

KOGANEI ACTUATORS GENERAL CATALOG

JIG CYLINDERS C SERIES

JIG CYLINDERS C SERIES STROKE-ADJUSTING CYLINDERS

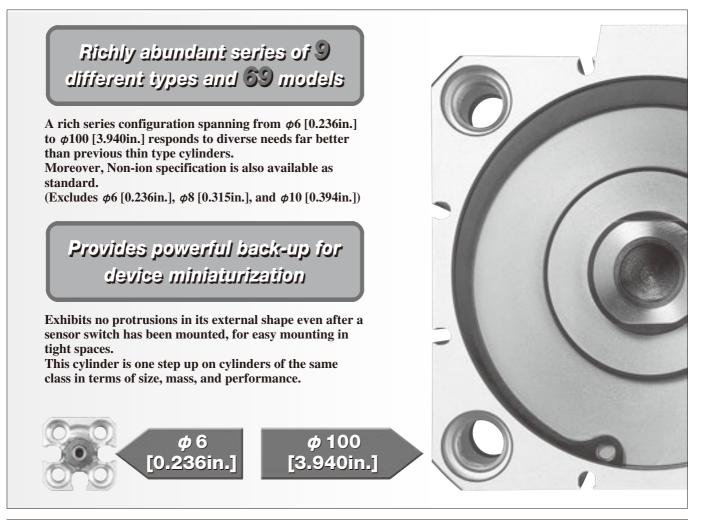
JIG CYLINDERS C SERIES LOW-FRICTION CYLINDERS

KOGANEI

CAD drawing data catalog is available.

ACTUATORS GENERAL CATALOG

JIG CYLINDERS C SERIES CONTENTS


133 135	Dual Stroke Cylinders Double Acting Single Acting Push Type, and	g Type,
	Single Acting Pull Type	
e,	Specifications — Order Codes — — — — — — — — — — — — — — — — — — —	—170
	Order Codes	—171
	Inner Construction and	
137	Major Parts	—172
138	Dimensions	— 174
139	Lateral Load Resistant Cylinders	
141	Double Acting Type	
	Specifications	—180
ре	Order Codes	—181
145	Inner Construction and	
146	Major Parts ———— Dimensions ————	—182
	Dimensions	—183
147		
148	Long Stroke Cylinders Double Actin	д Туре
	Specifications ————————————————————————————————————	— 185
/pe	Order Codes	—186
149	Inner Construction and	
150	Major Parts ————————————————————————————————————	— 187
	Dimensions	—188
151		
152	End Keep Cylinders Double Acting	Туре
	Specifications ———	— 190
	Order Codes	— 191
	Inner Construction and	
	Major Parts	
154	Dimensions	— 194
155		
	Mounting Brackets	— 197
156	Sensor Switches	— 199
158	Handling Instructions and	
	Precautions	-205
)	Ontional Bod End	
	Shape Patterns —	-208
161	Mounting Screws for Jig Cylinders	-209
162		

Series Introduction Cylinder Thrust Standard Cylinders Double Acting Typ Single Acting Push Type, and Single Acting Pull Type Specifications Order Codes Inner Construction and Major Parts -**Dimensions** -Non-rotating Cylinders Double Acting Ty Specifications -Order Codes Inner Construction and Major Parts -**Dimensions** -Square Rod Cylinders Double Acting Ty **Specifications Order Codes** Inner Construction and Major Parts Dimensions **Double Rod Cylinders** Double Acting Type and Single Acting Type Specifications -Order Codes -Inner Construction and Major Parts -**Dimensions** ndem Cylinders Double Acting Typ

randem Oyinders Double Acting 1	ypc
and Single Acting Push Type	
Specifications ———	—161
Order Codes ———	— 162
Inner Construction and	
Major Parts ————	— 163
Dimensions ———	— 165

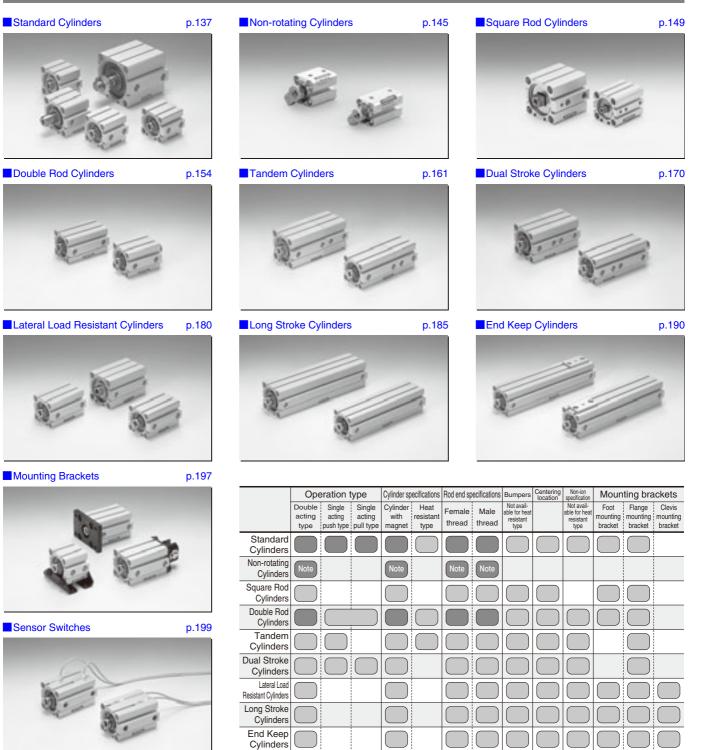
Square body demonstrates powerful downsizing capacity.

JIG CYLINDERS C SERIES

New Line-Up Includes ϕ 6 [0.236in.], ϕ 8 [0.315in.], and ϕ 10 [0.394in.]


For a greater selection in response to needs for miniaturization, 3 new bore sizes at ϕ 6, ϕ 8, and ϕ 10 have been added, increasing the range of sizes to choose from.

Standard Cylinders *ф*6 [0.236in.]~*ф*100 [3.940in.]



Non-rotating Cylinders *φ*6 [0.236in.]~*φ*10 [0.394in.]

Double Rod Cylinders *ф*6 [0.236in.]∼*φ*100 [3.940in.]

The Jig Cylinders C Series Includes the 9 Types Shown Below.

The colored areas include bore sizes of ϕ 6, ϕ 8, and ϕ 10. Note: Non-rotating cylinders are set at bore sizes ϕ 6, ϕ 8, and ϕ 10 only.

Cylinder Thrust

Select a suitable bore size considering the load and air pressure to obtain the required thrust. Since the figures in the table are calculated values, select a bore size that results in a load ratio (load ratio = $\frac{\text{Load}}{\text{Calculated value}}$) of 70% or less (50% or less for high speed) or less (50% or less for high speed).

