69	34.5	34.5	90	5.5	79	34.5	44.5	100	5.5	89	44.5	44.5
25	D1	64	6	52	26	26	74	6	62	36	26	84	6	72	36	36	94	6	82	46	36
[0.984]	D2	74	0	62	20	36	84	0	72	30	36	94	0	82	30	46	104	0	92	40	46
32	D1	70	7	56	28	28	85	7	71	43	28	90	7	76	38	38	105	7	91	53	38
[1.260]	D2	85	/	71	20	43	100	/	86	43	43	105	1	91	30	53	120	1	106	53	53
40	D1	76	7	62	31	31	91	7	77	46	31	96	7	82	41	41	111	7	97	56	41
[1.575]	D2	91	/	77	31	46	106	,	92	40	46	111	/	97	41	56	126	/	112	50	56
50	D1	74	9	56	28	28	89	9	71	43	28	94	9	76	38	38	109	9	91	53	38
[1.969]	D2	89	Э	71	20	43	104	Э	86	43	43	109	Э	91	30	53	124	ð	106	53	53

Bore mm [in.]	Code	D	Е	K 1	M	N ₁	0	P ₁
12 [0.472]	D1 D2	-	_	M3×0.5 Depth6	3.5	8	10-32 UNF	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)
16 [0.630]	D1 D2	-	6.2	M4×0.7 Depth8	3.5	8	10-32 UNF	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)
20 [0.787]	D1 D2	-	12.2	M5×0.8 Depth10	4.5	9.5	10-32 UNF	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)
25 [0.984]	D1 D2	-	12.2	M6×1 Depth10	5	10.5	10-32 UNF	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 \times 1 (Both sides)
32 [1.260]	D1 D2	48.5	18.2	M8×1.25 Depth12	6	9.5	NPT 1/8	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 \times 1 (Both sides)
40 [1.575]	D1 D2	56.5	18.2	M8×1.25 Depth12	6	10.5	NPT 1/8	ϕ 6.9 (Thru hole) Counterbore ϕ 9.5 (Both sides) and M8 \times 1.25 (Both sides)
50 [1.969]	D1 D2	70	24.8	M10×1.5 Depth15	7	11	NPT 1/4	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)

Bore mm [in.]	Code	P ₂	P 3	P ₄	R	S	T 1	U	V	w	х	Y	z	Appropriate through bolt %
12 [0.472]	D1 D2	Counterbore ϕ 6.5 and M5 \times 0.8	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	D1 D2	Counterbore ϕ 6.5 and M5 \times 0.8	9.5	4.5	_	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	D1 D2	Counterbore ϕ 6.5 and M5 \times 0.8	9.5	4.5	_	34	24	R22	10	8	_	_	1	МЗ
25 [0.984]	D1 D2	Counterbore <i>ϕ</i> 8 and M6 × 1	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	D1 D2	Counterbore ϕ 8 and M6 \times 1	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	D1 D2	Counterbore φ 9.5 and M8×1.25	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	D1 D2	Counterbore <i>ϕ</i> 11 and M8×1.25	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6

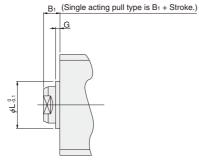
Note: D1 is when stroke 2 is $5\sim15$ (ϕ 50: $10\sim20$)mm.


D2 is when stroke 2 is $16\sim30$ (ϕ 50: $21\sim40$)mm.


**Some types of mounting screws are available (to be ordered separately). See p.209.

● Double acting type, Single acting push type, Single acting pull type

$igoplus \phi$ 32 \sim ϕ 100 (Single acting type available up to ϕ 50)



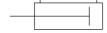
Bore Code mm [in.]	B ₂	F	Н	I	J	K ₂	М	V	W
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

•Not available for bore size ϕ 12.

Bore Code	B ₁	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55


JIG CYLINDERS HC SERIES LATERAL LOAD RESISTANT CYLINDERS

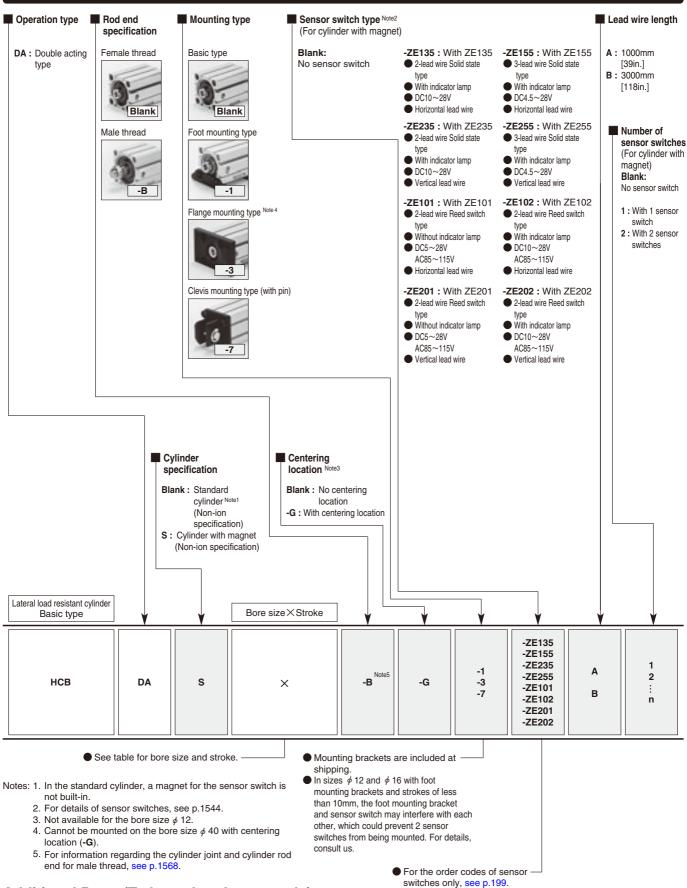
Double Acting Type

Symbol

Specifications

Item Bore size mm [in.]	12 [0.472] 16 [0.630] 20 [0.787] 25 [0.984]	32 [1.260] 40 [1.575]	50 [1.969] 63 [2.480]	80 [3.150] 100 [3.940]
Operation type		Double acting type		
Media		Air		
Operating pressure range MPa [psi.]	0.15~1.0 [22~145]		0.1~1.0	[15~145]
Proof pressure MPa [psi.]		1.5 [218]		
Operating temperature range °C [°F]		0~60 [32~140]		
Operating speed range mm/s [in./sec.]	30~500 [1.2~19.7]		30~300[1.2~11.8]
Cushion	Rubbei	r bumper (Standard equi	pment)	
Lubrication	Not required (If lubrication is required)	uired, use Turbine Oil C	ass 1 [ISO VG32] or equ	uivalent.)
Port size	10-32 UNF	NPT 1/8	NPT 1/4	NPT 3/8

Remark: For Handling Instructions and Precautions, see p.205.


Refer to p.206 of the graph of "Lateral Load" when the Lateral Load Resistant Cylinder

Bore Size and Stroke

For non-standard	strokes, see p	2.206.	mm
O	Dawa ai	Standard	d strokes
Operation type	Bore size	Standard cylinder	Cylinder with magnet
	12	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
	16	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
	20	E 10 1E 20 2E 20 2E 40 4E E0	E 10 15 00 05 00 05 40 45 50
	25	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Double acting	32	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
type	40	5, 10, 15, 20, 25, 50, 55, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 50, 55, 40, 45, 50, 75, 100
	50		
	63	10 15 20 25 20 25 40 45 50 75 100	10 15 20 25 20 25 40 45 50 75 100
	80	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	100		

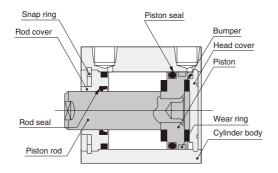
Remarks: 1. Stroke tolerance ${}^{+1}_0[\,{}^{+0.039in.}_0]$ 2. In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 12 \sim ϕ 40, and strokes of less than 10mm for ϕ 50 \sim ϕ 100. The collar packed is used for these cases.

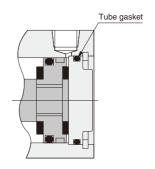
Order Codes for Lateral Load Resistant Cylinders

Additional Parts (To be ordered separately)

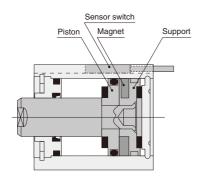
Foot mounting bracket (p.197)

Flange mounting bracket (p.198)


Clevis mounting bracket (with pin) (p.198)


Mounting screws (p.209)

Double acting type (HCBDA)



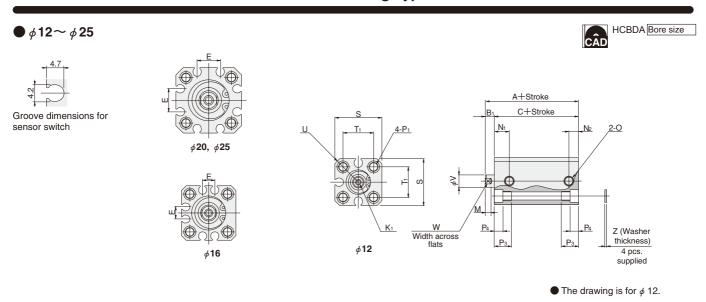
Cylinder with magnet

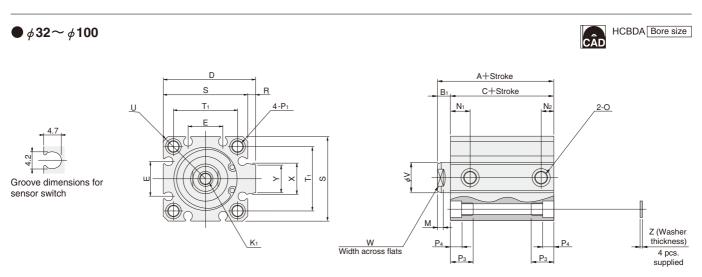
Major Parts and Materials

Parts Bore mm	д 12	φ 12 φ 16 φ 20 φ 25 φ 32 φ 40 φ 50 φ 63 φ 80 φ 1								
Cylinder body	γ :=	Aluminum alloy (anodized)								
Piston		Alumii	num al	loy (sp	ecial r	ust pre	eventic	n trea	tment)	
Piston rod	Stainle	ss steel	(chrome	plated)		Stee	l (chro	me pla	ated)	
Seal				Synth	netic ru	bber (NBR)			
Rod cover		Alumi	num a	lloy (sp	oecial v	wear-r	esistar	nt treat	ment)	
Head cover			,	Alumin	um allo	oy (and	odized)		
Snap ring				Steel (phosp	hate c	oating))		
Bumper		Synt	hetic r	ubber	(NBR;	uretha	ne for	φ 12	only)	
Magnet		Plastic magnet								
Support		Aluminum alloy (special rust prevention treatment)								
Wear ring					Pla	stic				

Seals

Parts	Dadasal	Distance and	Tube	gasket
Bore mm	Rod seal	Piston seal	Rod side	Head side
φ 12	MYR-6	COP-12	Y090260	None
φ 16	MYR-8	COP-16	Y090207	None
φ 20	MYR-10	COP-20	Y090216	None
φ 25	MYR-12	COP-25	Y090210	None
φ 32	MYR-16	COP-32	L090084	None
φ 40	MYR-16	COP-40	L090151	None
ϕ 50	MYR-20	COP-50	L090174	L090106
φ 63	MYR-20	COP-63	L090180	L090107
φ 80	PNY-25	COP-80	L090171	L090108
φ 100	PNY-32	COP-100	L090172	L090109

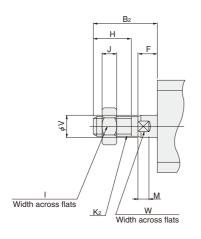

Mass

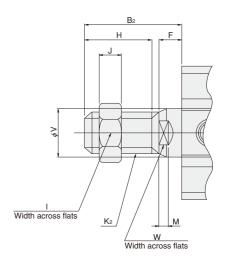

								g [oz.]
Bore size	Zero stroke	Additional mass for each 1mm	Additional mass of	Mas	ss of mounting bra	cket	Additional mass of	sensor switch Note2
mm [in.]	mass Note 1	[0.0394in.] stroke	cylinder with magnet	Foot bracket	Flange bracket	Clevis bracket	ZE□□□A	ZE B
12 [0.472]	26.17 [0.923]	1.28 [0.0451]	8 [0.28]	50 [1.76]	55 [1.94]	30 [1.06]		
16 [0.630]	36.85 [1.300]	1.62 [0.0571]	11 [0.39]	62 [2.19]	71 [2.50]	40 [1.41]		
20 [0.787]	57.42 [2.025]	2.26 [0.0797]	27 [0.95]	84 [2.96]	101 [3.56]	75 [2.65]		
25 [0.984]	85.94 [3.031]	3.11 [0.110]	39 [1.38]	104 [3.67]	160 [5.64]	100 [3.53]		
32 [1.260]	126.86 [4.475]	4.11 [0.145]	28 [0.99]	126 [4.44]	186 [6.56]	165 [5.82]	15 [0.53]	35 [1.23]
40 [1.575]	195.3 [6.889]	4.77 [0.168]	37 [1.31]	160 [5.64]	335 [11.82]	200 [7.05]	15 [0.55]	35 [1.23]
50 [1.969]	314.69 [11.100]	7.03 [0.248]	57 [2.01]	220 [7.76]	447 [15.77]	315 [11.11]		
63 [2.480]	501.06 [17.674]	8.69 [0.307]	79 [2.79]	300 [10.58]	591 [20.85]	495 [17.46]		
80 [3.150]	951.44 [33.560]	13.06 [0.461]	244 [8.61]	644 [22.72]	1414 [49.88]	1110 [39.15]		
100 [3.940]	1729.88 [61.019]	18.61 [0.656]	344 [12.13]	1172 [41.34]	2606 [91.92]	1490 [52.56]		

Notes: 1. The above table is for the standard strokes.

2. Sensor switch codes A and B show the lead wire lengths.
A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches (**ZE135A**) $85.94+(3.11\times30)+39+(15\times2)=248.24g$ [8.756oz.]

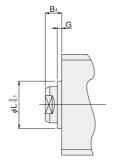




Туре	Standa	rd cylinder (HCBDA)	Cylinder v	vith magnet	(HCBDAS)	_	Е	K 1	М	N ₁	N ₂	0
Bore Code	Α	B ₁	С	Α	B ₁	С	D		IN1	IVI	IN1	IN2	U
12 [0.472]	27	5	22	32	5	27	_	_	M3×0.5 Depth6	3.5	8	5	10-32 UNF
16 [0.630]	27.5	5.5	22	32.5	5.5	27	_	6.2	M4×0.7 Depth8	3.5	8	5	10-32 UNF
20 [0.787]	30	5.5	24.5	40	5.5	34.5	_	12.2	M5×0.8 Depth10	4.5	9.5	5	10-32 UNF
25 [0.984]	32	6	26	42	6	36	_	12.2	M6×1 Depth10	5	10.5	5	10-32 UNF
32 [1.260]	35	7	28	40	7	33	48.5	18.2	M8×1.25 Depth12	6	9.5	7.5	NPT 1/8
40 [1.575]	38	7	31	43	7	36	56.5	18.2	M8×1.25 Depth12	6	10.5	7.5	NPT 1/8
50 [1.969]	42	9	33	47	9	38	70	24.8	M10×1.5 Depth15	7	11	9.5	NPT 1/4
63 [2.480]	46	9	37	51	9	42	83	26.8	M10×1.5 Depth15	7	12.5	11	NPT 1/4
80 [3.150]	57	11	46	67	11	56	102	32.8	M14×2 Depth20	9	18	12	NPT 3/8
100 [3.940]	68	12	56	78	12	66	122	32.8	M18×2.5 Depth20	9	22.5	16.5	NPT 3/8

Bore mm [in.]	P ₁	P 3	P ₄	R	Ø	T ₁	U	٧	W	Х	Υ	Z	Appropriate through bolt **
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	-	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	1	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	-	34	24	R22	10	8	_	_	1	M3
25 [0.984]	φ 5.1 (Thru hole) C'bore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	-	40	28	R25	12	10	_	_	1	M4
32 [1.260]	φ 5.1 (Thru hole) C'bore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore ϕ 9.5 (Both sides) and M8 $ imes$ 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 [3.150]	ϕ 10.5 (Thru hole) C'bore ϕ 14 (Both sides) and M12 $ imes$ 1.75 (Both sides)	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 [3.940]	ϕ 12.3 (Thru hole) C'bore ϕ 17.5 (Both sides) and M14 $ imes$ 2 (Both sides)	27	13	8	114	90	R75	32	27	27.6	25	2	M10

 $[\]ensuremath{\%}$ Some types of mounting screws are available (to be ordered separately). See p.209.



Bore Code mm [in.]	B ₂	F	Н	I	J	K ₂	М	V	W
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

•Not available for bore size ϕ 12.

Bore Code	B ₁	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

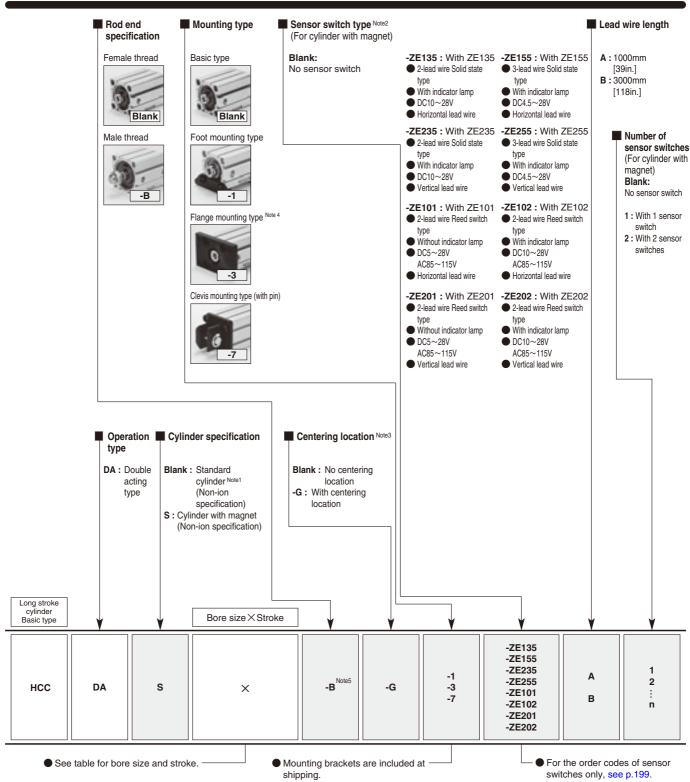
JIG CYLINDERS HC SERIES LONG STROKE CYLINDERS

Double Acting Type

Symbol

Specifications

Description of the last	40.50.4703	10 [0 000]	00 [0 =0=1	07.50.0047	00 [4 000]	40 54	TO 54 0003	00 50 4007	00 50 4507	100 [0 0 10]
Item Bore size mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
Operation type					Double a	cting type				
Media		Air								
Operating pressure range MPa [psi.]			0.15~1.0	[22~145]				0.1~1.0	[15~145]	
Proof pressure MPa [psi.]					1.5 [218]				
Operating temperature range °C [°F]					0~60 [3	2~140]				
Operating speed range mm/s [in./sec.]			30~500 [1.2~19.7]				30~300[1.2~11.8]	
Cushion				Rubbe	bumper (St	andard equi	pment)			
Lubrication	Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)									
Port size		10-32	UNF		NPT	1/8	NPT	1/4	NPT	Г 3/8


Remark: For Handling Instructions and Precautions, see p.205.

Bore Size and Stroke

0	B	Standard strokes							
Operation type	Bore size	Standard cylinder	Cylinder with magnet						
	12	35, 50, 75, 100, 125	25 FO 75 100 125						
	16	35, 50, 75, 100, 125	35, 50, 75, 100, 125						
	20	75, 100, 125, 150, 175, 200	75, 100, 125, 150, 175, 200						
	25	75, 100, 125, 150, 175, 200, 225, 250	75, 100, 125, 150, 175, 200, 225, 250						
Double acting	32								
type	40								
	50	105 150 175 200 225 250 275 200	105 150 175 000 005 050 075 000						
	63	125, 150, 175, 200, 225, 250, 275, 300	125, 150, 175, 200, 225, 250, 275, 300						
	80								
	100								

Remarks: 1. Stroke tolerance ${}^{+1}_0$ [${}^{+0.039in.}_0$]
2. In most cases, body cutting is used for the non-standard strokes.

Body cutting is also used for strokes of 31 \sim 34mm for ϕ 12 and ϕ 16, strokes of 51 \sim 74mm for ϕ 20 and ϕ 25, strokes of 101 \sim 124mm for ϕ 32 and ϕ 100.

Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in.

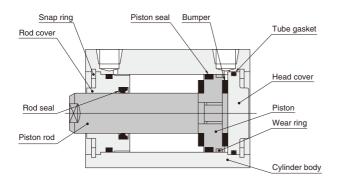
- 2. For details of sensor switches, see p.1544.
- 3. Not available for the bore size ϕ 12.
- 4. Cannot be mounted on the bore size ϕ 40 with centering locator (-G).
- 5. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

Additional Parts (To be ordered separately)

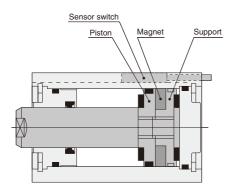
Foot mounting bracket (p.197)

Flange mounting bracket (p.198)

Clevis mounting bracket (with pin) (p.198)



Mounting screws (p.209)


CYLINDERS C SERIES

<u>5</u>

Double acting type (HCCDA)

Cylinder with magnet

Major Parts and Materials

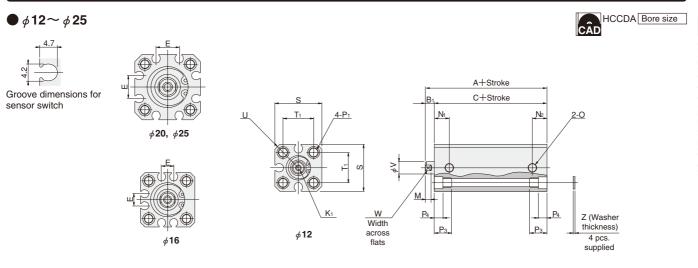
		\$\delta 12 \ \delta 16 \ \delta 20 \ \delta 25 \ \delta 32 \ \delta 40 \ \delta 50 \ \delta 63 \ \delta 80 \ \delta 5								
Parts Bore mm	φ 12	φ 12 φ 16 φ 20 φ 25 φ 32 φ 40 φ 50 φ 63 φ 80 φ 1								
Cylinder body			/	Alumin	um all	oy (and	odized)		
Piston		Alumii	num al	loy (sp	ecial r	ust pre	eventio	n trea	tment)	
Piston rod	Stainle	ss steel	(chrome	plated)		Stee	l (chro	me pla	ated)	
Seal				Synth	netic ru	ıbber (NBR)			
Rod cover		Alumi	num a	lloy (sp	oecial v	wear-re	esistar	nt treat	ment)	
Head cover			/	Alumin	um all	oy (and	odized)		
Snap ring				Steel (phosp	hate co	oating))		
Bumper		Synt	hetic r	ubber	(NBR;	uretha	ne for	φ 12 o	only)	
Magnet		Plastic magnet								
Support		Aluminum alloy (special rust prevention treatment)								
Wear ring					Pla	stic				

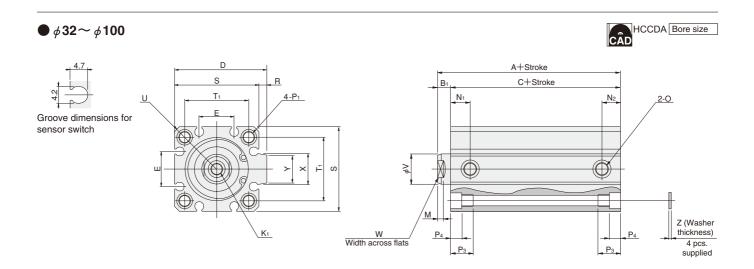
Seals

Parts	Dedeed	D'	Tube	gasket
Bore mm	Rod seal	Piston seal	Rod side	Head side
φ 12	MYR-6	COP-12	Y090260	Y090260
φ 16	MYR-8	COP-16	Y090207	Y090207
φ 20	MYR-10	COP-20	Y090216	Y090216
φ 25	MYR-12	COP-25	Y090210	Y090210
φ 32	MYR-16	COP-32	L090084	L090084
φ 40	MYR-16	COP-40	L090151	L090151
φ 50	MYR-20	COP-50	L090174	L090106
φ 63	MYR-20	COP-63	L090180	L090107
φ 80	PNY-25	COP-80	L090171	L090108
φ 100	PNY-32	COP-100	L090172	L090109

Mass

								g [oz.]
Bore size	Zero stroke	Additional mass for each 1mm	Additional mass of	Mas	ss of mounting bra	cket	Additional mass of	sensor switch Note2
mm [in.]	mass Note 1	[0.0394in.] stroke	cylinder with magnet	Foot bracket	Foot bracket Flange bracket 0		ZEA	ZE B
12 [0.472]	39.15 [1.381]	1.28 [0.0451]	7 [0.25]	50 [1.76]	55 [1.94]	30 [1.06]		
16 [0.630]	54.75 [1.931]	1.62 [0.0571]	11 [0.39]	62 [2.19]	71 [2.50]	40 [1.41]		
20 [0.787]	84 [2.963]	2.26 [0.0797]	26 [0.92]	84 [2.96]	101 [3.56]	75 [2.65]		
25 [0.984]	121 [4.268]	3.11 [0.110]	38 [1.34]	104 [3.67]	160 [5.64]	100 [3.53]		
32 [1.260]	184.15 [6.496]	4.11 [0.145]	28 [0.99]	126 [4.44]	186 [6.56]	165 [5.82]	15 [0.53]	25 [4 02]
40 [1.575]	281.75 [9.938]	4.77 [0.168]	34 [1.20]	160 [5.64]	335 [11.82]	200 [7.05]	15 [0.55]	35 [1.23]
50 [1.969]	370.23 [13.059]	7.03 [0.248]	56 [1.98]	220 [7.76]	447 [15.77]	315 [11.11]		
63 [2.480]	578.65 [20.411]	8.69 [0.307]	79 [2.79]	300 [10.58]	591 [20.85]	495 [17.46]		
80 [3.150]	1057.6 [37.305]	13.06 [0.461]	250 [8.82]	644 [22.72]	1414 [49.88]	1110 [39.15]		
100 [3.940]	1913.7 [67.503]	18.61 [0.656]	350 [12.35]	1172 [41.34]	2606 [91.92]	1490 [52.56]		


Notes: 1. The above table is for the standard strokes.

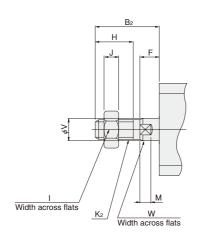

2. Sensor switch codes A and B show the lead wire lengths.
A: 1000mm [39in.] B: 3000mm [118in.]

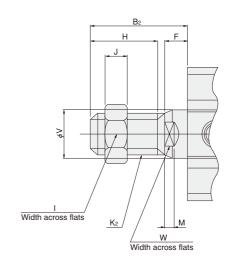
Calculation example: For the mass of a cylinder with magnet, bore size of 25mm, stroke of 150mm, and with 2 sensor switches (**ZE135A**) $121+(3.11\times150)+38+(15\times2)=655.5g~[23.122oz.]$

● The drawing is for ϕ 12.

Dimensions of Long Stroke Cylinder Double Acting Type (mm)

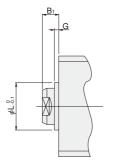
Туре	Standa	rd cylinder (HCCDA)	Cylinder v	vith magnet	(HCCDAS)	_	Е	V		N.	N ₂	_
Bore Code mm [in.]	Α	B ₁	С	Α	B ₁	С	D	_ =	K 1	M	N ₁	IN2	0
12 [0.472]	38	5	33	43	5	38	_	_	M3×0.5 Depth6	3.5	8	8	10-32 UNF
16 [0.630]	38.5	5.5	33	43.5	5.5	38	_	6.2	M4×0.7 Depth8	3.5	8	8	10-32 UNF
20 [0.787]	41.5	5.5	36	51.5	5.5	46	_	12.2	M5×0.8 Depth10	4.5	9.5	9.5	10-32 UNF
25 [0.984]	42.5	6	36.5	52.5	6	46.5	-	12.2	M6×1 Depth10	5	10.5	10.5	10-32 UNF
32 [1.260]	47	7	40	52	7	45	48.5	18.2	M8×1.25 Depth12	6	9.5	9.5	NPT 1/8
40 [1.575]	50	7	43	55	7	48	56.5	18.2	M8×1.25 Depth12	6	10.5	10.5	NPT 1/8
50 [1.969]	47	9	38	52	9	43	70	24.8	M10×1.5 Depth15	7	11	9.5	NPT 1/4
63 [2.480]	51	9	42	56	9	47	83	26.8	M10×1.5 Depth15	7	12.5	11	NPT 1/4
80 [3.150]	62	11	51	72	11	61	102	32.8	M14×2 Depth20	9	18	12	NPT 3/8
100 [3.940]	73	12	61	83	12	71	122	32.8	M18×2.5 Depth20	9	22.5	16.5	NPT 3/8


Bore Code	P ₁	P ₃	P ₄	R	S	T ₁	U	V	w	х	Υ	Z	Appropriate through bolt %
12 [0.472]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	25	16.3	R16	6	5	_	_	1	M3
16 [0.630]	φ 4.3 (Thru hole) Counterbore φ 6.5 (Both sides) and M5×0.8 (Both sides)	9.5	4.5	_	29	19.8	R19	8	6	_	_	1	M3
20 [0.787]	φ 4.3 (Thru hole) Counterbore φ 6.5 (Both sides) and M5×0.8 (Both sides)	9.5	4.5	_	34	24	R22	10	8	_	_	1	M3
25 [0.984]	φ 5.1 (Thru hole) Counterbore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	φ 5.1 (Thru hole) Counterbore φ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	φ 6.9 (Thru hole) Counterbore φ 9.5 (Both sides) and M8×1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	φ 6.9 (Thru hole) Counterbore φ 11 (Both sides) and M8 X 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 [3.150]	ϕ 10.5 (Thru hole) Counterbore ϕ 14 (Both sides) and M12 \times 1.75 (Both sides)	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 [3.940]	φ 12.3 (Thru hole) Counterbore φ 17.5 (Both sides) and M14 X2 (Both sides)	27	13	8	114	90	R75	32	27	27.6	25	2	M10


^{*} Some types of mounting screws are available (to be ordered separately). See p.209.

Double acting type

• *φ* 12~ *φ* 25



Bore Code mm [in.]	B ₂	F	Н	I	J	K ₂	М	V	W
12 [0.472]	17	5	10	8	4	M5X0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

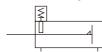
Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

lacktriangle Not available for bore size ϕ 12.

Bore Code mm [in.]	B ₁	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

JIG CYLINDERS HC SERIES END KEEP CYLINDERS

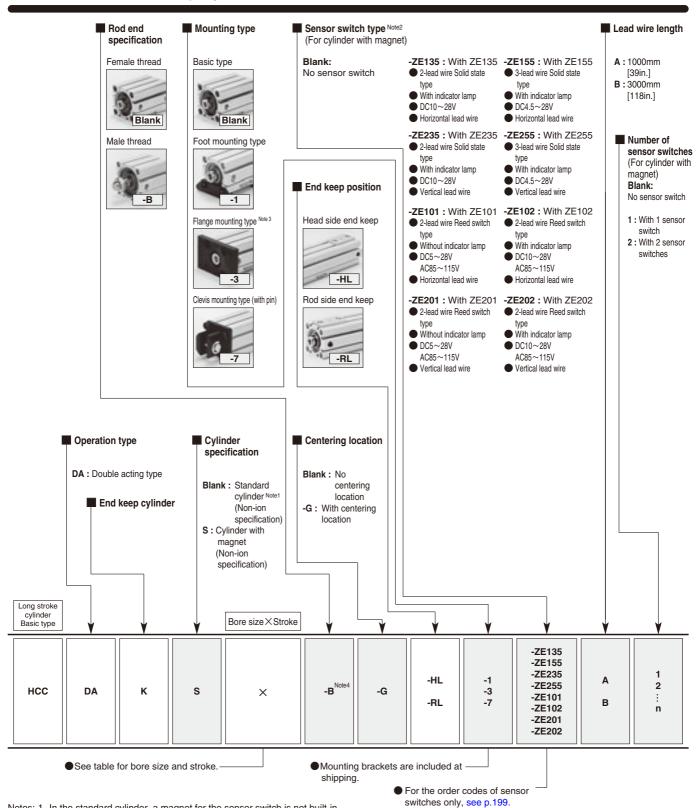

Double Acting Type

Symbols

● Head side end keep

Specifications

Item	Bore size mm [in.]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]			
Operation type Double acting type											
Media	Air										
Operating pressure r	ange MPa [psi.]	0.2~0.9 [29~131]		0.15~0.9	[22~131]		0.1~0.7	[15~102]			
Proof pressure MPa [psi.] 1.5 [218]											
Operating temperatur	e range °C [°F]	0~60 [32~140]									
Operating speed range	e mm/s [in./sec.]		30~300 [1.2~11.8]								
Cushion				Rubber bu	ımper (Standard e	quipment)					
Lubrication			Not required (If Iu	brication is require	d, use Turbine Oil	Class 1 [ISO VG	32] or equivalent.)				
Maximum holding force (a	t end keep) N [lbf.]	61.7 [13.9]	96.1 [21.6]	151 [33.9]	248.1 [55.8]	387.3 [87.1]	471.6 [106]	534.4 [120]			
Backlash (at end ke	ep) mm [in.]		1.4 [0.055] MAX.			1.6 [0.06	63] MAX.				
Port size	-		10-32 UNF		NPT	1/8	NPT 1/4				


Remark: For Handling Instructions and Precautions, see p.205.