Double acting type

Doub	le acting	g type		F	Push		Pull						N [lbf.]
Bore size	Piston rod diameter	Operation	Pressure area					Air pressure	MPa [psi]			
mm [in.]	mm [in.]	Operation	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
6 [0 006]	4 [0 157]	Push side	28.3 [0.0439]	2.8 [0.63]	5.7 [1.28]	8.5 [1.91]	11.3 [2.54]	14.1 [3.17]	17.0 [3.82]	19.8 [4.45]	22.6 [5.08]	25.4 [5.71]	-
6 [0.236]	4 [0.157]	Pull side	15.7 [0.0243]	1.6 [0.36]	3.1 [0.7]	4.7 [1.06]	6.3 [1.42]	7.9 [1.78]	9.4 [2.11]	11.0 [2.47]	12.6 [2.83]	14.1 [3.17]	-
0 [0 215]	5 [0.197]	Push side	50.3 [0.0780]	5.0 [1.12]	10.1 [2.27]	15.1 [3.39]	20.1 [4.52]	25.1 [5.64]	30.2 [6.79]	35.2 [7.91]	40.2 [9.04]	45.2 [10.2]	-
8 [0.315]	5[0.197]	Pull side	30.6 [0.0474]	3.1 [0.70]	6.1 [1.37]	9.2 [2.07]	12.3 [2.77]	15.3 [3.44]	18.4 [4.14]	21.4 [4.81]	24.5 [5.51]	27.6 [6.20]	-
10 [0.394]	E [0 107]	Push side	78.5 [0.1217]	7.9 [1.78]	15.7 [3.53]	23.6 [5.31]	31.4 [7.06]	39.3 [8.83]	47.1 [10.6]	55.0 [12.4]	62.8 [14.1]	70.7 [15.9]	-
10 [0.394]	5 [0.197]	Pull side	58.9 [0.0913]	5.9 [1.33]	11.8 [2.65]	17.7 [3.98]	23.6 [5.31]	29.5 [6.63]	35.3 [7.94]	41.2 [9.26]	47.1 [10.6]	53.0 [11.9]	-
10 [0 470]	6 [0.236]	Push side	113.0 [0.175]	11.3 [2.54]	22.6 [5.08]	33.9 [7.62]	45.2 [10.2]	56.5 [12.7]	67.8 [15.2]	79.1 [17.8]	90.4 [20.3]	101.7 [22.86]	113.0 [25.40]
12 [0.472]	0 [0.230]	Pull side	84.8 [0.131]	8.5 [1.91]	17.0 [3.82]	25.4 [5.71]	33.9 [7.62]	42.4 [9.53]	50.9 [11.4]	59.3 [13.3]	67.8 [15.2]	76.3 [17.2]	84.8 [19.1]
16 [0.630]	8 [0.315]	Push side	201.0 [0.312]	20.1 [4.52]	40.2 [9.04]	60.3 [13.6]	80.4 [18.1]	100.5 [22.59]	120.6 [27.11]	140.7 [31.63]	160.8 [36.15]	180.9 [40.67]	201.0 [45.18]
10 [0.030]	0 [0.315]	Pull side	150.0 [0.233]	15.1 [3.39]	30.1 [6.77]	45.2 [10.2]	60.3 [13.6]	75.4 [16.9]	90.4 [20.3]	105.5 [23.72]	120.6 [27.11]	135.6 [30.48]	150.7 [33.88]
20 [0.787]	10 [0.394]	Push side	314.0 [0.487]	31.4 [7.06]	62.8 [14.1]	94.2 [21.2]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]
20 [0.707]	10 [0.394]	Pull side	235.5 [0.365]	23.6 [5.31]	47.1 [10.6]	70.7 [15.9]	94.2 [21.2]	117.8 [26.48]	141.3 [31.76]	164.9 [37.07]	188.4 [42.35]	212.0 [47.66]	235.5 [52.94]
25 [0.984]	12 [0.472]	Push side	490.6 [0.760]	49.1 [11.0]	98.1 [22.1]	147.2 [33.09]	196.3 [44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.23]	441.6 [99.27]	490.6 [110.3]
25 [0.904]	12 [0.472]	Pull side	377.6 [0.585]	37.8 [8.50]	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.88]
32 [1.260]	16 [0.630]	Push side	803.8 [1.246]	80.4 [18.1]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]
52 [1.200]	10 [0.030]	Pull side	602.9 [0.934]	60.3 [13.6]	120.6 [27.11]	180.9 [40.67]	241.2 [54.22]	301.4 [67.75]	361.7 [81.31]	422.0 [94.87]	482.3 [108.4]	542.6 [122.0]	602.9 [135.5]
40 [1.575]	16 [0.630]	Push side	1256.0 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]
40[1.575]	10 [0.030]	Pull side	1055.0 [1.635]	105.5 [23.72]	211.0 [47.43]	316.5 [71.15]	422.0 [94.87]	527.5 [118.6]	633.0 [142.3]	738.5 [166.0]	844.0 [189.7]	949.5 [213.4]	1055.0 [237.2]
50 [1.969]	20 [0.787]	Push side	1962.5 [3.042]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]
50 [1.505]	20 [0.707]	Pull side	1648.5 [2.555]	164.9 [37.07]	329.7 [74.12]	494.6 [111.2]	659.4 [148.2]	824.3 [185.3]	989.1 [222.3]	1154.0 [259.4]	1318.8 [296.5]	1483.7 [333.5]	1648.5 [370.6]
63 [2.480]	20 [0.787]	Push side	3115.7 [4.829]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]
03 [2.400]	20 [0.707]	Pull side	2801.7 [4.343]	280.2 [62.99]	560.3 [126.0]	840.5 [188.9]	1120.7 [251.9]	1400.8 [314.9]	1681.0 [377.9]	1961.2 [440.9]	2241.3 [503.8]	2521.5 [566.8]	2801.7 [629.8]
80 [3.150]	25 [0 984]	Push side	5024.0 [7.787]	502.4 [112.9]	1004.8 [225.9]	1507.2 [338.8]	2009.6 [451.8]	2512.0 [564.7]	3014.4 [677.6]	3516.8 [790.6]			5024.0 [1129.4]
00 [3.130]	20 [0.904]	Pull side	4533.4 [7.027]	453.3 [101.9]	906.7 [203.8]	1360.0 [305.7]	1813.4 [407.7]	2266.7 [509.6]	2720.0 [611.5]	3173.4 [713.4]	3626.7 [815.3]	4080.0 [917.2]	4533.4 [1019.1]
100 [3.940]	20 [1 101]	Push side	7850.0 [12.168]	785.0 [176.5]	1570.0 [352.9]	2355.0 [529.4]	3140.0 [705.9]	3925.0 [882.3]					7850.0 [1764.7]
100 [3.940]	JZ [1.101]	Pull side	7046.2 [10.922]	704.6 [158.4]	1409.2 [316.8]	2113.8 [475.2]	2818.5 [633.6]	3523.1 [792.0]	4227.7 [950.4]	4932.3 [1108.8]	5636.9 [1267.2]	6341.5 [1425.6]	7046.2 [1584.0]

Single acting type

													N [lbf.]
Operation	Bore size	Piston rod diameter	Pressure area					Air pressure	MPa [psi.]			
type	mm [in.]	mm [in.]	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
	6 [0.236]	4 [0.157]	28.3 [0.0439]	-	-	5.6 [1.26]	8.4 [1.89]	11.2 [2.52]	14.1 [3.17]	16.9 [3.80]	19.7 [4.43]	22.5 [5.06]	-
	8 [0.315]	5 [0.197]	50.3 [0.0780]	-	-	10.4 [2.34]	15.4 [3.46]	20.4 [4.59]	25.5 [5.73]	30.5 [6.86]	35.5 [7.98]	40.5 [9.10]	-
	10 [0.394]	5 [0.197]	78.5 [0.1217]	-	-	18.9 [4.25]	26.7 [6.00]	34.6 [7.78]	42.4 [9.53]	50.3 [11.3]	58.1 [13.1]	66.0 [14.8]	-
0.1	12 [0.472]	6 [0.236]	113.0 [0.175]	-	12.8 [2.88]	24.1 [5.42]	35.4 [7.96]	46.7 [10.5]	58.0 [13.0]	69.3 [15.6]	80.6 [18.1]	91.9 [20.7]	103.2 [23.20]
Single	16 [0.630]	6 [0.236]	201.0 [0.312]	-	26.1 [5.87]	46.2 [10.4]	66.3 [14.9]	86.4 [19.4]	106.5 [23.94]	126.6 [28.46]	146.7 [32.98]	166.8 [37.50]	186.9 [42.02]
acting push type	20 [0.787]	8 [0.315]	314.0 [0.487]	-	49.0 [11.0]	80.4 [18.1]	111.8 [25.13]	143.2 [32.19]	174.6 [39.25]	206.0 [46.31]	237.4 [53.37]	268.8 [60.43]	300.2 [67.48]
paonijpo	25 [0.984]	10 [0.394]	490.6 [0.760]	-	76.3 [17.2]	125.4 [28.19]	174.5 [39.23]	223.5 [50.24]	272.6 [61.28]	321.6 [72.30]	370.7 [83.33]	419.8 [94.37]	468.8 [105.4]
	32 [1.260]	12 [0.472]	803.8 [1.246]	-	123.4 [27.74]	203.8 [45.81]	284.1 [63.87]	364.5 [81.94]	444.9 [100.0]	525.3 [118.1]	605.7 [136.2]	686.1 [154.2]	766.4 [172.3]
	40 [1.575]	16 [0.630]	1256.0 [1.947]	-	205.9 [46.29]	331.5 [74.52]	457.1 [102.8]	582.7 [131.0]	708.3 [159.2]	833.9 [187.5]	959.5 [215.7]	1085.1 [243.9]	1210.5 [272.1]
	50 [1.969]	20 [0.787]	1962.5 [3.042]	141.0 [31.70]	337.2 [75.80]	533.5 [119.9]	729.7 [164.0]	926.0 [208.2]	1122.2 [252.3]	1318.5 [296.4]	1514.7 [340.5]	1711.0 [384.6]	1907.2 [428.7]
	6 [0.236]	4 [0.157]	15.7 [0.0243]	-	-	1.8 [0.40]	3.4 [0.76]	5.0 [1.12]	6.5 [1.46]	8.1 [1.82]	9.7 [2.18]	11.2 [2.52]	-
	8 [0.315]	5 [0.197]	30.6 [0.0474]	-	-	4.5 [1.01]	7.6 [1.71]	10.6 [2.38]	13.7 [3.08]	16.7 [3.75]	19.8 [4.45]	22.9 [5.15]	-
	10 [0.394]	5 [0.197]	58.9 [0.0913]	-	-	13.0 [2.92]	18.9 [4.25]	24.8 [5.58]	30.6 [6.88]	36.5 [8.21]	42.4 [9.53]	48.3 [10.9]	-
<u>.</u>	12 [0.472]	6 [0.236]	84.8 [0.131]	-	7.2 [1.62]	15.6 [3.51]	24.1 [5.42]	32.6 [7.33]	41.1 [9.24]	49.5 [11.1]	58.0 [13.0]	66.5 [14.9]	75.0 [16.9]
Single	16 [0.630]	6 [0.236]	150.7 [0.234]	-	16.0 [3.60]	31.1 [6.99]	46.2 [10.4]	61.3 [13.8]	76.3 [17.2]	91.4 [20.5]	106.5 [23.94]	121.5 [27.31]	136.6 [30.71]
acting pull type	20 [0.787]	8 [0.315]	235.5 [0.365]	-	33.3 [7.49]	56.9 [12.8]	80.4 [18.1]	104.0 [23.38]	127.5 [28.66]	151.1 [33.97]	174.6 [39.25]	198.2 [44.56]	221.7 [49.84]
Pail (JPC	25 [0.984]	10 [0.394]	377.6 [0.585]	-	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.88]
	32 [1.260]	12 [0.472]	602.9 [0.934]	-	61.4 [13.8]	121.7 [27.36]	182.0 [40.91]	242.2 [54.45]	302.5 [68.00]	362.8 [81.56]	423.1 [95.11]	483.4 [108.7]	543.7 [122.2]
	40 [1.575]	16 [0.630]	1055.0 [1.635]	-	165.7 [37.25]	271.2 [60.97]	376.7 [84.68]	482.2 [108.4]	587.7 [132.1]	693.2 [155.8]	798.7 [179.5]	904.2 [203.3]	1009.7 [227.0]
	50 [1.969]	20 [0.787]	1648.5 [2.555]	109.6 [24.64]	274.4 [61.69]	439.3 [98.75]	604.1 [135.8]	769.0 [172.9]	933.8 [209.9]	1098.7 [247.0]	1263.5 [284.0]	1428.4 [321.1]	1593.2 [358.2]