Bore Size and Stroke

For non-standard	strokes, see p	0.206.	mm
Operation tune	Doro oizo	Standard strokes	
Operation type	Bore size	Standard cylinder, cylinder with magnet	
	16	5, 10, 15, 20, 25, 30, 35, 50, 75, 100, 125	
	20	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200	
	25	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200, 225, 250	
Double acting type	32	E 10 15 00 05 00 05 40 45 50 75 100 105 150 175 000 005 050 075 000	
type	40	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300	
	50	10 15 00 05 00 25 40 45 50 75 100 105 150 175 000 005 050 075 000	
	63	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300	

Remarks 1: Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$]

2: In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 16 \sim ϕ 40, and strokes of less than 10mm for ϕ 50 and ϕ 63. The collar packed is used for these cases. Rod side end keep cylinders cannot be collar packed.

Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in.

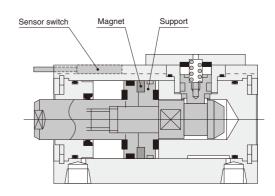
- 2. For details of sensor switches, see p.1544.
- 3. Cannot be mounted on the bore size ϕ 40 with centering location (-G).
- 4. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

Additional Parts (To be ordered separately)

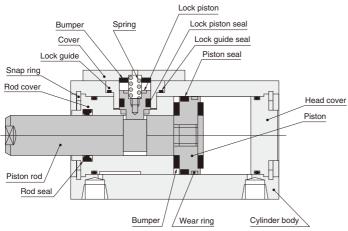
Foot mounting bracket (p.197)

Flange mounting bracket (p.198)

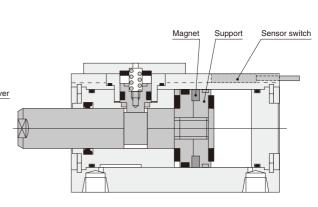
Clevis mounting bracket (with pin) (p.198)



Mounting screws (p.209)


● Head side end keep (HCCDAK-HL)

Rod cover Snap ring Piston rod Rod seal Piston Seal Piston Seal Piston Cylinder body


Cylinder with magnet

● Rod side end keep (HCCDAK-RL)

Cylinder with magnet

The locking mechanism uses a sequential operation.

Major Parts and Materials

Parts Bore mm	φ 16	φ 20	φ 25	φ 32	ϕ 40	φ 50	φ 63				
Cylinder body		Aluminum alloy (anodized)									
Piston	Alı	ıminum a	alloy (spe	cial rust p	revention	n treatme	nt)				
Piston rod	Stainless	steel (chror	me plated)	S	teel (chro	me plate	d)				
Seal			Synthe	tic rubber	(NBR)						
Rod cover	Al	uminum	alloy (spe	cial wear	-resistan	t treatmer	nt)				
Head cover	Alı	Aluminum alloy (special rust prevention treatment)									
Snap ring		Steel (phosphate coating)									
Lock piston			Sta	ainless st	eel						
Bumper			Synthe	tic rubber	(NBR)						
Magnet			Pla	stic mag	net						
Support	Alı	ıminum a	alloy (spe	cial rust p	reventior	n treatme	nt)				
Wear ring				Plastic							
Lock cover		Aluminum alloy (anodized)									
Spring	Piano wire										

Seals

Parts	Rod seal	Piston	Tube	gasket	Lock piston	Lock guide
Bore mm	nou seai	seal	Rod side	Head side	seal	seal
φ 16	MYR-8	COP-16	Y090207	Y090207	MYN-4	Y090157
φ 20	MYR-10	COP-20	Y090216	Y090216	MYN-5	Y090260
φ 25	MYR-12	COP-25	Y090210	Y090210	MYN-5	Y090260
φ 32	MYR-16	COP-32	L090084	L090084	MYN-10A	L090009
φ 40	MYR-16	COP-40	L090151	L090151	MYN-10A	L090009
φ 50	MYR-20	COP-50	L090174	L090106	MYN-16	L090084
φ 63	MYR-20	COP-63	L090180	L090107	MYN-16	L090084

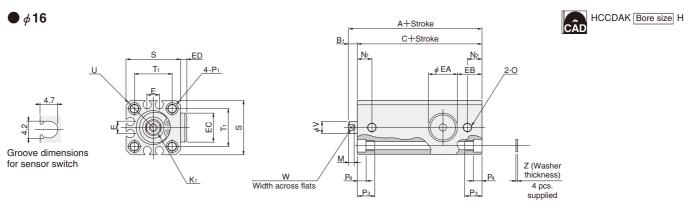
Head side end keep cylinder

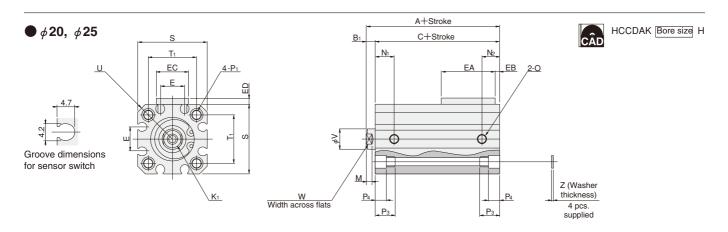
g [oz.]

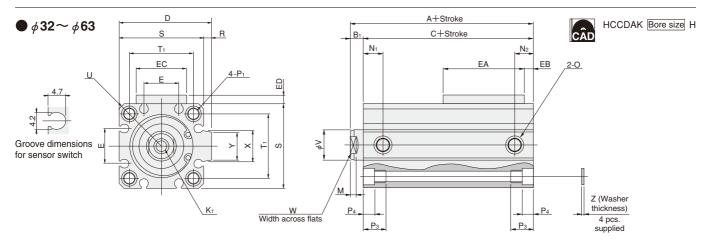
Bore size	eac		Additional mass of	Mas	ss of mounting bra	cket	Additional mass of sensor switch Note2		
mm [in.]	mass Note 1	each 1mm [0.0394in.] stroke	cylinder with magnet	Foot bracket	Flange bracket	Clevis bracket	ZEA	ZE B	
16 [0.630]	109.33 [3.856]	1.62 [0.0571]	9.93 [0.350]	62 [2.19]	71 [2.50]	40 [1.41]			
20 [0.787]	142.49 [5.026]	2.26 [0.0797]	25.71 [0.907]	84 [2.96]	101 [3.56]	75 [2.65]			
25 [0.984]	205.98 [7.266]	3.11 [0.110]	37.47 [1.322]	104 [3.67]	160 [5.64]	100 [3.53]		35 [1.23]	
32 [1.260]	330.47 [11.657]	4.11 [0.145]	52.43 [1.849]	126 [4.44]	186 [6.56]	165 [5.82]	15 [0.53]		
40 [1.575]	475.35 [16.767]	4.77 [0.168]	69.15 [2.439]	160 [5.64]	335 [11.82]	200 [7.05]			
50 [1.969]	775.35 [27.349]	7.03 [0.248]	108 [3.81]	220 [7.76]	447 [15.77]	315 [11.11]			
63 [2.480]	1137.3 [40.116]	8.69 [0.307]	159 [5.61]	300 [10.58]	591 [20.85]	495 [17.46]			

■Rod side end keep cylinder

g [oz.]

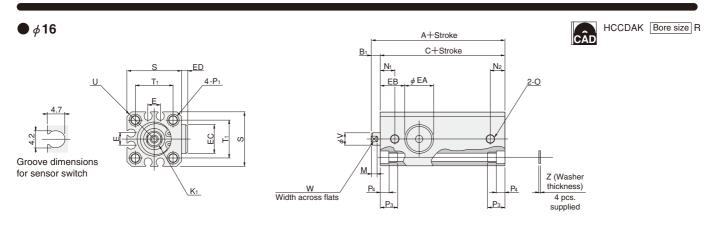

								3 []
Bore size	Zero stroke	Additional mass for each 1mm	Additional mass of	Mas	ss of mounting bra	cket	Additional mass of	sensor switch Note2
mm [in.]	mass Note 1	[0.0394in.] stroke	cylinder with magnet	Foot bracket	Flange bracket	Clevis bracket	ZEA	ZE B
16 [0.630]	101.33 [3.574]	1.62 [0.0571]	9.93 [0.350]	62 [2.19]	71 [2.50]	40 [1.41]		
20 [0.787]	130.49 [4.603]	2.26 [0.0797]	25.71 [0.907]	84 [2.96]	101 [3.56]	75 [2.65]		
25 [0.984]	185.93 [6.558]	3.11 [0.110]	37.47 [1.322]	104 [3.67]	160 [5.64]	100 [3.53]		
32 [1.260]	310.44 [10.950]	4.11 [0.145]	52.46 [1.850]	126 [4.44]	186 [6.56]	165 [5.82]	15 [0.53]	35 [1.23]
40 [1.575]	445.35 [15.709]	4.77 [0.168]	69.15 [2.439]	160 [5.64]	335 [11.82]	200 [7.05]		
50 [1.969]	755.35 [26.644]	7.03 [0.248]	108 [3.81]	220 [7.76]	447 [15.77]	315 [11.11]		
63 [2.480]	1082.3 [38.176]	8.69 [0.307]	159 [5.61]	300 [10.58]	591 [20.85]	495 [17.46]		

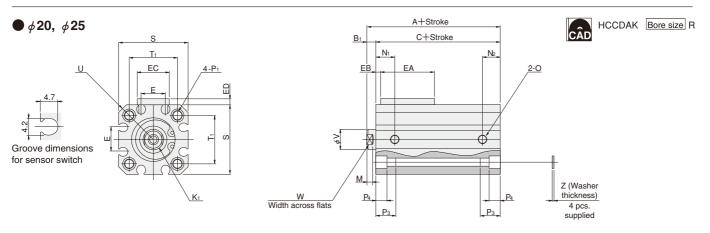

Notes: 1. The above table is for the standard strokes.

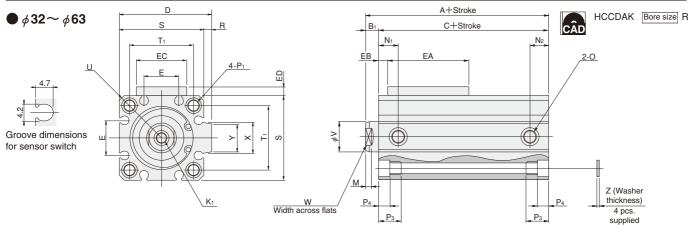

2. Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a head side end keep cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches (**ZE135A**) $205.98 + (3.11 \times 30) + 37.47 + (15 \times 2) = 366.75g$ [12.937oz.]

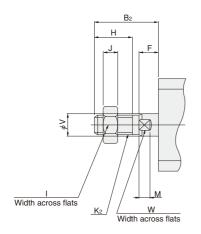



Туре	Standard	cylinder (CC	DAK-HL)	Cylinder wit	h magnet (Co	CDAKS-HL)	D	Е	K 1	М	N ₁	N ₂	
Bore Code mm [in.]	Α	B ₁	С	Α	B ₁	С	ט		K1	IVI	IN1	IN2	0
16 [0.630]	63.5	5.5	58	68.5	5.5	63		6.2	M4×0.7 Depth8	3.5	8	8	10-32 UNF
20 [0.787]	61.5	5.5	56	71.5	5.5	66	-	12.2	M5×0.8 Depth10	4.5	9.5	9.5	10-32 UNF
25 [0.984]	62.5	6	56.5	72.5	6	66.5	_	12.2	M6×1 Depth10	5	10.5	10.5	10-32 UNF
32 [1.260]	77	7	70	82	7	75	48.5	18.2	M8×1.25 Depth12	6	9.5	9.5	NPT 1/8
40 [1.575]	80	7	73	85	7	78	56.5	18.2	M8×1.25 Depth12	6	10.5	10.5	NPT 1/8
50 [1.969]	87	9	78	92	9	83	70	24.8	M10×1.5 Depth15	7	11	9.5	NPT 1/4
63 [2.480]	91	9	82	96	9	87	83	26.8	M10×1.5 Depth15	7	12.5	11	NPT 1/4

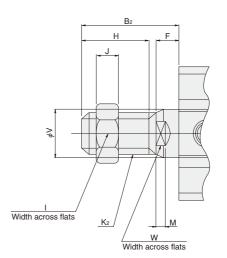

Bore Code mm [in.]	P ₁	P ₃	P ₄	R	S	T ₁	U	V	w	х	Υ	Z	EA	ЕВ	EC	ED	Appropriate through bolt **
16 [0.630]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 $\!\times$ 0.8 (Both sides)	9.5	4.5	_	29	19.8	R19	8	6		_	1	16.5	13.75	16.5	3	М3
20 [0.787]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 $\!\times$ 0.8 (Both sides)	9.5	4.5	_	34	24	R22	10	8		_	1	30	3	16	3.2	МЗ
25 [0.984]	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	11.5	5.5	_	40	28	R25	12	10		_	1	30	3	16	3.2	M4
32 [1.260]	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	42	5	26	4	M4
40 [1.575]	ϕ 6.9 (Thru hole) Counterbore ϕ 9.5 (Both sides) and M8 X 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	42	6	26	4	M5
50 [1.969]	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	49	6	35	6	M6
63 [2.480]	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	49	7.5	35	6	M6

 $[\]ensuremath{\%}$ Some types of mounting screws are available (to be ordered separately). See p.209.

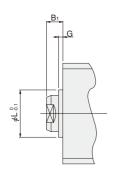
Dimensions of Rod Side End Keep Double Acting Type (mm)



Туре	Standard	cylinder (CC	DAK-RL)	Cylinder wit	h magnet (Co	CDAKS-RL)	D	E	K 1	М	N ₁	N ₂	o
Bore Code mm [in.]	Α	B ₁	С	Α	B ₁	С	ט		N1	IVI	IN1	IN2	
16 [0.630]	58.5	5.5	53	63.5	5.5	58		6.2	M4×0.7 Depth8	3.5	8	8	10-32 UNF
20 [0.787]	56.5	5.5	51	66.5	5.5	61	1	12.2	M5×0.8 Depth10	4.5	9.5	9.5	10-32 UNF
25 [0.984]	57.5	6	51.5	67.5	6	61.5		12.2	M6×1 Depth10	5	10.5	10.5	10-32 UNF
32 [1.260]	72	7	65	77	7	70	48.5	18.2	M8×1.25 Depth12	6	9.5	9.5	NPT 1/8
40 [1.575]	75	7	68	80	7	73	56.5	18.2	M8×1.25 Depth12	6	10.5	10.5	NPT 1/8
50 [1.969]	82	9	73	87	9	78	70	24.8	M10×1.5 Depth15	7	11	9.5	NPT 1/4
63 [2.480]	86	9	77	91	9	82	83	26.8	M10×1.5 Depth15	7	12.5	11	NPT 1/4


Bore Code mm [in.]	P 1	P ₃	P ₄	R	S	T ₁	U	V	W	Х	Υ	Z	EA	EB	EC	ED	Appropriate through bolt **
16 [0.630]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	29	19.8	R19	8	6	_		1	16.5	13.75	16.5	3	М3
20 [0.787]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 $ imes$ 0.8 (Both sides)	9.5	4.5	_	34	24	R22	10	8	_		1	30	3	16	3.2	МЗ
25 [0.984]	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	11.5	5.5	_	40	28	R25	12	10	_		1	30	3	16	3.2	M4
32 [1.260]	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 $ imes$ 1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	42	5	26	4	M4
40 [1.575]	ϕ 6.9 (Thru hole) Counterbore ϕ 9.5 (Both sides) and M8 $ imes$ 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	42	6	26	4	M5
50 [1.969]	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	49	6	35	6	M6
63 [2.480]	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 $ imes$ 1.25 (Both sides)	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	49	7.5	35	6	M6

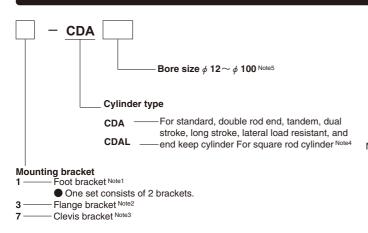
 $[\]ensuremath{\%}$ Some types of mounting screws are available (to be ordered separately). See p.209.