Spring return force N [lbf.] Bore size Stroke Zero End of Bore size Stroke Zero mm stroke stroke mm stroke mm mm X 5 X10 × 5 ×10 ×15 ×20 ×25 ×30 2.1 [0.47] 1.2 [0.27] 18.1 [4.07] 6 2.9 [0.65] 14.5 [3.26] × 5 ×10 3.3 [0.74] 1.9 [0.43] 10.7 [2.41] 14.5 [3.26] 8 4.7 [1.06] 25 × 5 ×10 3.3 [0.74] 1.9 [0.43] 12.7 [2.85] 10 4.7 [1.06] 10.9 [2.45] × 5 ×10 ×15 ×20 ×25 ×30 × 5 ×10 ×15 ×20 ×25 ×30 7.7 [1.73] 32.0 [7.19] 5.7 [1.28] 26.7 [6.00 3.7 [0.83] 21.3 [4.79] 26.7 [6.00] 12 32 9.8 [2.20] 5.7 [1.28] 4.7 [1.06] 3.7 [0.83] 24.0 [5.40] 21.3 [4.79] × 5 ×10 ×15 ×20 ×25 ×30 × 5 ×10 ×15 ×20 ×25 ×30 11.1 [2.50] 37.7 [8.47] 8.2 [1.84] 5.3 [1.19] 30.2 6.79 22.6 [5.08] 30.2 [6.79] 45.3 [10.18] 16 14.1 [3.17] 40 8.2 [1.84] 6.7 [1.51] 26.4 [5.93] 5.3 [1.19] 22.6 [5.08] × 5 ×10 ×15 ×20 ×25 ×30 ×10 ×15 ×20 ×25 ×30 ×35 ×40 11.6 [2.61] 45.4 [10.21] 9.5 [2.14] 7.3 [1.64] 40.5 [9.10] 35.5 [7.98] 20 13.8 [3.10] 43.0 [9.67] 40.5 [9.10] 38.0 [8.54] 35.5 [7.98] 9.5 [2.14] 8.4 [1.89] 7.3 [1.64] 50

How to read the thrust table

- 1. For the thrust of the double rod cylinder double acting type, see the pull side of the double acting type thrust table. For the thrust of the single acting type, see the single acting pull type thrust table.
- 2. The thrust of the tandem cylinder is double that of the standard type when air is supplied simultaneously to Port A and Port B, for any operation type before the stroke in Cylinder 1 is complete. When air is supplied to any of Ports A, B, or C alone, then the thrust is the same as for the standard type.

	С	B	A	
_		ļ		
С	ylinder 2	(Cylind] er 1

N [lbf.]

- 3. The thrust for dual stroke cylinders is the same as for the standard type, for any operation type.
- 4. When directly carrying a load, care must be exercised of a lateral load.
 - For details, see p.206 "Lateral Load."

Square rod cylinders

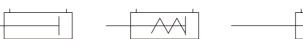
N [lbf.]

End of

stroke

21.8 [4.90]

37.4 [8.41]


Bore size	Piston rod	Operation	Pressure area					Air pressu	ure MPa								
mm [in.]	size mm [in.]	Operation	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]				
20 [0.787]		Push side	314.0 [0.487]	31.4 [7.06]	62.8 [14.1]	94.2 [21.2]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]				
20 [0.707]	□7.4	Pull side	259.2 [0.402]	25.9 [5.82]	51.8 [11.6]	77.8 [17.5]	103.7 [23.3]	129.6 [29.13]	155.5 [34.96]	181.5 [40.80]	207.4 [46.62]	233.3 [52.45]	259.2 [58.27]				
25 [0.984]	[□0.291]	Push side	490.6 [0.760]	49.1 [11.0]	98.1 [22.1]	147.2 [33.09]	196.3 [44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.23]	441.6 [99.27]	490.6 [110.3]				
25 [0.904]		Pull side	435.9 [0.676]	43.6 [9.80]	87.2 [19.6]	130.8 [29.40]	174.3 [39.18]	217.9 [48.98]	261.5 [58.79]	305.1 [68.59]	348.7 [78.39]	392.3 [88.19]	435.9 [97.99]				
32 [1.260]		Push side	803.8 [1.246]	80.4 [18.1]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]				
32 [1.200]	□13	Pull side	634.8 [0.984]	63.5 [14.3]	127.0 [28.55]	190.5 [42.82]	253.9 [57.08]	317.4 [71.35]	380.9 [85.63]	444.4 [99.90]	507.9 [114.2]	571.4 [128.5]	634.8 [142.7]				
40 [1.575]	[[0.512]	Push side	1256.0 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]				
40[1.575]		-				Pull side	1087.0 [1.685]	108.7 [24.44]	217.4 [48.87]	326.1 [73.31]	434.8 [97.74]	543.5 [122.2]	652.2 [146.6]	760.9 [171.1]	869.6 [195.5]	978.3 [219.9]	1087.0 [244.4]
50 [1 060]		Push side	1962.5 [3.042]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]				
50 [1.969]	□18	Pull side	1638.5 [2.540]	163.9 [36.84]	327.7 [73.67]	491.6 [110.5]	655.4 [147.3]	819.3 [184.2]	983.1 [221.0]	1147.0 [257.8]	1310.8 [294.7]	1474.7 [331.5]	1638.5 [368.3]				
63 [2.480]	[]0.709]	Push side	3115.7 [4.829]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]				
03 [2.460]		Pull side	2791.7 [4.327]	279.2 [62.76]	558.3 [125.5]	837.5 [188.3]	1116.7 [251.0]	1395.8 [313.8]	1675.0 [376.5]	1954.2 [439.3]	2233.3 [502.0]	2512.5 [564.8]	2791.7 [627.6]				

JIG CYLINDERS C SERIES STANDARD CYLINDERS

Double Acting Type, Single Acting Push Type, Single Acting Pull Type

Symbols

Specifications

Item	ore size mm [in.]	6 [0.236] 8 [0.315] 10 [0.394] 12 [0.472] 16 [0.630] 20 [0.787] 25 [0.9	84] 32 [1.260] 40 [1.575]	50 [1.969]	63 [2.480] 80 [3.15	50] 100 [3.940					
Operation type		Double acting	Double acting type, Single acting push type, Single acting pull type Double acting type									
Media			Air									
Operating pressure range	Double acting type	0.15~0.9 [22~131]	0.1~1.0 [15~145]									
MPa [psi.]	Single acting type	0.25~0.9 [36~131]	0.15~1.0 Note [22~145]	:1	0.1~1.0 [15~145]	-						
Proof pressure	MPa [psi.]	1.35 [196]		1.5 [218]								
Operating temperature range	°C [°F]	$0\sim$ 60 [32 \sim 140] (The heat resistant specification is 120 [248]. Note2)										
Operating speed range	Double acting type	30~500 [1.2~19.7]	30~500 [1.2~19.7] 30~500 [1.2~19.7]									
mm/s [in./sec.]	Single acting type	50~500 [2.0~19.7]	100~500 [3.9~	19.7]	100~300 [3.9~11.8]	-						
Qualities	Double acting type	None	Ru	bber bumper (Optior	ו Note3)							
Cushion	Single acting type		None			-						
Lubrication		Not require	d (If lubrication is required, use Tur	bine Oil Class 1 [ISC	VG32] o	r equivalent.)						
Port size		M3×0.5	M5×0.8	Rc1/8	Rc	1/4 I	Rc3/8					

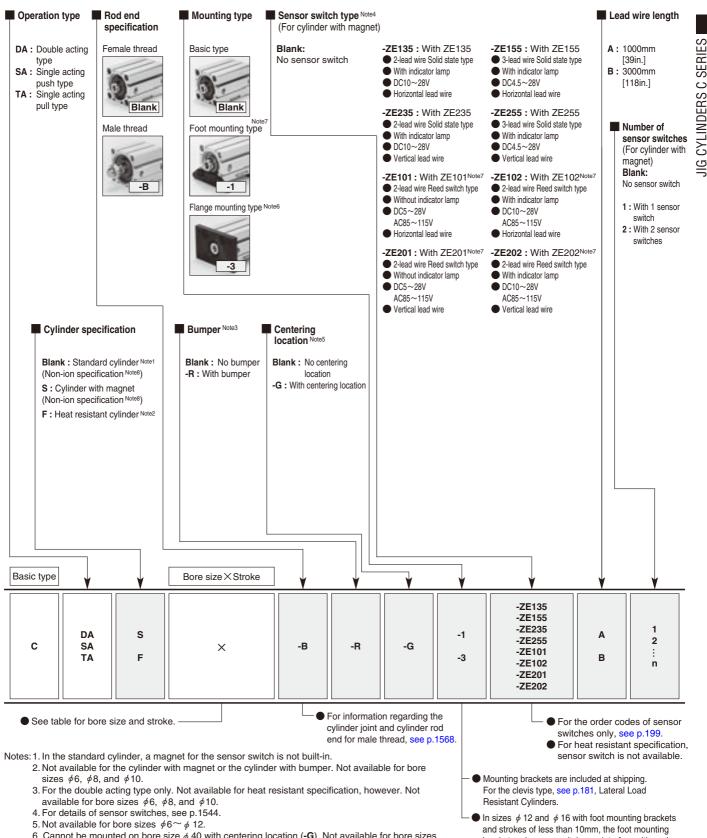
Remark: For Handling Instructions and Precautions, see p.205.