Bore Code mm [in.]	B ₂	F	Н	I	J	K ₂	M	V	W
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)


Bore Code mm [in.]	B ₁	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40

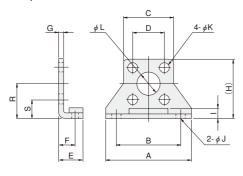
JIG CYLINDERS HC SERIES MOUNTING BRACKETS

Foot Mounting Bracket, Flange Mounting Bracket, Clevis Mounting Bracket

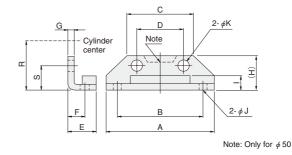
Order Codes of Mounting Bracket Only

- Notes: 1. Cannot be mounted on tandem or dual stroke cylinders. And cannot be mounted on the 5mm strokes of ϕ 16 and ϕ 25, and 10mm strokes of ϕ 50, ϕ 63, and ϕ 80 of the standard cylinders.
 - 2. Cannot be mounted on the head side of the tandem cylinder, cylinder 1 side of the dual stroke cylinder, the rod side of the square rod cylinder with centering location, or the bore size ϕ 40 with centering location (-G).
 - 3. Cannot be used with anything other than the long stroke cylinder, the lateral load resistant cylinder, or the end keep cylinder.

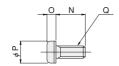
 4. Applicable to the foot mounting bracket only.

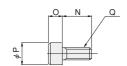

 - 5. Not available for ϕ 6 [0.236in.], ϕ 8 [0.315in.], and ϕ 10 [0.394in.].

Dimensions of Foot Mounting Bracket (mm)



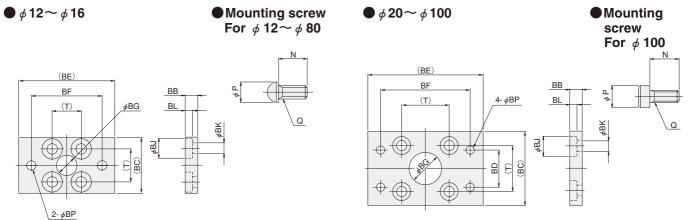
 ϕ 12~ ϕ 40 : HCDA-OP1, ϕ 50~ ϕ 100 : HCDA -OP2


φ 12~ φ 16


$\bullet \phi 20 \sim \phi 100$

Mounting screw For ϕ 12 \sim ϕ 80

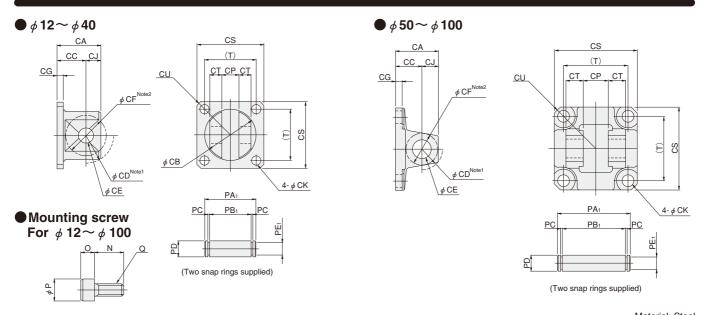
For ϕ 100


Material: Steel

Bore Code	Α	В	С	D	E	F	G	Н	I	J	K	L	N	0	P	Q	R	S	Mass g [oz.]
12 [0.472]	44	34	25	16.3	12.5	8	2	29.5	4.5	4.5	5.5	11	12	2.7	9.5	M5	17	8.9	50 [1.76]
16 [0.630]	48	38	29	19.8	13	8	2	33.5	4.5	4.5	5.5	11	12	2.7	9.5	M5	19	9.1	62 [2.19]
20 [0.787]	54	44	34	24	15	9.2	3.2	16.5	7	4.5	5.5	_	12 (12, 20)	2.7	9.5	M5	24	12	84 [2.96] (87 [3.07])
25 [0.984]	64	52	40	28	16.5	10.7	3.2	17.5	6	5.5	6.6	_	14 (14, 22)	3.3	10.5	M6	26	12	104 [3.67] (108 [3.81])
32 [1.260]	68	56	44	34	17	11.2	3.2	19	8	5.5	6.6	_	14 (14, 25)	3.3	10.5	M6	30	13	126 [4.44] (131 [4.62])
40 [1.575]	78	64	52	40	18.2	11.2	3.2	19	7	6.6	9	_	20 (20, 30)	4.4	14	M8	33	13	160 [5.64] (168 [5.93])
50 [1.969]	96	78	62	48	22.7	14.7	3.2	22	8	9	9	_	20 (20, 35)	4.4	14	M8	39	15	220 [7.76] (232 [8.18])
63 [2.480]	108	90	75	60	25.2	16.2	3.2	24	8.5	9	9	_	20 (20, 35)	4.4	14	M8	46	16	300 [10.58] (312 [11.01])
80 [3.150]	134	112	94	74	30.5	19.5	4.5	33	12	11	14	_	25	6.6	21	M12	59	22	644 [22.72]
100 [3.940]	160	134	114	90	35.5	23	6	40	14	14	16	_	30	14	21	M14	71	26	1172 [41.34]

Remark: Figures in parentheses () are for square rod cylinders.

Two figures in parentheses (), Left side: for head side; Right side: for rod side



Material: Steel Bore Code mm [in.] вв вс BE BG BJ Ν Р Q Т BD BF BK BL BP Mass g [oz.] 12 [0.472] 9.5 M5 16.3 6 28 50 38 11 10 5.5 3.6 4.5 55 [1.94] 16 [0.630] 9.5 M5 19.8 6 32 54 42 11 10 5.5 3.6 4.5 71 [2.50] 20 [0.787] 12(18) 9.5 M5 24 6 36 58 46 15 10 5.5 3.6 4.5 101 [3.56] (105 [3.70]) 25 [0.984] 14(22) 10.5 M6 28 8 42 28 68 54 17 11 6.6 4.3 5.5 160 [5.64] (165 [5.82]) 14(25) 10.5 M6 34 8 48 34 72 58 22 11 6.6 4.3 32 [1.260] 5.5 186 [6.56] (196 [6.91]) 20(30) 40 8 40 84 68 28 15 9 5.3 40 [1.575] 14 M8 58 6.6 335 [11.82] (351 [12.38]) 40 38 50 [1.969] 20(35) 14 M8 48 8 66 102 82 15 9 5.3 9 447 [15.77] (471 [16.61]) M8 8 50 96 40 15 9 63 [2.480] 20(35) 14 60 78 116 5.3 9 591 [20.85] (615 [21.69]) M12 74 70 142 45 80 [3.150] 25 21 12 100 118 22 14 7.3 11 1414 [49.88] 100 [3.940] 30 21 M14 90 20 116 80 170 142 55 23 16 15.2 14 2606 [91.92]

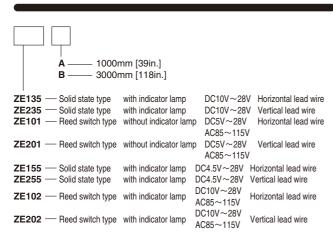
Remark: Figures in parentheses () are for square rod cylinders.

Dimensions of Clevis Mounting Bracket (mm)

CÂD φ 12~ φ 40 : ΦΑ-ΟΡ5, φ 50~ φ 100 : HCDA-ΟΡ6

																						IVI	atena	al: Steel
Bore Code	N	0	Р	Q	Т	CA	СВ	СС	CD	CE	CF	CG	CJ	CK	СР	cs	СТ	CU	PA ₁	PB ₁	РС	PD	PE ₁	Mass g [oz.]
12 [0.472]	12	5	8.5	M5	16.3	15	12	11	R 7.5	4+0.03	R5	4	4	5.5	4 ^{+0.2} _{+0.1}	25	3	R16	15	10.6	0.7	4 _{f8}	2.5	30 [1.06]
16 [0.630]	12	5	8.5	M5	19.8	17	16	12	R10	5 ^{+0.03}	R6	4	5	5.5	5 ^{+0.2} _{+0.1}	29	3.5	R19	17	12.6	0.7	5 _{f8}	3	40 [1.41]
20 [0.787]	12	5	8.5	M5	24	25	22	17	R14	8 ^{+0.04}	R11	4	8	5.5	8 ^{+0.4} +0.2	34	5.2	R22	24.4	19.6	0.9	8 f8	6	75 [2.65]
25 [0.984]	16	6	10	M6	28	25	26	17	R16	8 ^{+0.04}	R11	4	8	6.6	8 ^{+0.4} +0.2	40	5.2	R25	24.4	19.6	0.9	8 f8	6	100 [3.53]
32 [1.260]	16	6	10	M6	34	29	34	19	R20	10 ^{+0.04}	R12.5	4	10	6.6	12 ^{+0.4} _{+0.2}	44	8	R29.5	34	29.2	0.9	10f8	8	165 [5.82]
40 [1.575]	20	8	13	M8	40	29	34	19	R20	10+0.04	R12.5	4	10	9	12+0.4	52	8	R35	34	29.2	0.9	10f8	8	200 [7.05]
50 [1.969]	22	8	13	M8	48	32	-	19	R17	14+0.08	R14	5	13	9 Counterbore φ 17	20+0.6	63	12.5	R41.5	55	47	1.15	$14^{-0.030}_{-0.070}$	13.4	315 [11.11]
63 [2.480]	20	8	13	M8	60	32	-	19	R17	14 ^{+0.08}	R14	6	13	9 Counterbore φ 20	20+0.6	76	15	R50.5	60	52	1.15	14 ^{-0.030} 0.070	13.4	495 [17.46]
80 [3.150]	30	12	18	M12	74	52	_	32	R24	20+0.1	R20	7	20	14 Counterbore φ 22	32+0.6	95	16	R62.5	74	66	1.35	20 ^{-0.040} -0.084	19	1110 [39.15]
100 [3.940]	30	14	21	M14	90	52	ı	32	R24	20+0.1	R21	7	20	16 Counterbore \$\phi\$ 26	32+0.6	115	16	R75.5	74	66	1.35	20-0.040	19	1490 [52.56]

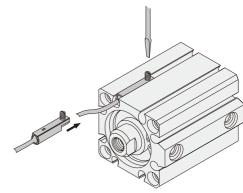
Notes: 1. CD = Swing range of clevis mounting bracket itself.


Remark: ϕ 12~ ϕ 50 are mounted with 2 bolts.

CF = Maximum radius of swing for mating bracket.

JIG CYLINDERS HC SERIES SENSOR SWITCHES

Solid State Type, Reed Switch Type


Order Codes

• For details of sensor switches, see p.1544.

Moving Sensor Switch

- Loosening mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- Tighten the mounting screw with a tightening torque of 0.1~ 0.2N·m [0.9~1.8in·lbf].

Minimum Cylinder Strokes When Using Sensor Switches

Solid state	type		mm
Bore size	2 pcs. mo	unting ^{Note}	1 no mounting
bore size	1-surface mounting	2-surface mounting	1 pc. mounting
6~12 [0.236~0.472in.]	30	10	-
16~100 [0.630~3.940in.]	0	5	

Note: Two pieces can be mounted with 5mm stroke. Take note that overlapping may occur, however.

Reed switc	h type		mm
Bore size	2 pcs. m	nounting	1 pc. mounting
Dore Size	1-surface mounting	2-surface mounting	i pc. mounting
12 [0.472in.]	30	10	10
		10	

10

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

lacktriangle Operating range : ℓ

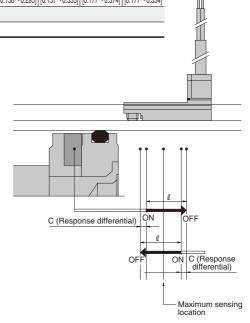
The distance the piston travels in one direction, while the switch is in the ON position.

Response differential : C

16~100 [0.630~3.940in.]

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

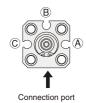
Solid state type

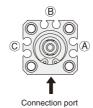

- Solid S	tate ty	pc											mm [in.]	
Item Bore	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]	
Operating range : ℓ	1.8~3.0 [0.071~0.118]	1.8~3.0 [0.071~0.118]	2.0~3.2 [0.079~0.126]	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	3.5~7.5 [0.138~0.295]	4~8.5 [0.157~0.335]	4.5~9.5 [0.177~0.374]	4.5~9.0 [0.177~0.354]	
Response differential : C	0.2	$\frac{071 \sim 0.118] \left[0.071 \sim 0.118 \right] \left[0.079 \sim 0.126 \right] \left[0.079 \sim 0.127 \right] \left[0.079 \sim 0.197 \right] \left[0.138 \sim 0.295 \right] \left[0.157 \sim 0.315 \right] \left[0.118 \sim 0.276 \right] \left[0.138 \sim 0.295 \right] \left[0.138 \sim 0.295 \right] \left[0.157 \sim 0.335 \right] \left[0.177 \sim 0.374 \right] \left[0.177 \sim 0.354 \right]}{0.2 \left[0.008 \right] \text{ or less}}$												
Maximum sensing location		6 [0.236]												

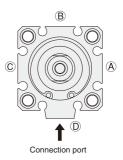
Remark: The above table shows reference values.

Reed switch type

Reed s	witch	type								mm [in.]				
Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]				
Operating range : £	4.5~8.5 [0.177~0.335]	5.5~9.5 [0.217~0.374]	9~13.5 [0.354~0.531]	10~15.5 [0.394~0.610]	8~12 [0.315~0.472]	8.5~14 [0.335~0.551]	9~15 [0.354~0.591]	10~16 [0.394~0.630]	11~16 [0.433~0.630]	11~16.5 [0.433~0.650]				
Response differential : C	1.0 [0.039] or less				3.0 [0.118] or less	2.5 [0.098] or less								
Maximum sensing location		10 [0.394]												


Remark: The above table shows reference values.




ϕ 6 \sim ϕ 12

lacktriangle The drawing is for ϕ 32.

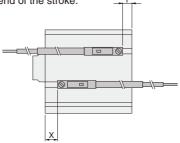
The standard mounting positions at shipping for the end of stroke detection on the rod side is either surface $\ensuremath{\mbox{\@olive{A}}}$ or surface $\ensuremath{\mbox{\@olive{C}}}$, while the end of stroke detection on the head side is surface (B). If mounting sensor switches on the same surface

for detection of both ends is required, consult us. (The sensor switch may sometimes protrude from the cylinder body.)

Mounting on any of surfaces (A), (B), or (C) allows detection of the end of stroke on the rod side and

(The sensor switch may sometimes protrude from the cylinder body.)

Mounting on any of surfaces (A), (B), (C), or (D) allows detection of the end of stroke on the rod side and


(The sensor switch may sometimes protrude from the cylinder body.)

However, the **ZE2** sensor switches cannot be mounted on the \bigcirc position in ϕ 32, ϕ 40, and ϕ 50.

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the position shown in the diagram below (figures in the tables are reference values), the magnet reaches the sensor switch's maximum sensing location at the end of the stroke.

Standard cylinder, Non-rotating cylinder

■ Solid state type

Double acting type

	Double ac	tin	g ty	/pe									mm	[in.]
Code	Bore	6	8	10	12	16	20	25	32	40	50	63	80	100
v	Standard type	7.2 [0.283]	8 [0.315]	8.3 [0.327]	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]		-	12.5 [0.492]	-	20 [0.787]	25 [0.984]
Х	With bumper (-R)	_	_	-	10 [0.394]	1 O [0.394]	15 [0.591]	16 [0.630]			15.5 [0.610]	-	20 [0.787]	25 [0.984]
· ·	Standard type	1 [0.039]	O.3 [0.012]	1 [0.039]	4 [0.157]	4 [0.157]	7.5 [0.295]	9 [0.354]			14.5 [0.571]	_	20 [0.787]	25 [0.984]
Υ	With bumper (-R)	_	_	_	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	11.5 [0.453]	_	20 [0.787]	25 [0.984]

Single acting puch type

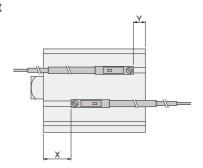
Sillyle ac													
Code	6	8	10	12	16	20	25	32	40	50			
х	17.2 [0.677]	18 [0.709]	18.3 [0.720]		15 [0.591]	14 [0.551]			17.5 [0.689]				
Y	1 [0.039]	0.3 [0.012]	1 [0.039]	1 [0.039]	1 [0.039]	4.5 [0.177]	5.5 [0.217]		7.5 [0.295]				

Single acting pull type

Code	6	8	10	12	16	20	25	32	40	50	
х	7.2 [0.283]	8 [0.315]	8.3 [0.327]	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]		14.5 [0.571]		
Υ	11 [0.433]	10.3 [0.406]		9 [0.354]	9 [0.354]	12.5 [0.492]	14 [0.551]		15.5 [0.610]		

■ Reed switch type

•	Double acting type											
C	Code	Bore	12	16	20	25	32	40	50	63	80	100
	х	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	15.5 [0.610]	20.5 [0.807]
	^	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]		11 [0.433]	12 [0.472]	11 [0.433]	10.5 [0.413]		
	v	Standard type	-0.5 [-0.020]	-0.5 [-0.020]	3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]	15.5 [0.610]	20.5 [0.807]
	Υ	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	11.5 [0.453]	15.5 [0.610]	


Single acting puch type

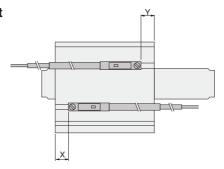
Sillyle act	Single acting push type												
Code	12	16	20	25	32	40	50						
х	10.5	10.5	9.5	10	11	13	12.5						
	[0.413]	[0.413]	[0.374]	[0.394]	[0.433]	[0.512]	[0.492]						
Υ	-3.5	-3.5	0	1	2	3	6						
	[-0.138]	[-0.138]	[0]	[0.039]	[0.079]	[0.118]	[0.236]						

Single acting pull type

Olligic act													
Code	12	16	20	25	32	40	50						
х	2.5	2.5	6.5	6.5	9	10	8						
	[0.098]	[0.098]	[0.256]	[0.256]	[0.354]	[0.394]	[0.315]						
Υ	4.5	4.5	8	9.5	9	11	10						
	[0.177]	[0.177]	[0.315]	[0.374]	[0.354]	[0.433]	[0.394]						

Square rod cylinders with magnet

■ Solid state type


Double acting type

	Double ac	ting ty	ре				mm [in.]
Code	Bore	20	25	32	40	50	63
	Standard type	17.5 [0.689]	17.5 [0.689]	22.5 [0.886]	24.5 [0.965]	27.5 [1.083]	30 [1.181]
Х	With bumper (-R)	21.5 [0.846]	22.5 [0.886]	24.5 [0.965]	26.5 [1.043]	30.5 [1.201]	30 [1.181]
· ·	Standard type	10 [0.394]	9 [0.354]	14 [0.551]	14.5 [0.571]	14.5 [0.571]	16 [0.630]
Υ	With bumper (-R)	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	11.5 [0.453]	16 [0.630]

■ Reed switch type

	Jouble ac	ting ty	ре				mm [in.]
Code	Bore	20	25	32	40	50	63
х	Standard type	13 [0.512]	13 [0.512]	18 [0.709]	20 [0.787]	23 [0.906]	25.5 [1.004]
^	With bumper (-R)	17 [0.669]	18 [0.709]	20 [0.787]	22 [0.866]	26 [1.024]	25.5 [1.004]
V	Standard type	5 [0.197]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]
Υ	With bumper (-R)	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	11.5 [0.453]

Double rod cylinders with magnet

■Solid state type

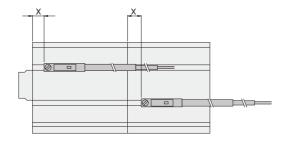
■ Double acting type

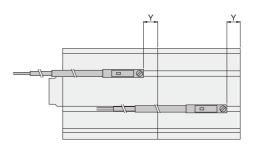
	UL	Jouble ac	um	y ıy	he									mm	i [in.]
	Code	Bore	6	8	10	12	16	20	25	32	40	50	63	80	100
	х	Standard type	7.2 [0.283]	8 [0.315]	8.3 [0.327]	7 [0.276]	7 [0.276]	11 [0.433]						20.5 [0.807]	
	^	With bumper (-R)	_	_	_	1 O [0.394]	10 [0.394]	15 [0.591]		15.5 [0.610]		l	1 -	20.5 [0.807]	
	v	Standard type	5.5 [0.217]		6 [0.236]	1 O [0.394]	10 [0.394]				-			26.5 [1.043]	
Y	With bumper (-R)	_	_	_	12 [0.472]	12 [0.472]		14.5 [0.571]			_		26.5 [1.043]		

Single acting type

Sillyle act	Tolligle acting type mm [in.												
Code Bore	12	16	20	25	32	40	50						
х	15	15	14	14.5	15.5	17.5	16.5						
	[0.591]	[0.591]	[0.551]	[0.571]	[0.610]	[0.689]	[0.650]						
Υ	7	7	11	11	13.5	14.5	12.5						
	[0.276]	[0.276]	[0.433]	[0.433]	[0.531]	[0.571]	[0.492]						

■ Reed switch type


Double acting type


Double acting type mn											
Code	Bore	12	16	20	25	32	40	50	63	80	100
х	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	16 [0.630]	20.5 [0.807]
^	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]	11.5 [0.453]	11 [0.433]	12 [0.472]	9.5 [0.374]	10.5 [0.413]	41. 41.	20.5 [0.807]
· ·	Standard type	5.5 [0.217]	5.5 [0.217]	9.5 [0.374]	10 [0.394]	11 [0.433]	13 [0.512]	12 [0.472]	13.5 [0.531]	22 [0.866]	27 [1.063]
Υ	With bumper (-R)	7.5 [0.295]	7.5 [0.295]	10.5 [0.413]	10 [0.394]	2 [0.079]	11 [0.433]	10.5 [0.413]		22 [0.866]	27 [1.063]

■ Single acting type

Siligle act	ing ty	he					mm [in.]
Code	12	16	20	25	32	40	50
х	10.5	10.5	9.5	10	11	13	12
	[0.413]	[0.413]	[0.374]	[0.394]	[0.433]	[0.512]	[0.472]
Υ	2.5	2.5	6.5	6.5	9	10	8
	[0.098]	[0.098]	[0.256]	[0.256]	[0.354]	[0.394]	[0.315]

● Tandem cylinders with magnet

■Solid state type

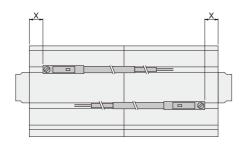
Double acting type

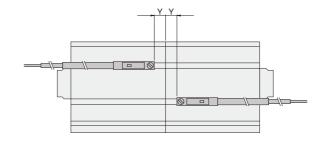
Double acting type mm [in.]												
Code	Bore	12	16	20	25	32	40	50	63	80	100	
х	Standard type	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]	13.5 [0.531]		12.5 [0.492]	15 [0.591]	20 [0.787]	25 [0.984]	
^	With bumper (-R)	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]			15 [0.591]	20 [0.787]	25 [0.984]	
	Standard type	4 [0.157]	4 [0.157]	7.5 [0.295]	9 [0.354]	8.5 [0.335]	10.5 [0.413]	14.5 [0.571]	16 [0.630]	20 [0.787]	25 [0.984]	
Υ	With bumper (-R)	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	11.5 [0.453]	16 [0.630]	20 [0.787]	25 [0.984]	

Single acting push type

Comple dot	Tonigic dotting pash type												
Code	12 16		20	25	32	40	50						
Х	15 [0.591]	15 [0.591]	14 [0.551]	14.5 [0.571]	14.5 15.5 [0.571] [0.610]		16.5 [0.650]						
Y	1 [0.039]	1 [0.039]	4.5 [0.177]	5.5 [0.217]	6.5 [0.256]	7.5 [0.295]	10.5 [0.413]						

■ Reed switch type


■ Double acting type


_	L	Jouble at	ung	гур	e						mı	m [in.]
(Code	Bore	12	16	20	25	32	40	50	63	80	100
	х	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	15.5 [0.610]	
	^	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]		11 [0.433]	12 [0.472]	11 [0.433]		15.5 [0.610]	
Υ	Y	Standard type	-0.5 [-0.020]	-0.5 [-0.020]	3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]		15.5 [0.610]	
	Y	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	11.5 [0.453]	15.5 [0.610]	

Single acting push type

Single acting push type												
Code	12 16 20			25	32	40	50					
х	10.5 [0.413]	10.5 [0.413]	9.5 [0.374]	10 [0.394]	11 [0.433]	13 [0.512]	12 [0.472]					
Y	-3.5 [-0.138]	-3.5 [-0.138]	0 [0]	1 [0.039]	2 [0.079]	3 [0.118]	6 [0.236]					

Dual stroke cylinders with magnet

■ Solid state type

■ Double acting type

			9	אני ו							1111	[]
Ī	Code	Bore	12	16	20	25	32	40	50	63	80	100
	х	Standard type	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]	13.5 [0.531]		12.5 [0.492]	15 [0.591]	20 [0.787]	25 [0.984]
	^	With bumper (-R)	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]	16.5 [0.650]	14 [0.551]	15 [0.591]	20 [0.787]	25 [0.984]
	V	Standard type	4	4	7.5	9	8.5	10.5	14.5	16 [0.630]	20	25
Υ	ĭ	With bumper (-R)	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	13.5 [0.531]	16 [0.630]	20 [0.787]	25 [0.984]

Single acting push type

● Single act	Single acting push type mm [in.]													
Code	12	16	20	25	32	40	50							
Х	15 [0.591]	15 [0.591]	14 [0.551]	14.5 [0.571]	15.5 [0.610]	17.5 [0.689]	16.5 [0.650]							
Υ	1 [0.039]	1 [0.039]	7.5 [0.295]	5.5 [0.217]	6.5 [0.256]	7.5 [0.295]	10.5 [0.413]							

Single acting pull type

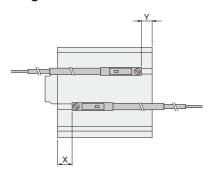
Olligic dol	Tomgic dotting pair type													
Code Bore	12 16		20	25	32	40	50							
Х	7	7	11	11	13.5	14.5	12.5							
	[0.276]	[0.276]	[0.433]	[0.433]	[0.531]	[0.571]	[0.492]							
Υ	9	9	12.5	14	13.5	15.5	14.5							
	[0.354]	[0.354]	[0.492]	[0.551]	[0.531]	[0.610]	[0.571]							

■ Reed switch type

■ Double acting type

mm [in]

Double acting type												
Code	Bore	12	16	20	25	32	40	50	63	80	100	
х	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	15.5 [0.610]		
^	With bumper (-R)	5.5 [0.217]	5.5 [0.217]		11.5 [0.453]	11 [0.433]	12 [0.472]	9.5 [0.374]		15.5 [0.610]		
,	Standard type	-0.5 [-0.020]		3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]	15.5 [0.610]		
Υ	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	9 [0.354]	11.5 [0.453]	15.5 [0.610]		


Single acting push type

Single act	Single acting push type mm [in.]												
Code	12	16	20	25	32	40	50						
х	10.5	10.5	9.5	10	11	13	12						
	[0.413]	[0.413]	[0.374]	[0.394]	[0.433]	[0.512]	[0.472]						
Υ	-3.5	-3.5	3	1	2	3	6						
	[-0.138]	[-0.138]	[0.118]	[0.039]	[0.079]	[0.118]	[0.236]						

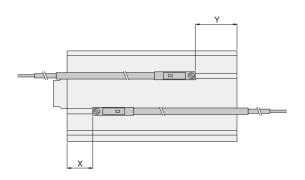
■ Single acting null type

Jilly	ie aci	ing p	un typ	-				mm [in.]
Code	Bore	12 16		20	25	32	40	50
х		2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]
Y		4.5 [0.177]	4.5 [0.177]	8 [0.315]	9.5 [0.374]	9 [0.354]	11 [0.433]	10 [0.394]

● Lateral load resistant cylinders with magnet

■Solid state type

■ Double acting type


		mun jun.									
	Code Bore	12	16	20	25	32	40	50	63	80	100
	x	10 [0.394]	10 [0.394]	15 [0.591]		15.5 [0.610]					
	Υ	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]				18.5 [0.728]	

■ Reed switch type

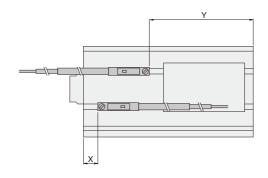
■ Double acting type

_	Double acting type											
	Code Bore	12	16	20	25	32	40	50	63	80	100	
	х	5.5 [0.217]				11 [0.433]			13 [0.512]	22 [0.866]	27 [1.063]	
	Υ	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	9 [0.354]	14 [0.551]	19 [0.748]	

Long stroke cylinders with magnet

■Solid state type

Double acting type


<u> </u>											
Code	12	16	20	25	32	40	50	63	80	100	
х	15 [0.591]	15 [0.591]	20 [0.787]					22.5 [0.886]			
Υ	12 [0.472]	12 [0.472]	15 [0.591]	14.5 [0.571]	13.5 [0.531]	15.5 [0.610]	12.5 [0.492]	13.5 [0.531]	18.5 [0.728]	23.5 [0.925]	

■Reed switch type

■ Double acting type

Double at	bouble acting type mm [in												
Code	12	16	20	25	32	40	50	63	80	100			
х		10.5 [0.413]				17 [0.669]	16 [0.630]	18 [0.709]	27 [1.063]	32 [1.260]			
Υ	7.5 [0.295]	7.5 [0.295]	10.5 [0.413]		9 [0.354]	11 [0.433]	8 [0.315]	9 [0.354]	14 [0.551]	19 [0.748]			

End keep cylinder with magnet

■ Solid state type

■Head side end keen

Thead Side	mm [in												
Code	16	20	25	32	40	50	63						
х	15.5	20.5	21.5	20.5	21.5	20.5	22.5						
	[0.610]	[0.807]	[0.846]	[0.807]	[0.846]	[0.807]	[0.886]						
Υ	36.5	34.5	34.5	43.5	45.5	51.5	54.5						
	[1.437]	[1.358]	[1.358]	[1.713]	[1.791]	[2.028]	[2.146]						

■ Reed switch type

■ Solid state type

Х

Rod side end keep

16

35.5

35.5

[1.398] [1.398] [1.437]

11.5 14.5 14.5 [0.453] [0.571] [0.571]

Rod side end keep											
Code Bore	16	20	25	32	40	50	63				
х	31	31	32	41	42	51	53				
	[1.220]	[1.220]	[1.260]	[1.614]	[1.654]	[2.008]	[2.087]				
Υ	7	10	10	9	11	7	9				
	[0.276]	[0.394]	[0.394]	[0.354]	[0.433]	[0.276]	[0.354]				

25

36.5

■ Reed switch type

Thead Side	ena i	keep					mm [in.]
Code Bore	16	20	25	32	40	50	63
х	11	16	17	16	17	16	16
	[0.433]	[0.630]	[0.669]	[0.630]	[0.669]	[0.630]	[0.630]
Υ	32	30	30	39	41	47	50
	[1.260]	[1.181]	[1.181]	[1.535]	[1.614]	[1.850]	[1.969]

mm [in.]

63

57.5

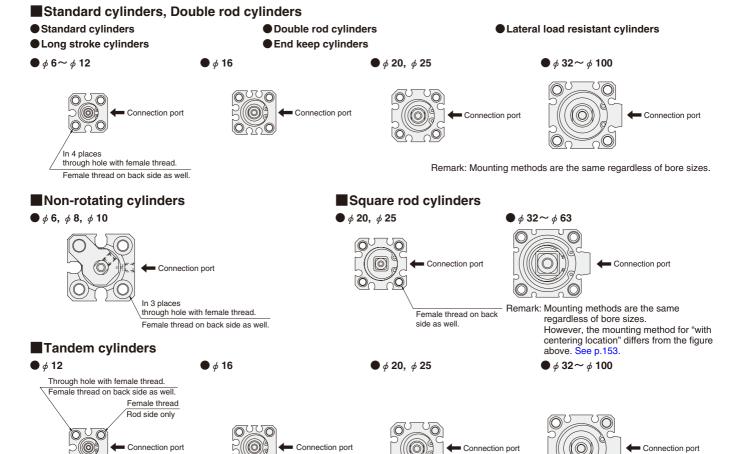
[2.185] [2.264]

40

[1.831]

50

15.5 11.5 13.5 [0.610] [0.453] [0.531]

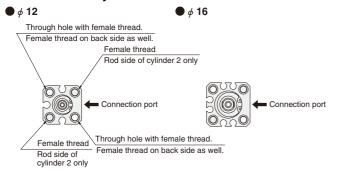

32

[1.791]

13.5 [0.531]

Body mounting

Jig cylinder mounting holes include both through holes with female mounting thread, and dedicated female mounting threads, for a variety of mountings. For details, see the diagrams below.