Notes: 1. The single acting pull type of ϕ 12 is 0.18~1.0MPa [26~145psi.].

2. For heat resistant specification, it is not available with the sensor switch. Not available for bore sizes $\phi 6$, $\phi 8$, and $\phi 10$.

3. Not available for bore sizes ϕ 6, ϕ 8, and ϕ 10, and heat resistant specification.

Bore Size and Stroke	
----------------------	--


Note: For strokes that exceed the maximum standard strokes for each double acting type cylinder's bore size, use the long stroke cylinders on $p.185 \sim 189$.

	Bore size	Standard	d strokes				
Operation type	Bore size	Standard cylinder	Cylinder with magnet				
	6						
	8	5, 10, 15, 20	5, 10, 15, 20				
	10						
_	12	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30				
	16	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30				
20 Double acting type 25 32 40 50 50	20	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50				
	3, 10, 13, 20, 23, 30, 33, 40, 43, 30	3, 10, 13, 20, 23, 30, 33, 40, 43, 30					
	32	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100				
	40	3, 10, 10, 20, 20, 00, 00, 10, 10, 100	3, 10, 13, 20, 23, 30, 30, 40, 40, 40, 50, 70, 100				
	63	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100				
	80	,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·				
	100						
	6						
	8	5, 10	5, 10				
	10						
	12						
Single	16						
acting type	20	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30				
	25	-, -, -, -, -, -, -, -	-, -, -, -, -, -, -				
	32						
	40						
	50	10, 15, 20, 25, 30, 35, 40	10, 15, 20, 25, 30, 35, 40				

Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ ${}^{+0.039in.}_{0}$

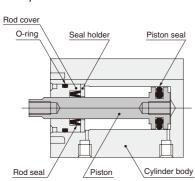
In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for strokes of less than 5mm for \$\phi\$ 12 \$\sigma\$ 40, and strokes of less than 10mm for \$\phi\$ 50 \$\sigma\$ 100. The collar packed is used for these cases.

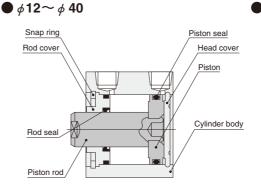
Order Codes for Standard Cylinders

- 6. Cannot be mounted on bore size $\phi 40$ with centering location (-G). Not available for bore sizes $\phi 6$, $\phi 8$, and $\phi 10$.
- 7. Not available for bore sizes $\neq 6$, $\neq 8$, and $\neq 10$. And cannot be mounted on the 5mm strokes of $\neq 16$ and $\neq 25$, and 10mm strokes of $\neq 50$, $\neq 63$, and $\neq 80$.
- 8. Bore sizes $\phi 6$, $\phi 8$, and $\phi 10$ are not non-ion specification.

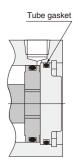
Additional Parts (To be ordered separately)

bracket

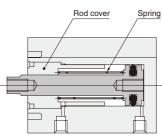

(p.197)

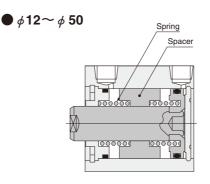


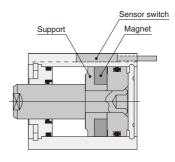
Mounting screws (p.209) and strokes of less than 10mm, the foot mounting brackets bracket and sensor switch may interfere with each other, which could prevent 2 sensor switches from being mounted. For details, consult us.

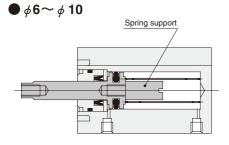

Double acting type (CDA)

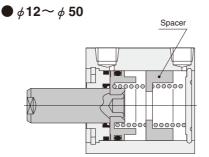
$\phi 6 \sim \phi 10$

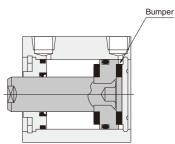



 ϕ 50 $\sim \phi$ 100


Single acting push type (CSA)






• The diagram is for $\phi 12 \sim \phi 100$.

• Single acting pull type (CTA)

• With bumper

• The diagram is for $\phi 12 \sim \phi 100$.

Major Parts and Materials

<													
Parts Bore mm	ϕ 6	φ 8	φ 10	φ 12	φ 16	φ 20	φ 25	φ 32	φ 40	ϕ 50	φ 63	φ 80	φ 100
Cylinder body					Alum	inum	alloy	(and	odize	d)			
Piston	Stai	nless	steel	Alı	ıminu	m allo	y (sp	ecial r	ust pi	revent	tion tr	eatme	ent)
Piston rod		-		Stainle	ss steel	(chrome	plated)	ę	Steel	(chro	me p	lated	I)
Seal		Synthetic rubber (NBR)											
Rod cover		Aluminum alloy (special wear-resistant treatment)											
Head cover		_			Alum	inum	alloy	(and	odize	d)			
Snap ring		_			Stee	l (pho	ospha	ate co	pating	g)			
Spring						Pia	ano w	vire				_	
Spacer		_		Alumir	num allo	oy (spec	ial rust	prevent	tion trea	atment)		—	
Bumper		- Synthetic rubber (NBR; urethane for ϕ 12 only)							nly)				
Magnet	Neody	eodymium magnet Plastic magnet											
Support	Cop	per	alloy	Alı	ıminu	m allo	y (sp	ecial r	ust pi	revent	tion tr	eatme	ent)

Seals

Parts	Dedeed	D'ala and	Tube gasket				
Bore mm	Rod seal	Piston seal	Rod side	Head side			
φ 12	MYR-6	COP-12	Y090260	None			
<i>φ</i> 16	MYR-8	COP-16	Y090207	None			
φ 20	MYR-10	COP-20(MYA-16)	Y090216	None			
φ 25	MYR-12	COP-25(MYA-21)	Y090210	None			
φ 32	MYR-16	COP-32	L090084	None			
φ 40	MYR-16	COP-40	L090151	None			
φ 50	MYR-20	COP-50	L090174	L090106			
φ 63	MYR-20	COP-63	L090180	L090107			
φ 80	PNY-25	COP-80	L090171	L090108			
φ 100	PNY-32	COP-100	L090172	L090109			

Note: Items in parentheses () are for the single acting type.

Double acting type

	, ing type							g [oz.	
Bore size	Zero stroke mass	Additional mass for each 1mm	Additional mass of	Additional mass of	Mass of mou	inting bracket	Additional mass o	f sensor switch Note	
mm [in.]	Zero stroke mass	[0.0394in.] stroke	cylinder with bumper	cylinder with magnet	der with magnet Foot bracket		ZE	ZE	
6 [0.236]	9.2 [0.325]	0.74 [0.0261]	—	3.9 [0.138]	_	-			
8 [0.315]	13.1 [0.462]	0.95 [0.0335]	—	5.4 [0.190]	—	-			
10 [0.394]	18.1 [0.638]	1.12 [0.0395]	—	6.8 [0.240]	_	—			
12 [0.472]	20.59 [0.726]	1.28 [0.0451]	6.42 [0.226]	6.59 [0.232]	50 [1.76]	55 [1.94]			
16 [0.630]	28.93 [1.020]	1.62 [0.0571]	8.08 [0.285]	9.93 [0.350]	62 [2.19]	71 [2.50]			
20 [0.787]	46.71 [1.648]	2.26 [0.0797]	11.29 [0.398]	25.71 [0.907]	84 [2.96]	101 [3.56]			
25 [0.984]	70.47 [2.486]	3.11 [0.110]	15.53 [0.548]	37.47 [1.322]	104 [3.67]	160 [5.64]	15 [0.53]	35 [1.23]	
32 [1.260]	106.43 [3.754]	4.11 [0.145]	20.57 [0.726]	52.43 [1.849]	126 [4.44]	186 [6.56]			
40 [1.575]	166.15 [5.861]	4.77 [0.168]	0	69.15 [2.439]	160 [5.64]	335 [11.82]			
50 [1.969]	271.69 [9.583]	7.03 [0.248]	0	108 [3.81]	220 [7.76]	447 [15.77]			
63 [2.480]	435.06 [15.35]	8.69 [0.307]	0	159 [5.61]	300 [10.58]	591 [20.85]	1		
80 [3.150]	861.44 [30.39]	13.06 [0.461]	0	245 [8.64]	644 [22.72]	1414 [49.88]			
100 [3.940]	1583.88 [55.87]	18.61 [0.656]	0	360 [12.70]	1172 [41.34]	2606 [91.92]	1		

Note: Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Single acting push type

• Single act	ing p	ush ty	/pe										g [oz.]
Item				Basic m	ass Note1				Additional mass of	Mass of mou	inting bracket	Additional mass of	sensor switch Note2
Bore mm	5	10	15	20	25	30	35	40	cylinder with magnet	Foot bracket	Flange bracket	ZE	ZE
6	20.8 [0.734]	24.5 [0.864]	-	-	-	-	-	-	3.9 [0.138]	-	-		
8	28.3 [0.998]	33.1 [1.167]	-	-	-	-	-	_	5.4 [0.190]	-	-		
10	36.2 [1.277]	41.8 [1.474]	—	-	—	—	—	—	6.8 [0.240]	—	—		
12	32.81 [1.157]	39.22 [1.383]	45.64 [1.610]	67 [2.36]	73.42 [2.590]	79.83 [2.816]	-	—	7.78 [0.274]	50 [1.76]	55 [1.94]		
16	46.6 [1.644]	54.68 [1.929]	62.75 [2.213]	91 [3.21]	99.08 [3.495]	107.15 [3.780]	-	-	10.32 [0.364]	62 [2.19]	71 [2.50]	15 [0.53]	35 [1.23]
20	58.33 [2.057]	69.62 [2.456]	80.91 [2.854]	121 [4.27]	132.29 [4.666]	143.58 [5.065]	-	_	25.38 [0.895]	84 [2.96]	101 [3.56]	15 [0.55]	35 [1.23]
25	86.37 [3.047]	101.9 [3.594]	117.43 [4.142]	173 [6.10]	188.53 [6.650]	204.06 [7.198]	—	—	39.1 [1.379]	104 [3.67]	160 [5.64]		
32	128.85 [4.545]	149.42 [5.271]	169.99 [5.996]	276 [9.74]	296.57 [10.461]	317.14 [11.187]	-	—	50.58 [1.784]	126 [4.44]	186 [6.56]		
40	190.73 [6.728]	214.58 [7.569]	238.43 [8.410]	373 [13.16]	396.85 [13.998]	420.7 [14.84]	-	—	69.42 [2.449]	160 [5.64]	335 [11.82]		
50	—	343.95 [12.132]	379.11 [13.372]	414.26 [14.61]	582 [20.53]	617.16 [21.769]	652.31 [23.009]	687.47 [24.249]	106.05 [3.741]	220 [7.76]	447 [15.77]		

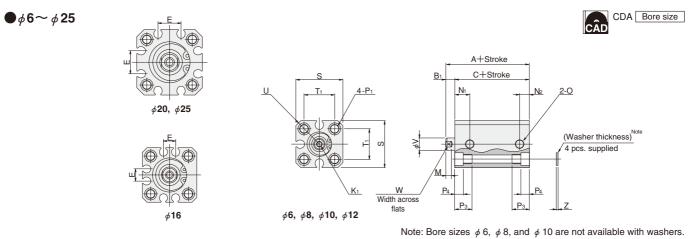
Notes: 1. The above table is for the standard strokes.

2. Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

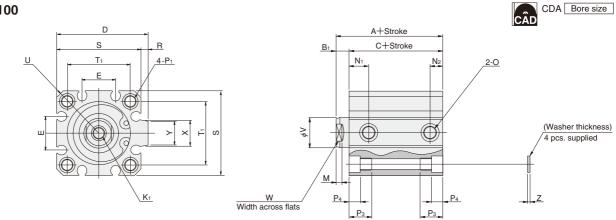
Single acting pull type

g [oz.] Item Basic mass Note1 Mass of mounting bracket Additional mass of sensor switch Note2 Additional mass of Bore mm cylinder with magnet 5 10 15 20 25 30 35 40 Foot bracket Flange bracket ZE A ZE B 6 20.5 [0.723] 24.2 [0.854] 3.9 [0.138] _ _ _ _ _ _ 8 32.4 [1.143] 27.6 [0.974] 5.5 [0.194] 10 40.7 [1.436] _ _ 35.1 [1.238] _ _ 6.7 [0.236] 12 32.03 [1.130] 38.44 [1.356] 44.86 [1.582] 64 [2.26] 70.42 [2.484] 76.83 [2.710] 8.56 [0.302] 50 [1.76] 55 [1.94] 16 45.55 [1.607] 53.63 [1.892] 61.7 [2.176] 86 [3.03] 94.08 [3.319] 102.15 [3.603] 11.37 [0.401] 62 [2.19] 71 [2.50] 15 [0.53] 35 [1.23] 20 68.4 [2.413] 79.69 [2.811] 90.98 [3.209] 125 [4.41] 136.29 [4.807] 147.58 [5.206] 26.31 [0.928] 84 [2.96] 101 [3.56] 25 100.02 [3.528] 115.55 [4.076] 131.08 [4.623] 178 [6.28] 193.53 [6.826] 209.06 [7.374] 38.45 [1.356] 104 [3.67] 160 [5.64] 32 144.73 [5.105] 165.3 [5.831] 289.57 [10.214] 310.14 [10.940] 51.71 [1.824] 185.87 [6.556] 269 [9.49] 126 [4.44] 186 [6.56] 40 215.24 [7.592] 239.09 [8.434] 262.94 [9.275] 374 [13.19] 67.91 [2.395] 397.85 [14.034] 421.7 [14.875] 160 [5.64] 335 [11.82] 50 378.94 [13.366] 414.1 [14.61] 449.25 [15.847] 580 [20.46] 615.16 [21.699] 650.31 [22.939] 685.47 [24.179] 70.06 [2.471] 220 [7.76] 447 [15.77]


Notes: 1. The above table is for the standard strokes.

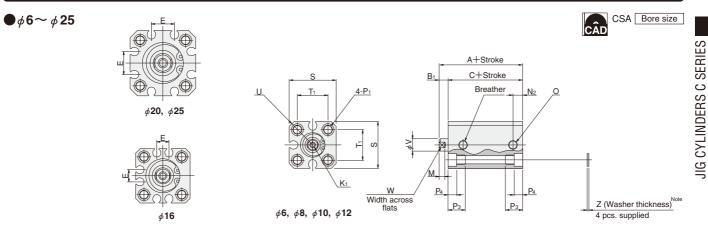
2. Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]


Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches (ZE135A) 70.47+(3.11×30)+37.47+(15×2)=231.24g [8.157oz.]

Dimensions of Standard Cylinder Double Acting Type (mm)

• The drawing is for ϕ 12.



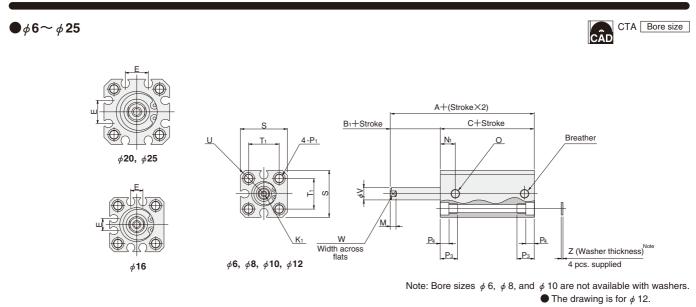
Туре	Standa	rd cylinde	r (CDA)	Cylinder v	with magne	et (CDAS)	Standard cyli	inder with bum	per (CDA-R)	Cylinder with n	nagnet and bum	per (CDAS-R)	D	Е	K1	м	N1	N ₂
Bore Code	Α	B 1	С	Α	B 1	С	Α	B1	С	Α	B 1	С	U	E	N 1	IVI	IN1	IN2
6 [0.236]	19	5	14	24	5	19	-	-	-	-	—	-	-	-	M2.5×0.45 Depth5	3	6.5	3.5
8 [0.315]	20	5	15	25	5	20	—	—	_	—	—	-	—	_	M3×0.5 Depth5	3	7.5	3.5
10 [0.394]	21	5	16	26	5	21	—	—	-	—	—	-	—	-	M3×0.5 Depth5	3	8	4
12 [0.472]	22	5	17	27	5	22	27	5	22	32	5	27	_	_	M3×0.5 Depth6	3.5	8	5
16 [0.630]	22.5	5.5	17	27.5	5.5	22	27.5	5.5	22	32.5	5.5	27	—	6.2	M4×0.7 Depth8	3.5	8	5
20 [0.787]	25	5.5	19.5	35	5.5	29.5	30	5.5	24.5	40	5.5	34.5	—	12.2	M5×0.8 Depth10	4.5	9.5	5
25 [0.984]	27	6	21	37	6	31	32	6	26	42	6	36	—	12.2	M6×1 Depth10	5	10.5	5
32 [1.260]	30	7	23	40	7	33	35	7	28	40	7	33	48.5	18.2	M8×1.25 Depth12	6	9.5	7.5(6)
40 [1.575]	33	7	26	43	7	36	33	7	26	43	7	36	56.5	18.2	M8×1.25 Depth12	6	10.5	7.5
50 [1.969]	37	9	28	47	9	38	37	9	28	47	9	38	70	24.8	M10×1.5 Depth15	7	11	9.5
63 [2.480]	41	9	32	51	9	42	41	9	32	51	9	42	83	26.8	M10×1.5 Depth15	7	12.5	11
80 [3.150]	52	11	41	62	11	51	52	11	41	62	11	51	102	32.8	M14X2 Depth20	9	18	12
100 [3.940]	63	12	51	73	12	61	63	12	51	73	12	61	122	32.8	M18×2.5 Depth20	9	22.5	16.5
Bore Type	0			р.			Da	D .	р	6	т.		v	W/	v	v	7	Appropriate