Remark: Mounting methods are the same regardless of bore sizes.

 ϕ 32~ ϕ 100

■ Dual stroke cylinders

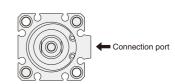
Rod side only

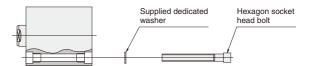
Through hole with female thread Female thread on back side as well.

Notes: 1. Avoid applying lateral loads on the piston rod, with the exception of Lateral load resistant cylinders, Long stroke cylinders, and End keep cylinders.

- 2. When using through holes for mounting, always use the supplied dedicated washers. (except ϕ 6, ϕ 8, and ϕ 10)
- 3. Mount an external stopper, etc., to prevent the cylinder from being subjected to direct shocks during operation.

Tightening thread of the end of piston rod


Since a tool (thin wrench) has been prepared for holding the piston rod when tightening the rod end thread, consult us.


 ϕ 20, ϕ 25

Connection port

Remark: Mounting methods are the same regardless of bore sizes.

Always use the supplied dedicated washer whenever using a through bolt to directly mount the cylinder body in place.* Use the bolts shown in the table below to mount in place. And for bolts used for direct mounting, see p.209.

*Washer not available for bore sizes ϕ 6, ϕ 8, and ϕ 10.

Bore size	6	8	10	12	16	20	25	32	40	50	63	80	100
mm [in.]	[0.236]	[0.315]	[0.394]	[0.472]	[0.630]	[0.787]	[0.984]	[1.260]	[1.575]	[1.969]	[2.480]	[3.150]	[3.940]
Hexagon socket head bolt nominal size	МЗ	МЗ	МЗ	МЗ	МЗ	МЗ	M4	M4	M5	M6	M6	M8	M10

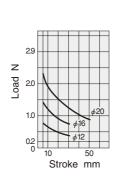
Bracket mounting

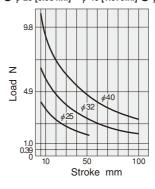
- Foot mounting brackets cannot be installed on tandem cylinders and dual stroke cylinders.
- Flange mounting brackets cannot be installed on the head side of tandem cylinders and the stroke 1 side of dual stroke cylinders.
- Clevis mounting brackets cannot be installed on anything except for lateral load resistant cylinders, long stroke cylinders, and end keep cylinders.

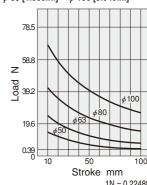
Non-standard stroke

In most cases, body cutting is used for the manufacturing for non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 12 $[0.472in.] \sim \phi 40 [1.575in.]$, and strokes of less than 10mm for ϕ 50 [1.969in.] $\sim \phi$ 100 [3.940in.]. The collar packed is used for these cases. Moreover, sizes ϕ 6 [0.236in.] $\sim \phi$ 10 [0.394in.] are collar packed only. For delivery, consult us.

Rod side end keep cylinders cannot be collar packed.

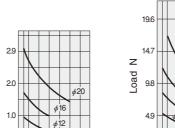

- Dimensions
- 1. Additional strokes obtained by body cutting remain classed as non-standard strokes.
- 2. Additional strokes obtained by collar packed are classed as standard strokes in the longer one.

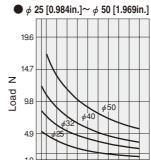

Lateral Load

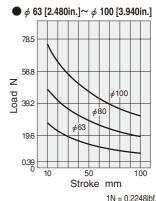

- Keep the lateral load on the rod end of the lateral load resistant cylinder, long stroke cylinder, and end keep cylinder, at or below the values shown in the graphs below.
 - Note: Avoid applying lateral load on any cylinder types other than the lateral load resistant cylinder, long stroke cylinder, and end keep cylinder.

Lateral load resistant cylinders

- Standard type (HCBDA)
- ϕ 12 [0.472in.] $\sim \phi$ 20 [0.787in.] \bullet ϕ 25 [0.984in.] $\sim \phi$ 40 [1.575in.] \bullet ϕ 50 [1.969in.] $\sim \phi$ 100 [3.940in.]


1N = 0.2248lbf1mm = 0.0394in.


1mm = 0.0394in.


- Cylinder with magnet (HCBDAS)
- \bullet ϕ 12 [0.472in.] $\sim \phi$ 20 [0.787in.]

z

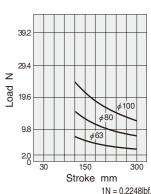
Load

Long stroke cylinders, End keep cylinders

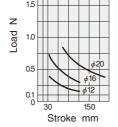
• Standard type (HCCDA,HCCDAK) • ϕ 25 [0.984in.] $\sim \phi$ 50 [1.969in.]

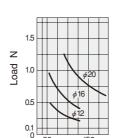
Load

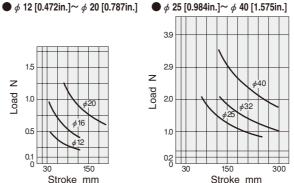
2.0

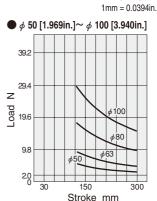

1.0

 ϕ 12 [0.472in.] $\sim \phi$ 20 [0.787in.]


Stroke mm


Stroke mm


 \bullet ϕ 63 [2.480in.] $\sim \phi$ 100 [3.940in.]



Stroke mm

Stroke mm

1N = 0.2248lbf. 1mm = 0.0394in

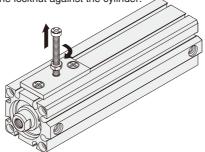
Single acting cylinders

Standard cylinders single acting push type
Standard cylinders single acting pull type
Double rod cylinders single acting type
Tandem cylinders single acting push type
Dual stroke cylinders single acting push type
Dual stroke cylinders single acting pull type

If in the above types' application, air is being continuously applied from a connection port, and the spring remains in a compressed state for long periods of time, the piston may sometimes fail to return to its original position even after the air is exhausted. If equipment is to be used in this way over long periods of time, consult us.

End keep cylinder

Control circuit


- For control of Jig end keep cylinders, we recommend the use of 2-position, 4-, 5-port valves. Avoid the use of a control circuit of ABR connections (exhaust centers) with 3position valves that exhaust air from 2 ports.
- Always use meter-out control for speed control. Meter-in control may result in failure of the locking mechanism to release.

Notes: 1. It is dangerous to supply air to a connection port on a side with a locking mechanism while already exhausted, because the piston rod could suddenly extend (retract). In addition, it could also cause galling of the lock piston and piston rod, resulting in defective operation. Always supply air to the connection port on the opposite side to ensure back pressure is applied.

- When restarting operations after air has been exhausted from the cylinder due to completion of operations or to an emergency stop, always start by supplying air to the connection port on the opposite side of the locking mechanism.
- Connect the valve port A (NC) to the connection port on the side with the locking mechanism.

Manual operation of the locking mechanism

While the locking mechanism is normally released automatically through cylinder operations, it can also be released manually. For manual release, insert an M3 \times 0.5 screw that has 30mm [1.18in.] below head length into the manual override opening, thread it in about 3 turns into the internal lock piston, and then pull up the screw. To maintain the manual override for adjustment, etc., thread the locknut onto the screw and, with the locking mechanism in a released state, tighten the locknut against the cylinder.

Notes: 1. It is dangerous to release the lock when a load (weight) is present on the piston rod, because it may cause a sudden fall or cause the unintended piston rod's extension (retraction). In this case, always supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.

- 2. If the locking mechanism cannot easily be released even with manual override, it could be the result of galling of the lock piston and piston rod. In this case, supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.
- 3. Because water, oil, dust, etc., entering via the manual override opening could be a cause of defective locking or other erratic operation, use a cover, etc., for protection when using in locations subject to dripping water, dripping oil, or to large amounts of dust, etc.

Sensor switch

In the standard cylinder, a magnet for the sensor switch is not built-in.

To install a sensor switch, a cylinder with a built-in magnet for the sensor switch is required.

Notes:1. For the sensor switch mounting location and moving ranges, see p.199.

 Contact protection measures are required for connecting inductive loads to reed sensor switches or for when capacitive surges are generated. For contact protection measures, see p.1566.

Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the cylinder. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

Atmosphere

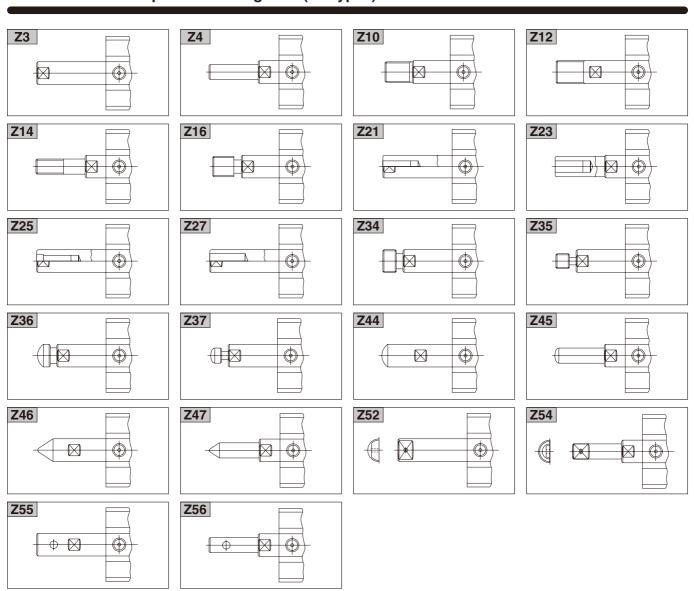
- If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.
- The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.

Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Lubrication

The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or equivalent.

Avoid using spindle oil or machine oil.


OPTIONAL ROD END SHAPE PATTERNS

Use an order form of rod end pattern and fill the items on the selected one from among 22 types of optional patterned shapes to obtain made-to-order cylinders of non-standard rod end shapes. The optional rod end shapes can be applied to the entire Jig Cylinders C Series. For the order form containing the optional patterned shapes, contact us. (Except ϕ 6, ϕ 8, ϕ 10)

Order Codes

Please contact your KOGANEI representative for assistance with specifying and ordering NPT-ported cylinders with custom rod ends.

Piston Rod End Shape Pattern Diagrams (22 Types)

MOUNTING SCREWS FOR JIG CYLINDERS

11 1111

Some types of mounting screws specifically for the Jig Cylinders are available.

Use the order codes below to place orders.

① Mounting screw type: JIS B 1176 Hexagon socket head cap screws ② Surface treatment: Nickel plated

List of Order Codes

Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws
	CRK124	M3×25	
	CRK125	M3×30	
6 [0.236]	CRK126	M3×35	2
8 [0.315]	CRK127	M3×40	
10 [0.394]	CRK128	M3×45	
12 [0.472]	CRK129	M3×50	
	CRK130	M3×30	
16 [0.630]	CRK131	M3×35	
20 [0.787]	CRK132	M3×40	4
	CRK133	M3×45	
	CRK134	M3×50	
	CRK135	M4×30	
	CRK136	M4×35	
	CRK137	M4×40	
25 [0.984]	CRK138	M4×45	_
	CRK139	M4×50	4
32 [1.260]	CRK140	M4×55	_
	CRK141 CRK142	M4×60	
	CRK142 CRK143	M4×65 M4×70	
	CRK143	M4×75	_
	CRK144	M5×35	
	CRK145 CRK146	M5×40	
	CRK147	M5×45	
	CRK148	M5×50	
	CRK149	M5×55	
	CRK150	M5×60	
	CRK151	M5×65	
40 [1.575]	CRK152	M5×70	4
	CRK153	M5×75	
	CRK154	M5×80	
	CRK155	M5×85	
	CRK156	M5×90	
	CRK157	M5×100	
	CRK158	M5×110	
	CRK159	M6×40	
	CRK160	M6×45	
	CRK161	M6×50	
	CRK162	M6×55	
	CRK163	M6×60	
	CRK164	M6×65	
	CRK165	M6×70	
50 [1.969]	CRK166	M6×75	4
63 [2.480]	CRK167	M6×80	
00 [2.400]	CRK168	M6×85	
	CRK169	M6×90	
	CRK170	M6×100	
	CRK171	M6×110	
	CRK172	M6×120	
	CRK173	M6×130	
	CRK174	M6×140	
	CRK175	M6×150	

Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws
	CRK176	M8×60	
	CRK177	M8×65	1
	CRK178	M8×70	1
	CRK179	M8×75	
	CRK180	M8×80	1
	CRK181	M8×85	1
	CRK182	M8×90	1
00 [0 4 [0]	CRK183	M8×95	1.
80 [3.150]	CRK184	M8×100	4
	CRK185	M8×110	1
	CRK186	M8×120	1
	CRK187	M8×130	1
	CRK188	M8×140	1
	CRK189	M8×150	1
	CRK190	M8×160	
	CRK191	M8×170	
	CRK192	M10×65	
	CRK193	M10×70	
	CRK194	M10×75	
	CRK195	M10×80	
	CRK196	M10×85	
	CRK197	M10×90	
	CRK198	M10×95	
100 [3.940]	CRK199	M10×100	4
	CRK200	M10×110	
	CRK201	M10×120	
	CRK202	M10×130	
	CRK203	M10×140	
	CRK204	M10×150	
	CRK205	M10×160	
	CRK206	M10×170	

Before selecting and using the product, please read all the Safety Precautions carefully to ensure proper product use.

The Safety Precautions shown below are to help you use the product safely and correctly, and to prevent injury or damage to you, other people, and assets beforehand.

Follow the Safety Precautions for: ISO4414 (Pneumatic fluid power—Recommendations for the application of equipment to transmission and control systems), JIS B 8370 (Pneumatic system regulations)

The directions are ranked according to degree of potential danger or damage:

"DANGER!", "WARNING!", "CAUTION!", and "ATTENTION!"

⚠ DANGER	Expresses situations that can be clearly predicted as dangerous. If the noted danger is not avoided, it could result in death or serious injury. It could also result in damage or destruction of assets.
⚠ WARNING	Expresses situations that, while not immediately dangerous, could become dangerous. If the noted danger is not avoided, it could result in death or serious injury. It could also result in damage or destruction of assets.
A CAUTION	Expresses situations that, while not immediately dangerous, could become dangerous. If the noted danger is not avoided, it could result in light or semi-serious injury. It could also result in damage or destruction of assets.
ATTENTION	While there is little chance of injury, this content refers to points that should be observed for appropriate use of the product.

- This product was designed and manufactured as parts for use in General Industrial Machinery.
- In the selection and handling of the equipment, the system designer or other person with fully adequate knowledge and experience should always read the Safety Precautions, Catalog, Owner's Manual and other literature before commencing operation. Making mistakes in handling is dangerous.
- After reading the Owner's Manual, Catalog, etc., always place them where they can be easily available for reference to users of this product.
- If transferring or lending the product to another person, always attach the Owner's Manual, Catalog, etc., to the product where they are easily visible, to ensure that the new user can use the product safely and properly.
- The danger, warning, and caution items listed under these "Safety Precautions" do not cover all possible cases. Read the Catalog and Owner's Manual carefully, and always keep safety first.

DANGER

- Do not use the product for the purposes listed below:
 - Medical equipment related to maintenance or management of human lives or bodies.
 - 2. Mechanical devices or equipment designed for the purpose of moving or transporting people.
 - 3. Critical safety components in mechanical devices.
 - This product has not been planned or designed for purposes that require advanced stages of safety. It could cause injury to human life.
- Do not use the product in locations with or near dangerous substances such as flammable or ignitable substances. This product is not explosion-proof. It could ignite or burst into flames.
- When mounting the product and workpiece, always firmly support and secure them in place. Dropping or falling the product or improper operation could result in injury.
- When mounting the Flat Rodless cylinder, always mount it with an end plate tightened with mounting bolts at 4 counterbore locations (left and right).
 - Failure to firmly secure the end plate could result in separation of the connection between the cylinder barrel and the end plate, leading to possible injury.
- Persons who use a pacemaker, etc., should keep a distance of at least 1 meter [3.28ft.] away from the product. There is a possibility that the pacemaker will malfunction due to the strong magnet built into the product.
- Never attempt to remodel the product. It could result in abnormal operation leading to injury, electric shock, fire, etc.
- Never attempt inappropriate disassembly, or assembly of the product relating to its basic inner construction, or to its performance or functions. It could result in injury, electric shock, fire, etc.
- Do not splash water on the product. Spraying it with water, washing it, or using it underwater could result in malfunction of the product leading to injury, electric shock, fire, etc.
- While the product is in operation, avoid touching it with your hands or otherwise approaching too close. In addition, do not make any adjustments to the interior or to the attached mechanisms (shock absorbers, stroke adjusting mechanism, sensor switch mounting location, disconnection of piping tubes or plugs, etc.). The actuator can move suddenly, possibly resulting in injury.
- When operating the product, always install speed controllers, and gradually loosen the needle valve from a choked state to adjust the speed increasing. Failure to make this adjustment could result in sudden movements, putting lives at risk.