Bore mm [in.]	0	P 1	P3	P 4	R	S	T 1	U	v	w	х	Y	z	Appropriate through bolt
6 [0.236]	M3×0.5	$_{\phi}$ 3.3 (Thru hole) $$ C'bore $_{\phi}$ 6 (Both sides) and M4 $\times 0.7$ (Both sides)	9.5	3.5	—	19	11	R12	4	3.5	—	—	—	M3
8 [0.315]	M3×0.5	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 $\times0.7$ (Both sides)	9.5	3.5	—	21	13	R13.5	5	4	-	—	—	M3
10 [0.394]	M3×0.5	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 $\times0.7$ (Both sides)	9.5	3.5	—	23	15	R15	5	4	-	_	—	M3
12 [0.472]	M5×0.8	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)	9.5	4.5	—	25	16.3	R16	6	5	—	—	1	M3
16 [0.630]	M5×0.8	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)	9.5	4.5	—	29	19.8	R19	8	6	—	—	1	M3
20 [0.787]	M5×0.8	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)	9.5	4.5	—	34	24	R22	10	8	-	—	1	M3
25 [0.984]	M5×0.8	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6 $\times 1$ (Both sides)	11.5	5.5	—	40	28	R25	12	10	-	_	1	M4
32 [1.260]	Rc1/8	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6 $\times 1$ (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	Rc1/8	ϕ 6.9 (Thru hole) $$ C'bore ϕ 9.5 (Both sides) and M8 $\times1.25$ (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	Rc1/4	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	Rc1/4	ϕ 6.9 (Thru hole) $$ C'bore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 [3.150]	Rc3/8	ϕ 10.5 (Thru hole) $$ C'bore ϕ 14 (Both sides) and M12 \times 1.75 (Both sides)	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 [3.940]	Rc3/8	ϕ 12.3 (Thru hole) C'bore ϕ 17.5 (Both sides) and M14×2 (Both sides)	27	13	8	114	90	R75	32	27	27.6	25	2	M10

Note: Figure in parentheses () is for the standard cylinder (CDA) with 5mm stroke. Remark: If using a through bolt to directly mount the body in place, see p.205.

Dimensions of Standard Cylinder Single Acting Push Type (mm)

Note: Bore sizes ϕ 6, ϕ 8, and ϕ 10 are not available with washers. • The drawing is for ϕ 12.


Туре		Star	ndard cy	linder (C	SA)			Cylind	er with n	nagnet (CSAS)							
Stroke	5~15	(φ 50 : 10	0~ 20)	16~30	ο (φ 50 : 2	1~40)	5~15	(φ 50 : 10)~20)	16~30) (φ 50 : 2	:1~40)	D	E	K 1	М	N2	0
Bore Code	Α	B1	С	Α	B 1	С	Α	B 1	С	Α	B 1	С						
6 [0.236]	29	5	24	-	_	-	34	5	29	-	_	-	-	-	M2.5×0.45 Depth5	3	3.5	M3×0.5
8 [0.315]	30	5	25	_	—	—	35	5	30	—	—	-	—	—	M3×0.5 Depth5	3	3.5	M3×0.5
10 [0.394]	31	5	26	—	—	—	36	5	31	—	—	—	—	—	M3×0.5 Depth5	3	4	M3×0.5
12 [0.472]	27	5	22	37	5	32	32	5	27	42	5	37	—	—	M3×0.5 Depth6	3.5	5	M5×0.8
16 [0.630]	27.5	5.5	22	37.5	5.5	32	32.5	5.5	27	42.5	5.5	37	-	6.2	M4×0.7 Depth8	3.5	5	M5×0.8
20 [0.787]	25	5.5	19.5	35	5.5	29.5	35	5.5	29.5	45	5.5	39.5	_	12.2	M5×0.8 Depth10	4.5	5	M5×0.8
25 [0.984]	27	6	21	37	6	31	37	6	31	47	6	41	—	12.2	M6×1 Depth10	5	5	M5×0.8
32 [1.260]	30	7	23	45	7	38	40	7	33	55	7	48	48.5	18.2	M8×1.25 Depth12	6	7.5(6)	Rc1/8
40 [1.575]	33	7	26	48	7	41	43	7	36	58	7	51	56.5	18.2	M8×1.25 Depth12	6	7.5	Rc1/8
50 [1.969]	37	9	28	52	9	43	47	9	38	62	9	53	70	24.8	M10×1.5 Depth15	7	9.5	Rc1/4

Bore Code	P 1	P ₃	P 4	R	S	T 1	U	v	w	х	Y	z	Appropriate through bolt %
6 [0.236]	ϕ 3.3 (Thru hole) C'bore ϕ 6 (Both sides) and M4 \times 0.7 (Both sides)	9.5	3.5	-	19	11	R12	4	3.5	-	—	-	M3
8 [0.315]	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 \times 0.7 (Both sides)	9.5	3.5	_	21	13	R13.5	5	4	—	-	—	M3
10 [0.394]	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 \times 0.7 (Both sides)	9.5	3.5	_	23	15	R15	5	4	-	-	_	M3
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	_	25	16.3	R16	6	5	_	—	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	—	29	19.8	R19	8	6	-	—	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	_	34	24	R22	10	8	—	-	1	M3
25 [0.984]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	_	40	28	R25	12	10	-	-	1	M4
32 [1.260]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore ϕ 9.5 (Both sides) and M8×1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8×1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6

Note: Figure in parentheses [] is for the standard cylinder (CSA) with 5mm stroke. Remark: If using a through bolt to directly mount the body in place, see p.205.

* Some types of mounting screws are available (to be ordered separately). See p.209.

Dimensions of Standard Cylinder Single Acting Pull Type (mm)

U

D

R

4-P1

>

 \odot

K1

s

T1

CTA Bore size CÂD A+(Stroke \times 2) B1+Stroke C+Stroke Breather N1 0 Ć Ø × S

P4

Pa

Z (Washer

thickness)

4 pcs. supplied

P4

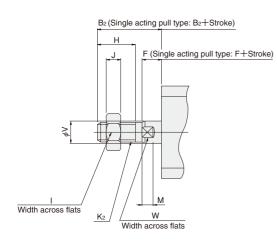
Рз

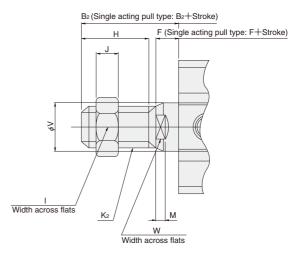
Туре		Star	ndard cy	linder (C	TA)			Cylind	er with n	nagnet (CTAS)							
Stroke	5~15 ((φ 50: 10 ~	~ 20) ^{* 1}	16~30	ο (φ 50 : 2	1~40)	5~15	(φ 50: 10 ~	~ 20) ^{**} 1	16~30	(φ 50 : 2	1~40)	D	Е	K 1	М	N1	0
Bore Code	Α	B 1	С	Α	B 1	С	Α	B 1	С	Α	B ₁	С						
6 [0.236]	29	5	24	-	_	-	34	5	29	—	-	-	-	—	M2.5×0.45 Depth5	3	6.5	M3×0.5
8 [0.315]	30	5	25	—	-	—	35	5	30	—	-	—		—	M3×0.5 Depth5	3	7.5	M3×0.5
10 [0.394]	31	5	26	_	_	_	36	5	31	-	_	_	-	_	M3×0.5 Depth5	3	8	M3×0.5
12 [0.472]	27	5	22	37	5	32	32	5	27	42	5	37	-	_	M3×0.5 Depth6	3.5	8	M5×0.8
16 [0.630]	27.5	5.5	22	37.5	5.5	32	32.5	5.5	27	42.5	5.5	37	-	6.2	M4×0.7 Depth8	3.5	8	M5×0.8
20 [0.787]	30	5.5	24.5	40	5.5	34.5	40	5.5	34.5	50	5.5	44.5	-	12.2	M5×0.8 Depth10	4.5	9.5	M5×0.8
25 [0.984]	32	6	26	42	6	36	42	6	36	52	6	46	-	12.2	M6×1 Depth10	5	10.5	M5×0.8
32 [1.260]	35	7	28	50	7	43	45	7	38	60	7	53	48.5	18.2	M8×1.25 Depth12	6	9.5	Rc1/8
40 [1.575]	38	7	31	53	7	46	48	7	41	63	7	56	56.5	18.2	M8×1.25 Depth12	6	10.5	Rc1/8
50 [1.969]	37	9	28	52	9	43	47	9	38	62	9	53	70	24.8	M10×1.5 Depth15	7	11	Rc1/4

W

Width across flats

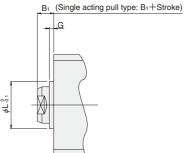
Bore Code mm [in.]	P 1	P ₃	P 4	R	s	T 1	U	v	w	х	Y	z	Appropriate through bolt *2
6 [0.236]	ϕ 3.3 (Thru hole) C'bore ϕ 6 (Both sides) and M4 $\times0.7$ (Both sides)	9.5	3.5	_	19	11	R12	4	3.5	-	_	-	M3
8 [0.315]	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 $\times0.7$ (Both sides)	9.5	3.5	_	21	13	R13.5	5	4	-	_	_	M3
10 [0.394]	ϕ 3.3 (Thru hole) C'bore ϕ 6.2 (Both sides) and M4 $\times0.7$ (Both sides)	9.5	3.5	-	23	15	R15	5	4	-	-	—	M3
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)	9.5	4.5	-	25	16.3	R16	6	5	-	_	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)	9.5	4.5	-	29	19.8	R19	8	6	-	_	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)	9.5	4.5	_	34	24	R22	10	8	-	_	1	M3
25 [0.984]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6 $\times 1$ (Both sides)	11.5	5.5	-	40	28	R25	12	10	-	—	1	M4
32 [1.260]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6 $\times 1$ (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore ϕ 9.5 (Both sides) and M8 \times 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6


Remark: If using a through bolt to directly mount the body in place, see p.205.