- Do not apply loads exceeding the allowable buckling and bending strength to piston rod. It could reduce operating life or cause abnormal wearing or other damage to the rod and tube.
- Connect axial center of the piston rod and movement direction of load to surely bring them in line. If not, applying excessive force to the piston rod and tube could cause abnormal wearing or other damage to

WARNING

- Do not use the product in excess of its specification range. Such use could result in product breakdowns, function stop, damage, or drastically reduce the operating life.
- Before supplying air or electricity to the device and before starting operation, always conduct a safety check of the area of machine operation. Unintentional supply of air or electricity could possibly result in electric shock, or in injury caused by contact with moving parts.
- Do not touch the terminals and the miscellaneous switches, etc., while the device is powered on. There is a possibility of electric shock and abnormal operation.
- Do not throw the product into fire.
 - The product could explode and/or release toxic gases.
- Do not sit on the product, place your foot on it, or place other objects on it
 - Accidents such as falling could result in injury. Dropping or toppling the product may result in injury, or it might also damage or break it, resulting in abnormal or erratic operation, runaway, etc.
- When conducting any kind of operation for the product, such as maintenance, inspection, repair, or replacement, always turn off the air supply completely and confirm that residual pressure inside the product or in piping connected to the product is zero before proceeding. In particular, be aware that residual air will still be in the air compressor or air storage tank. The actuator could abruptly move if residual air pressure remains inside the piping, causing injury.
- Do not use the actuator for equipment whose purpose is absorbing the shocks and vibrations of mechanical devices. It could break and possibly result in injury or in damage to mechanical devices.
- Avoid scratching the cords for the sensor switch lead wires, etc.
 Letting the cords be subject to scratching, excessive bending, pulling, rolling up, or being placed under heavy objects or squeezed between 2 objects, may result in current leaks or defective continuity that lead to fire, electric shock, or abnormal operation.
- For the cylinder rod bushing, when the bore size is 16mm [0.630in.] or less, avoid applying a lateral load with a cylinder thrust force of 1/40 or

- more generated by the nominal pressure, or when the bore size is 20mm [0.787in.] or more, avoid applying a lateral load with a cylinder thrust force of 1/20 or more. Such loads could reduce operating life or cause galling or other damage to the rod and tube.
- Do not subject the sensor switch to an external magnetic field during actuator operation. Unintended movements could result in damage to the equipment or in personal injury.
- Use within the recommended load and specified speed. Use exceeding the recommended load and specified speed could cause unintended movement of the rod and plate, and increase the possibility of damage to equipment or of personal injury.
- Use safety circuits or system designs to prevent damage to machinery or injury to personnel when the machine is shut down due to emergency stop or electrical power failure.
- Use under the conditions described below is subject to regulation under the Japanese High Pressure Gas Safety Law. Violation of this law can result in penalties to individuals or the corporation. Before use, perform procedures mandated by the supervising authorities.
 - Pressurized gases at gauge pressures of 1MPa [145psi.] or more are used at room temperature. (Acetylene gas and liquefied gas are subject to even stricter standards.)
 - 2. Compressed air at gauge pressures of 5MPa [725psi.] or more are used. For details, see the Japanese High Pressure Gas Safety Law.
- Install relief valves, etc., to ensure that the actuator does not exceed its specified pressure when such pressure is rising due to external forces on the actuator. Excessive pressure could lead to breakdown and damage.
- In initial operations after the equipment has been idle for 48 hours or more, or has been in storage, there is a possibility that contacting parts may stick, resulting in equipment operation delays or sudden movements. For these initial operations, always run a test operation before use to check that operating performance is normal.

A CAUTION

- Always wash your hands thoroughly after coming into contact with the grease used in the Low Speed Cylinders. If you light a cigarette with greasy hands, grease adhering to the cigarette could release toxic gases along with the cigarette smoke.
- Do not apply lubrication to the Low Speed Cylinders. Supplying oil could result in erratic operation.
- Do not use the product in locations that are subject to direct sunlight (ultraviolet rays), dust, salt, iron powder, high humidity, or in the ambient atmospheres that include organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, acids, etc. It could lead to an early shutdown of some functions or a sudden degradation of performance, and result in a reduced operating life. For the materials used, see Major Parts and Materials.
- When installing the product, leave room for adequate working space around it. Failure to ensure adequate working space will make it more difficult to conduct daily inspections or maintenance, which could eventually lead to system shutdown or damage to the product.
- For mounting or transport of heavy products, use a lift, supporting tool, or several people, to provide firm support, and proceed with due caution to ensure personal safety.
- Do not bring floppy disks or magnetic media, etc., within 1 meter [3.28ft.] of the product. There is the possibility that the data on the floppy disks will be destroyed due to the magnetism of the magnet.
- Do not use the sensor switch in locations subject to large electrical currents or strong magnetic fields. It could result in erratic operation. In addition, do not use magnetized materials in the mounting bracket. The magnetism could leak, possibly resulting in erratic operation.
- Do not place too closely to magnets. Placing near magnets or in locations subject to large magnetic fields can magnetize the main body or table, resulting in erratic operation of sensor switches or in other operating problems caused by metal powders sticking to parts.
- Never use other companies' sensor switches with these products. It could possibly cause erratic operation or out of control.
- Do not scratch, dent, or deform the actuator by climbing on the product, using it as a scaffold, or placing objects on top of it. It could result in damaged or broken a product that results in operation shutdown or degraded performance.
- Always post an "operations in progress" sign for installations, adjustments, or other operations, to avoid unintentional supplying of air, electrical power, etc. Such accidental supplies may cause electric shock or sudden activation of the product that could result in physical injury.

Do not pull on the cords of the lead wires, etc., of the sensor switches
mounted on the actuators, grab them when lifting or carrying, or place
heavy objects or excessive loads on them. Such action could result in
current leaks or defective continuity that lead to fire, electric shock, or
abnormal operation.

ATTENTION

- When considering the possibility of using this product in situations or environments not specifically noted in the Catalog or Owner's Manual, or in applications where safety is an important requirement such as in an airplane facility, combustion equipment, leisure equipment, safety equipment, and other places where human life or assets may be greatly affected, take adequate safety precautions such as an application with enough margins for ratings and performance or failsafe measure.
 - Be sure to consult us about such applications.
- Always check the catalog and other reference materials for product wiring and plumbing setup.
- Use a protective cover, etc., to ensure that human bodies do not come into direct contact with the operating portion of mechanical devices, etc.
- Do not control in a way that would cause workpieces to fall during power failure. Take control measures so that they prevent the table or workpieces, etc., from falling during power failure or emergency stop of the mechanical devices.
- When handling the product, wear protective gloves, safety glasses, safety shoes, etc., to keep safety.
- When the product can no longer be used, or is no longer necessary, dispose of it appropriately as industrial waste.
- Pneumatic equipment can exhibit degraded performance and function over its operating life. Always conduct daily inspections of the pneumatic equipment, and confirm that all requisite system functions are satisfied, to prevent accidents from happening.
- For inquiries about the product, contact your nearest Koganei sales office
 or Koganei overseas department. The address and telephone number is
 shown on the back cover of this catalog.

! OTHERS

- Always observe the following items.
 - When using this product in pneumatic systems, always use genuine KOGANEI parts or compatible parts (recommended parts).
 When conducting maintenance and repairs, always use genuine KOGANEI parts or compatible parts (recommended parts). Always observe the required methods.
 - Do not attempt inappropriate disassembly or assembly of the product relating to basic configurations, or its performance or functions.

Koganei cannot be responsible if these items are not properly observed.

Design and selection

1. Check the specifications.

As use of this component over the specified ranges of voltage, current, temperature, shock, etc., could result in breakdown or abnormal operation, always read the specifications carefully to ensure correct use.

2. Avoid mounting actuators in close proximity.

Mounting 2 or more actuators with sensor switches in close proximity could result in erratic operation of the sensor switches, due to magnetic field interference with the system. Follow the instructions of each cylinder series when written in the catalog.

3. Caution about sensor switch ON time for positioning detection at intermediate stroke position.

Take caution that if the sensor switch is mounted at an intermediate position of the actuator stroke for detection of the piston travel, the sensor switch actuation time may be too short when the actuator speed is very rapid, so that the load (programmable controller, etc.) may fail to activate.

Maximum cylinder speed for positioning detection

V (mm/s) [in./sec.] =
$$\frac{\text{Sensor switch actuation range (mm) [in.]}}{\text{Time required for activating load (ms)}} \times 1000$$

4. Keep wiring as short as possible.

The solid state sensor switch lead wire length should be within 30m [98ft.] as stipulated in the EN standards. For the reed sensor switch, if the lead wire is long (10m [33ft.] or more), capacitive surges will shorten the operating life of the sensor switch. If long wiring is needed, install the protection circuit mentioned in the catalog. If the load is inductive or capacitive, also install the protection circuit mentioned in the catalog.

Avoid repeated or excessive bending or pulling of lead wires.

Applying repeated bending stress or tension force on the lead wire could result in wire breakage.

6. Check for leakage current.

Two-lead wire solid state sensor switches produce leakage current to activate their internal circuits, and the current flows even when in the turned off condition. Check to ensure they satisfy the following inequality.

Input off current of programmable controller > Leakage current If the above inequality cannot be satisfied, select a 3-lead wire solid state sensor switch, instead. Also note that parallel connection of a total of n sensor switches will multiply the amount of leakage current by n times.

⚠ Caution

1. Check for sensor switch internal voltage drop.

Series connection of reed sensor switches with indicator lamps or 2-lead wire solid state sensor switches causes increasing internal voltage drop, and the load may fail to activate. A total of n sensor switches will lead to n times the internal voltage drop. Ensure that the system satisfies the following inequality.

Supply voltage – Internal voltage drop \times n > Minimum operating voltage for load

In relays with rated voltage of less than 24VDC, check to see whether the above inequality is satisfied, even in the case of n = 1. If the above inequality cannot be satisfied, select a reed sensor switch without indicator lamp.

2.Do not use our sensor switches with other companies' actuators.

The sensor switches are designed for use with Koganei actuators. Use with other companies' actuators could lead to abnormal operation.

Installation and adjustment

/\ Warning

1.Do not subject the sensor switch to an external magnetic field during actuator operation.

Unintended movements could result in damage to the equipment or in personal injury.

1. Ensure a safe installation environment for the actuators with sensor switches.

Do not use sensor switches in places where large current or magnetic fields are present. This could lead to unintentional operation. Do not use magnetic material for the mounting brackets. It could result in erratic operation.

2.Install sensor switches in the center of their operating range.

Adjust the mounting position of a sensor switch so that the piston stops in the center of its operating range (the range while the sensor turns ON). Operations can be unstable if mounted at the end of the operating range (at the boundary near ON and OFF). Also be aware that the operating range can vary with changes in temperature.

3. Follow the tightening torque of sensor switches when mounting.

Over-tightening beyond the allowed tightening torque may damage the mounting screws, mounting brackets, sensor switches, etc. In addition, insufficient tightening torque could cause the sensor switch position to be changed, resulting in operation instability.

For the tightening torque, follow the instructions of each cylinder series.

4.Do not carry the actuator grabbing its sensor switch lead wires.

After mounting a sensor switch to an actuator, do not grab and lift the lead wires to carry the actuator. Never do this, as it could result in lead wire disconnections, and could also apply stress to the interior of the sensor switch, resulting in breakage of internal elements.

5. Do not drop switches, or bump them against others.

During handling of switches, do not apply excessive shocks (294.2m/s² [30G] or more) such as hitting, dropping, or bumping. In reed sensor switches, the contact reed can be activated unintentionally, causing it to send or break sudden signals. It can also cause changes in the contact interval that lead to changes in sensor switch sensitivity and result in erratic operation. Even if the sensor switch case is undamaged, the inner parts of the sensor switch may suffer breakdown or cause erratic operation.

1. Avoid letting moving objects near sensor switches come into contact with them.

When actuators with sensor switches are moving, or when moving objects are nearby, do not let the moving objects come into contact. In particular, lead wires could become worn out or damaged, causing operational instability in the sensor switch. In the worst case, it could result in current leaks or electrical shock.

2. Always turn off the power supply for wiring work.

Conducting wiring work while the power is on could result in electric shock. Also, incorrect wiring could damage sensor switches in an instant. Turn on the power only after wiring work is completed.

1. Check the Catalog, etc., to ensure that the sensor switch wiring is correctly connected.

Miswiring could result in abnormal operation.

Do not share the same wiring with power or high voltage lines.

Avoid wiring in parallel to or shared with power or high voltage lines. The sensor switch or control circuit may suffer electric noise that results in erratic operation.

3. Avoid repeated or excessive bending or pulling on lead wires.

Applying repeated bending stress or tension force on the lead wire could result in wire breakage.

4. Check polarity in the wiring.

In sensor switches that specify polarity (+, -, output), be sure that wiring connections are correct. The wrong polarity could result in damage to the sensor switch.

⚠ Caution

1. Avoid short circuiting the loads.

Turning a sensor switch on while the load is short-circuited causes overcurrent, which will damage the sensor switch in an instant.

Example of short-circuited load: Sensor switch's output lead wire is directly connected to the power supply.

KOGANEI

ACTUATORS GENERAL CATALOG

CYLINDER JOINTS CYLINDER ROD ENDS

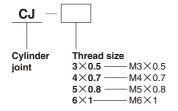
CONTENTS

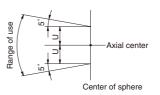
Cylinder Joints	
Specifications, Order Codes —	1569
Inner Construction, Major Parts and Materials ———	1570
Dimensions —	 1571
Cylinder Rod Ends	
Specifications, Order Codes	1573
Dimensions —	1574

CYLINDER JOINTS

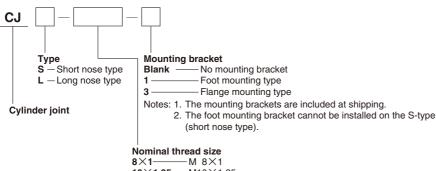
- Aligning the axial center and correcting the parallelism can be performed easily.
- •High machining accuracy for aligning the axial center is not required.
- Time taken for installation can be greatly reduced.
- The overall shape is simple and small, allowing simple handling.
- A dust seal is provided preventing any breakdown due to foreign objects or dust.

Specifications

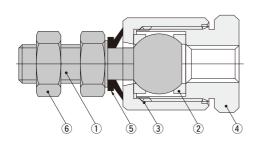

			A	Applicable c	ylinder an	d bore s	size		Maximum thrust of	Maximum tensile	Allowable	
Model	Applicable cylinder rod thread size		Multi	Jig C (male thread specification :- B)	Slim	Twinport	DYNA	JC	applicable cylinder at 1MPa[145psi.] N [lbf.]	strength load N [lbf.]	eccentricity U mm[in.]	Swivel angle
CJ-3×0.5	M3×0.5	6	6	_	_	_	_	_	19.6 [4.4]	3334.3[750]	0.5[0.020]	
CJ-4×0.7	M4×0.7	10	10	_	_	_	_	_	58.8 [13.2]	3334.3 [750]	0.5[0.020]	
CJ-5×0.8	M5×0.8	16	16	12	_	_	_	_	137.3 [30.9]	5884 [1323]	0.5[0.020]	
CJ-6×1	M6×1	-	-	16	16	16	_	_	176.5 [39.7]	5884 [1323]	0.5[0.020]	
CJ □-8×1-□	M8×1	_	_	20	20, 25*	20, 25	_	20	305 [68.6] (475.6 [106.9])*	20594 [4631]	0.5[0.020]	
CJ□-10×1.25-□	M10×1.25	_	_	25	25, 32	25, 32	32	25	780.6 [175.5]	31381.3 [11025]	0.75[0.0295]	±5°
CJ□-12×1.25-□	M12×1.25	-	-	_	_	_	_	_	686.5 [154.3]	449033.3 [11025]	1[0.039]	5
CJ□-14×1.5-□	M14×1.5	-	-	32, 40	40, 50, 63	40	40	32, 40	3026.3 [680.3]	449033.3 [11025]	1[0.039]	
CJ□-18×1.5-□	M18×1.5	_	_	E0 60			50	F0.00	1906.4 [428.6]	60760 6 [14110]	1 05[0 0400]	
CJ10 \ 1.5	W116 \ 1.5	—	-	50, 63	_	_	63	50,63	3026.3 [680.3]	62762.6 [14112] 1.25[1.25[0.0492]	
CJ□-22×1.5-□	M22×1.5	_	_	80	_	_	80	80	4879.7 [1097]	112776.5 [25352]	2[0.079]	
CJ □-26×1.5-□	M26×1.5	_	_	100	_	_	100	100	7624.7 [1714]	122583.1 [27557]	2.5[0.098]	


^{*:} For square rod cylinders.

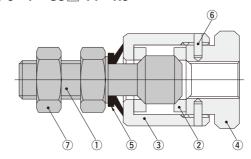
Order Codes


Allowable Eccentricity and Swivel Angle

● For CJ-3×0.5, CJ-4×0.7, CJ-5×0.8, CJ-6×1



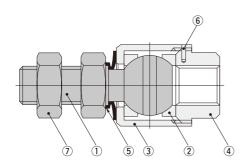
● For CJ \square -8×1~CJ \square -26×1.5


8×1 — M 8×1 10×1.25 — M10×1.25 12×1.25 — M12×1.25 14×1.5 — M14×1.5 18×1.5 — M18×1.5 22×1.5 — M22×1.5 26×1.5 — M26×1.5

● CJ-3 ×0.5, CJ-4 ×0.7, CJ-5 ×0.8

No.	Parts	Materials	Remarks	
1	Stud	Steel	Nickel plated	
2	Ring	Steel	_	
3	Case	Brass	Niekal plated	
4	Socket	Brass	Nickel plated	
(5)	Dust seal	Synthetic rubber	NBR	
6	Nut	Mild steel	Zinc plated	

\bullet CJ-6×1~CJ \square -14×1.5

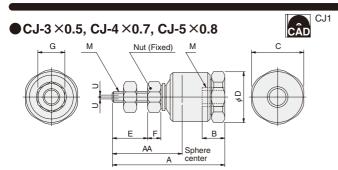


The diagram shows CJ \square -8 \times 1 \sim 14 \times 1.5.

	No.	Parts	Materials	Remarks
Ī	1	Stud	Steel	Nickel plated
Ī	2	Ring	Special steel	_
	3	Case	Steel (Brass)	Niekel pleted
_	4	Socket	Steel (Brass)	Nickel plated
Ī	(5)	Dust seal	Synthetic rubber	NBR
_	6	Pin	Special steel	It is not available in CJ-6×1.
	7	Nut	Mild steel	Zinc plated

Note: Inside the parentheses, "($\,\,$)" is for CJ-6 \times 1.

\bigcirc CJ \square -18 \times 1.5 \sim CJ \square -26 \times 1.5

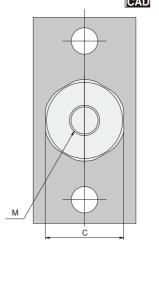

No.	Parts	Materials	Remarks
1	Stud	Steel	Nickel plated
2	Ring	Special steel	_
3	Case	Steel	Nickel plated
4	Socket	Steel	Nickel plated
(5)	Dust seal	Synthetic rubber	NBR
6	Pin	Special steel	_
7	Nut	Mild steel	Zinc plated

Mass

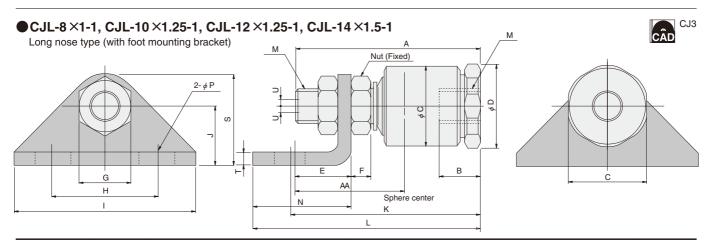
				kg [oz.]
Size	3×0.5	4×0.7	5×0.8	6×1
Cylinder joint alone	0.011 [0.39]	0.012 [0.42]	0.023 [0.81]	0.025 [0.88]

kg [lb.]

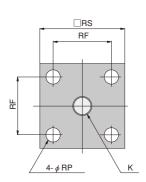
Size			Short	nose type	(CJS)					Long r	nose type	(CJL)		
Item	8×1	10×1.25	12×1.25	14×1.5	18×1.5	22×1.5	26×1.5	8×1	10×1.25	12×1.25	14×1.5	18×1.5	22×1.5	26×1.5
Cylinder joint alone	0.05 [0.11]	0.10 [0.22]	0.20 [0.44]	0.21 [0.46]	0.36 [0.79]	0.67 [1.48]	1.27 [2.80]	0.055 [0.121]	0.105 [0.232]	0.213 [0.470]	0.24 [0.53]	0.41 [0.90]	0.75 [1.65]	1.18 [2.60]
With foot mounting bracket	_	_	_	_	_	_	_	0.09 [0.20]	0.17 [0.37]	0.36 [0.79]	0.39 [0.86]	1.00 [2.21]	1.69 [3.73]	2.32 [5.12]
With flange mounting bracket	0.10 [0.22]	0.21 [0.46]	0.26 [0.57]	0.47 [1.04]	0.95 [2.09]	1.93 [4.26]	2.52 [5.56]	0.090 [0.198]	0.165 [0.364]	0.272 [0.600]	0.49 [1.08]	0.95 [2.09]	1.96 [4.32]	2.57 [5.67]

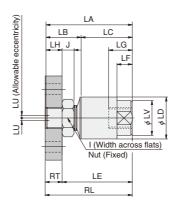

Model	ı	Л	Α	В	С	D	Е	_	G	AA	Allowable eccentricity
Model	Nominal size	Pitch	A	В		ט	_	г	G	AA	U
CJ-3×0.5	3	0.5	23	5	12	13	7	2.4	5.5	15.6	0.5
CJ-4×0.7	4	0.7	25.5	5	12	13	8.8	3.2	7	18.1	0.5
CJ-5×0.8	5	0.8	33	7	14	15	10.5	4	8	22.4	0.5

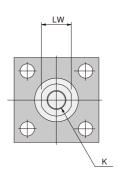
CAD Nut (Fixed) M6×1 Nut (Fixed) M6×1 14 14 25.5 Sphere center


$\bullet \texttt{CJS-8} \times \texttt{1-3,CJS-10} \times \texttt{1.25-3,CJS-12} \times \texttt{1.25-3,CJS-14} \times \texttt{1.5-3}$

Short nose type (with flange mounting bracket)

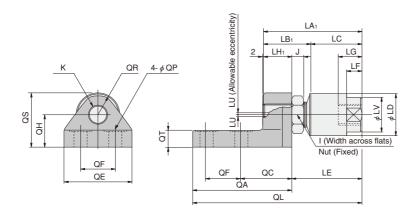


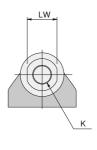

Model	N	//			Short i	nose typ	e body				W	ith flange	e mounti	ing brack	cet		Allowable eccentricity
Model	Nominal size	Pitch	Α	В	С	D	Е	F	G	AA	Н	I	J	L	Р	Т	U
CJS-8×1	8	1	38	10	19	20	4	5	12	22.5	40	52	25	40	7	6	0.5
CJS-10×1.25	10	1.25	48	12	24	25.5	7	6	14	29.5	44	56	32	50	7	9	0.75
CJS-12×1.25	12	1.25	59.5	16	30	32	7	7	17	34.5	44	56	32	61.5	7	9	1.0
CJS-14×1.5	14	1.5	63.5	16	30	32	10	8	19	38.5	60	80	38	65.5	11	12	1.0



Model	I.	/			Long n	ose typ	e body	/					With fo	ot mou	unting b	oracket				Allowable eccentricity
Wodei	Nominal size	Pitch	Α	В	С	D	E	F	G	AA	Н	ı	J	K	L	N	Р	S	Т	U
CJL-8×1	8	1	47	10	19	20	13	5	12	30.5	26	44	15	48	59	25	9	23	3.2	0.5
CJL-10×1.25	10	1.25	57	12	24	25.5	16	6	14	37.5	26	44	19	59	71	30	9	29	5	0.75
CJL-12×1.25	12	1.25	70.5	16	30	32	18	7	17	44.5	26	44	19	70.5	82.5	30	9	29	5	1.0
CJL-14×1.5	14	1.5	72.5	16	30	32	19	8	19	46.5	36	64	22	83.5	98.5	45	11	34	6	1.5

Short nose type (with flange mounting bracket)





Model						Short	t nose t	ype boo	ly						Wit	h flange	mount	ing brad	cket
Model	_	J	K	LA	LB	LC	LD	LE	LF	LG	LH	LU	LV	LW	RF	RL	RP	RS	RT
CJS-18×1.5	27	11	M18×1.5	77	31	46	38	64	14	21	13	1.25	29	27	50	79	11	75	15
CJS-22×1.5	32	13	M22×1.5	93	38	55	49	77	16	25	16	2	34	32	62	95	14	100	18
CJS-26×1.5	36	14	M26×1.5	109	44	65	57	90	21	30	19	2.5	44	41	70	111	14	100	21

● CJL-18×1.5-1, CJL-22×1.5-1, CJL-26×1.5-1

Long nose type (with foot mounting bracket)

Model					Lo	ong no	se ty	oe boo	dy								W	ith fo	ot mou	unting	brack	et		
Model	_	J	K	LA ₁	LB ₁	LC	LD	LE	LF	LG	LH₁	LU	LV	LW	QA	QC	QE	QF	QH	QL	QP	QR	QS	QT
CJL-18×1.5	27	11	M18×1.5	88	42	46	38	64	14	21	24	1.25	29	27	89	45	60	32	28	153	11	16	47	14
CJL-22×1.5	32	13	M22×1.5	105	50	55	49	77	16	25	28	2	34	32	99	49	68	36	35	176	14	19	59.5	18
CJL-26×1.5	36	14	M26×1.5	122	57	65	57	90	21	30	32	2.5	44	41	103	53	68	36	42	193	14	21	70.5	21

Handling Instructions and Precautions

- The cylinder joint is for air cylinders. Consult us for any use other than for the air cylinder.
- The cylinder joint stud can rotate, but primarily the cylinder joint is not designed as a rotary joint, so it should not be used as a rotary joint.
- It cannot be used again after disassembled.

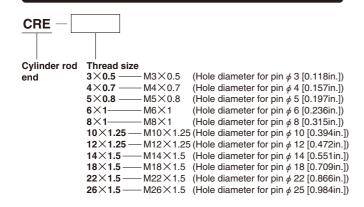
- The lubricant has been filled in the body.
- The threaded depth in the cylinder rod socket should be within the value shown in the catalog. As a guide, it should be in a position about 1 or 2 rotations back from where it reaches the bottom.
- Be sure not to let any foreign objects or dust enter inside through the socket female thread before installation.

CYLINDER ROD ENDS

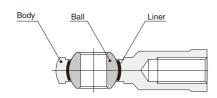
Thread size $M3 \times 0.5 \sim M26 \times 1.5$

A flexible motion ensures cylinder functions!

- Eleven types are available by thread size. Suitable for ϕ 6 [0.236in.] $\sim \phi$ 100 [3.940in.] bore cylinders.
- Because it uses a fluoro plastic liner, no lubrication is required and it is maintenance free.



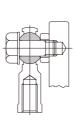
Specifications

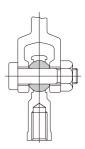

Item				Applicable	cylinder and	bore size			The max. cylinder	Allowable radial	
Model	Thread size	Pen	Multi mount	Jig C (male thread specification :- B)	Slim	Twinport	DYNA	JC	thrust of applicable cylinder at 0.97Mpa N [lbf.]	static load N [lbf.]	Mass g [oz.]
CRE-3×0.5	M3×0.5	6	6	_	_	_	_	_	27.5 [6.2]	1863.3 [419]	10 [0.35]
CRE-4×0.7	M4×0.7	10	10	_	_	_	_	-	76.5 [17.2]	3334.3 [750]	12 [0.42]
CRE-5×0.8	M5×0.8	16	16	12	_	_	_	_	195.2 [43.9]	5785.9 [1301]	18 [0.63]
CRE-6×1	M6×1	_	_	16	16 ^{Note 1}	16	_	_	305.0 [68.6]	7355.0 [1654]	26 [0.92]
CRE-8×1	M8×1	_	_	20	20, 25 Note 2	20	_	20	475.6 [106.9]	14121.6 [3175]	45 [1.59]
CRE-10×1.25	M10×1.25	_	_	25	20, 25, 32	25, 32	32	25	780.6 [175.5]	19711.4 [4432]	75 [2.65]
CRE-12×1.25	M12×1.25	_	_	_	_	_	_	_	780.6 [175.5]	23437.9 [5270]	115 [4.06]
CRE-14×1.5	M14×1.5	_	_	32, 40	40, 50, 63	40	40	32, 40	3026.3 [680.3]	25497.3 [5733]	147 [5.19]
CRE-18×1.5	M18×1.5	_	_	50, 63	_	_	50, 63	50, 63	3026.3 [680.3]	31283.2 [7034]	268 [9.45]
CRE-22×1.5	M22×1.5	_	_	80	_	_	80	80	4879.8 [1097]	48641.0 [10934]	452 [15.94]
CRE-26×1.5	M26×1.5	_	_	100	_	_	100	100	7623.7 [1714]	50504.2 [11353]	648 [22.86]

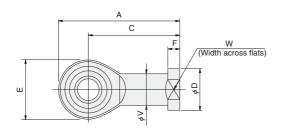
Notes: 1. For the square rod cylinders. 2. Only for the block cylinders.

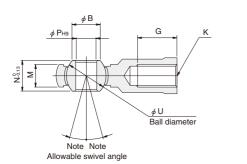
Order Codes

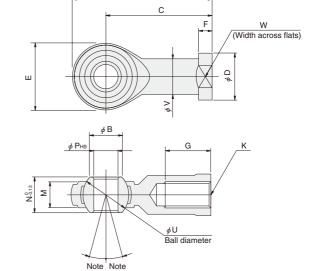
Inner Construction, Major Parts and Materials




Parts	Materials
Body	Carbon steel (zinc plated)
Ball	Bearing steel (chrome plated)
Liner	Fluoro plastic

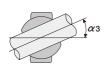

Mounting Examples





Allowable swivel angle

Note: The allowable swivel angle varies depending on the mating shaft. For details, see the table in Handling Instructions and Precautions.


Model Code	Α	В	С	D	Е	F	G	K	M	N	Р	U	V	W
CRE-3×0.5	27	5.1	20	8	14	3	6	M3×0.5	4.5	6	3	7.938	6.5	7
CRE-4×0.7	32	7.4	24	10	16	3.5	8	M4×0.7	5.2	7	4	9.525	8	8
CRE-5×0.8	35	7.7	27	11	16	4	10	M5×0.8	6	8	5	11.112	9	9
CRE-6×1	39	9	30	13	18	5	12	M6×1	6.7	9	6	12.700	10	11
CRE-8×1	47	10.4	36	16	22	5	16	M8×1	9	12	8	15.875	12.5	14
CRE-10×1.25	56	12.9	43	19	26	6.5	20	M10×1.25	10.5	14	10	19.050	15	17
CRE-12×1.25	65	15.4	50	22	30	6.5	22	M12×1.25	12	16	12	22.225	17.5	19
CRE-14×1.5	74	16.8	57	25	34	8	27	M14×1.5	14	19	14	25.400	20	22
CRE-18×1.5	92	21.8	71	31	42	10	36	M18×1.5	16.5	23	18	31.750	25	27
CRE-22×1.5	109	25.8	84	37	50	12	43	M22×1.5	20	28	22	38.100	30	32
CRE-26×1.5	122	29.6	94	42	56	12	48	M26×1.5	22	31	25	42.863	33.5	36

Handling Instructions and Precautions

- The cylinder rod end is for the air cylinder only. Consult us for any use other than for the air cylinder.
- It cannot be disassembled.
- Because it uses a fluoro plastic liner, no lubrication is required and it is maintenance free.
- The ball rotates in any direction, but do not use the cylinder rod end exceeding allowable swivel angle. Moreover, the allowable swivel angle varies depending on the mating shaft. See the table below.

Allowable swivel angle

Model	α1	α2	α3
CRE-3×0.5	6°	20°	35°
CRE-4×0.7	6°	20°	35°
CRE-5×0.8	8°	13°	30°
CRE-6×1	8°	13°	30°
CRE-8×1	9°	13°	25°
CRE-10×1.25	9°	13°	25°
CRE-12×1.25	9°	13°	25°
CRE-14×1.5	10°	14°	24°
CRE-18×1.5	10°	14°	24°
CRE-22×1.5	10°	15°	23°
CRE-26×1.5	10°	15°	23°