* 1. Bore sizes ϕ 6, ϕ 8, and ϕ 10 are 5~10 strokes. 2. Some types of mounting screws are available (to be ordered separately). See p.209.

• Double acting type, Single acting push type, Single acting pull type

• ϕ 32~ ϕ 100 (Single acting type available up to ϕ 50)



Bore Code	B ₂	F	Н	I	J	K2	М	V	W
6 [0.236]	15	5	8	5.5	1.8	M3×0.5	3	4	3.5
8 [0.315]	15	5	8	7	2.4	M4×0.7	3	5	4
10 [0.394]	15	5	8	7	2.4	M4×0.7	3	5	4
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

Bore Code	B 1	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

•Not available for bore sizes $\phi 6, \phi 8, \phi 10$ and $\phi 12$.

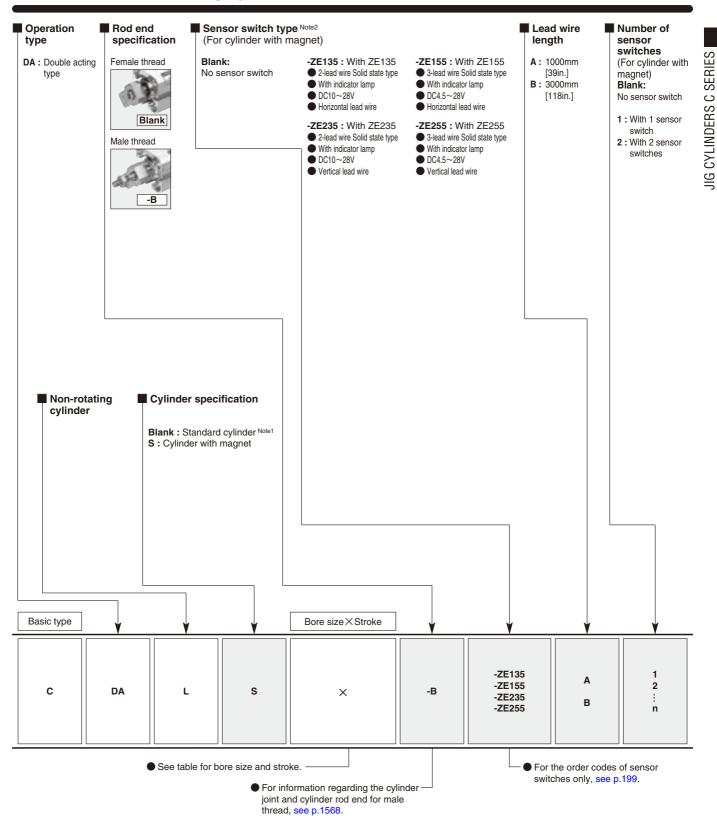
JIG CYLINDERS \subset SERIES NON-ROTATING CYLINDERS

Double Acting Type

Symbol

Specifications

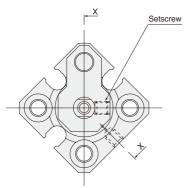
Item Bore size mm [in.]	6 [0.236]	8 [0.315]	10 [0.394]						
Operation type		Double acting type							
Media		Air							
Operating pressure range MPa [psi.]		0.15~0.9 [22~131]							
Proof pressure MPa[psi.]		1.35 [196]							
Operating temperature range °C [°F]	0~60 [32~140]								
Operating speed range mm/s [in./sec.]	50~500 [2.0~19.7]								
Cushion		_							
Lubrication	Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)								
Non-rotating accuracy	$\pm 2^{\circ}$ $\pm 1.6^{\circ}$ $\pm 1.4^{\circ}$								
Port size	M3×0.5								

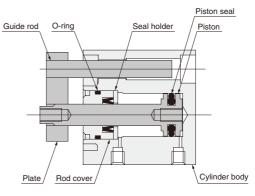

Remark: For Handling Instructions and Precautions, see p.205.

Bore Size and Stroke

For non-standard strokes, see p	p.206.	mm
Bore size	Standard	d strokes
Bore size	Standard cylinder	Cylinder with magnet
6		
8	5, 10	5, 10
10		

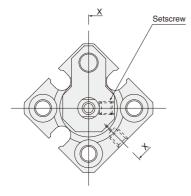
Remark: Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$]

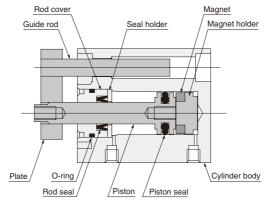

Order Codes for Non-rotating Cylinders



Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in. 2. For details of sensor switches, see p.1544.

Double acting type





X-X cross section

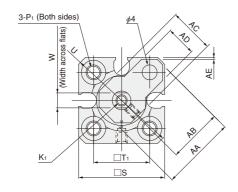
• Cylinder with magnet

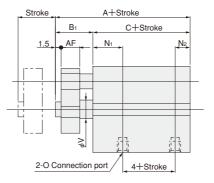
X-X cross section

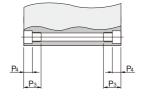
Major Parts and Materials

Parts Bore mm	ϕ 6 $\sim \phi$ 10
Cylinder body	Aluminum alloy (anodized)
Piston	Stainless steel
Seal	Synthetic rubber (NBR)
Seal holder	Copper alloy
Rod cover	Aluminum alloy (special wear resistant treatment)
Plate	Copper alloy (nickel plated)
Setscrew	Steel
Magnet	Neodymium magnet
Magnet holder	Copper alloy
Guide rod	Stainless steel

Mass

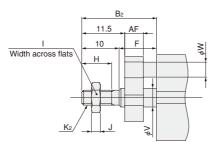

						g [oz.]		
Bore size	Basic m	ass Note1	ote1 Mass with sensor Additional mass of					
mm [in.]	5mm stroke	10mm stroke	5mm stroke	10mm stroke	ZE	ZE		
6 [0.236]	19.8 [0.698]	23.4 [0.825]	23.1 [0.815]	27.1 [0.956]				
8 [0.315]	26.4 [0.931]	31.1 [1.097]	31.2 [1.101]	36.3 [1.280]	15 [0.53]	35 [1.23]		
10 [0.394]	33.7 [1.189]	39.2 [1.383]	39.9 [1.407]	45.9 [1.619]				


Notes: 1. The above table is for the standard strokes. 2. Sensor switch codes A and B show the lead wire lengths. A: 1000mm [39in.] B: 3000mm [118in.]


Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 8mm, stroke of 10mm, and with 2 sensor

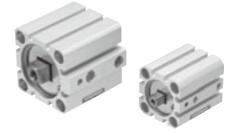
switches (**ZE135A**) 36.3+(15×2)=66.3g [2.339oz.]

Dimensions of Non-rotating Cylinder Double Acting Type (mm)



Туре	Standar	d cylinder	(CDAL)	Cylinde	r with magne	t (CDALS)		V .	N1	N2	0			P1		
Bore Code	Α	B 1	С	Α	B 1	С	K 1		IN1	IN2	0	6 F1				
6 [0.236]	24	10	14	29	10	19	M2.5×0.4	5 Depth	n5 6.5	3.5	M3×0.5	φ 3.3 (Thru	hole) C'bore	∮ 6 (Both sides) and M4 $ imes$ 0.7	(Both sides)
8 [0.315]	25	10	15	30	10	20	M3×0.5	Depth	n5 7.5	3.5	M3×0.5	φ 3.3 (Thru	hole) C'bore	¢ 6.2 (Both side	es) and M4 $ imes$ 0.	7 (Both sides)
10 [0.394]	26	10	16	31	10	21	M3×0.5	Depth	n5 8	4	M3×0.5	φ 3.3 (Thru	hole) C'bore	¢ 6.2 (Both side	es) and M4 $ imes$ 0.	7 (Both sides)
Bore Code	P3	P 4		S	T 1	U	V	W	Appropriate	through bolt	AA	AB	AC	AD	AE	AF
6 [0.236]	9.5	3.5		19	11	R12	4	3.5	М	3	15	11.5	9.5	7	0.3	5
8 [0.315]	9.5	3.5	; ;	21	13	R13.5	5	4	М	3	17	12.5	11	7	0.6	5
10 [0.394]	9.5	3.5	; ;	23	15	R15	5	4	M	3	20	14.5	12	8	0.5	5

Dimensions of Male Rod End Thread Specification (mm)


Bore Code	B ₂	F	Н	I	J	K 2	V	W	AF
6 [0.236]	20	10	8	5.5	1.8	M3×0.5	4	4	5
8 [0.315]	20	10	8	7	2.4	M4×0.7	5	4	5
10 [0.394]	20	10	8	7	2.4	M4×0.7	5	4	5

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

JIG CYLINDERS C SERIES SQUARE ROD CYLINDERS

Double Acting Type

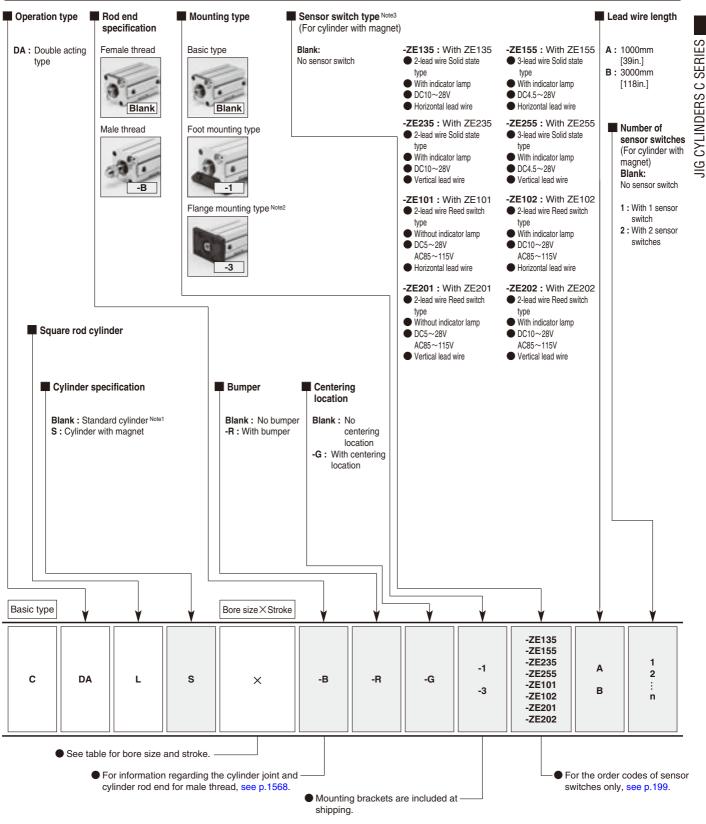
Symbol

Specifications

Item Bore size	ize mm [in.]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]			
Operation type		Double acting type								
Media		Air								
Operating pressure range N	/IPa [psi.]	0.1~1.0 [15~145]								
Proof pressure N	/IPa [psi.]	1.5 [218]								
Operating temperature range	°C [°F]	0~60 [32~140]								
Operating speed range mm/s	[in./sec.]	30~500 [1.2~19.7] 30~300 [1.2~11.8]								
Cushion		Rubber bumper (Optional)								
Lubrication		Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)								
Non-rotating accuracy		±1.	.5°	±0.	8°	±0.	.6°			
Allowable torque Note N.c.	m [in•lbf]	2 [0.18] 2.4 [0.21] 4.4 [0.39]								
Port size		M5>	<0.8	Rc1	/8	Rc	1/4			

Remark: For Handling Instructions and Precautions, see p.205.

Note: Maximum torque allowed on piston rod.


Bore Size and Stroke

For non-standard strokes, see	p.206.	mm								
Dava siza	Standard strokes									
Bore size	Standard cylinder Cylinder with magnet									
20										
25	- 5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50								
32	E 10 1E 00 0E 00 0E 40 4E E0 7E 100									
40	- 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100								
50	10 15 20 25 20 25 40 45 50 75 100	10 15 20 25 20 25 40 45 50 75 100								
63	- 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100								

Remarks: 1. Stroke tolerance ${}^{+0}_{0} \begin{bmatrix} {}^{+0.039in.} \\ {}^{0}_{0} \end{bmatrix}$ 2. In most cases, body cutting is used for the non-standard strokes.

However, body cutting is not used for strokes of less than 5mm for ϕ 12 $\sim \phi$ 40, and strokes of less than 10mm for ϕ 50 and ϕ 63. The collar packed is used for these cases.

Order Codes for Square Rod Cylinders

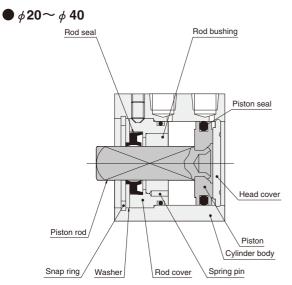
Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in.

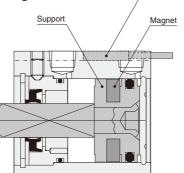
2. When using with a centering location (-G), the flange mounting bracket can be mounted on the head side only.

3. For details of sensor switches, see p.1544.

Additional Parts (To be ordered separately)

bracket

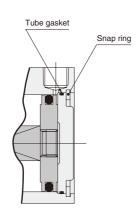

(p.198)


Foot mounting bracket (p.197)

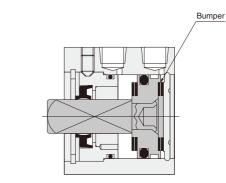
Flange mounting screws (p.209)

Double acting type

• Cylinder with magnet



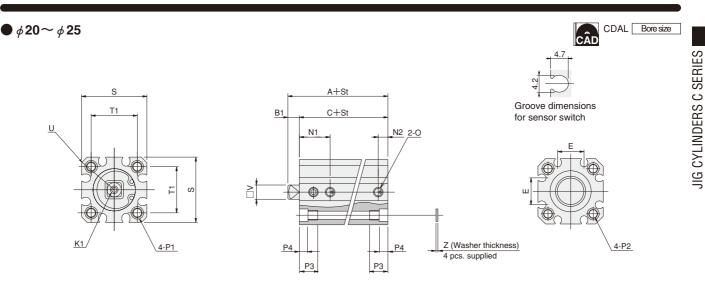
Sensor switch


Major Parts and Materials

<u> </u>	
Parts	ϕ 20 \sim ϕ 63
Cylinder body	Aluminum alloy (anodized)
Piston	Aluminum alloy (special rust prevention treatment)
Piston rod	Steel (chrome plated)
Seal	Synthetic rubber (NBR; urethane for the rod seal)
Rod bushing	Oil impregnated bronze
Rod cover	Aluminum alloy (anodized)
Head cover	Aluminum alloy (anodized)
Spring pin	Steel
Washer	Steel (nickel plated)
Snap ring	Steel (phosphate coating)
Bumper	Synthetic rubber (NBR)
Magnet	Plastic magnet
Support	Aluminum alloy (special rust prevention treatment)

• *φ* 50, *φ* 63

• With bumper


Seals

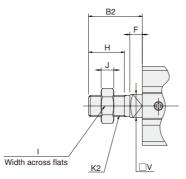
Parts	Rod seal	Piston seal	Tube gasket						
Bore mm	nou seai	FISION Seal	Rod side	Head side					
φ 20	KC-7.4	COP-20	Y090216	None					
φ 25	KC-7.4	COP-25	Y090210	None					
φ 32	KC-13	COP-32	L090084	None					
φ 40	KC-13	COP-40	L090151	None					
φ 50	KC-18	COP-50	L090174	L090106					
φ 63	KC-18	COP-63	L090180	L090107					


								g [oz.]
Bore size	ze Zero stroke Additional mass fo		Additional mass of	Additional mass of	Mass of mou	inting bracket	Additional mass of	sensor switch Note2
mm [in.]	mass Note1	[0.0394in.] stroke	cylinder with bumper	h bumper cylinder with magnet Foot be		Flange bracket	ZE	ZE
20 [0.787]	63.89 [2.254]	2.07 [0.0730]	10.36 [0.365]	25.71 [0.907]	87 [3.07]	105 [3.70]		
25 [0.984]	96.54 [3.405]	2.65 [0.0935]	13.24 [0.467]	37.47 [1.322]	108 [3.81]	165 [5.82]		
32 [1.260]	160.05 [5.646]	3.86 [0.136]	19.31 [0.681]	52.43 [1.849]	131 [4.62]	196 [6.91]	15 [0.53]	35 [1.23]
40 [1.575]	241.47 [8.517]	4.52 [0.159]	0	69.15 [2.439]	168 [5.93]	351 [12.38]	15 [0.55]	35 [1.23]
50 [1.969]	477.70 [16.850]	7.11 [0.251]	0	108 [3.81]	232 [8.18]	471 [16.61]		
63 [2.480]	706.58 [24.923]	8.77 [0.309]	0	159 [5.61]	312 [11.01]	615 [21.69]		

Notes: 1. The above table is for the standard strokes. 2. Sensor switch codes A and B show the lead wire lengths. A : 1000mm [39in.] B : 3000mm [118in.]

Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 32mm, stroke of 30mm, and with 2 sensor switches (**ZE135A**) 167.38+(3.86×30)+52.43+(15×2)=365.61g [12.896oz.]

 ϕ 32, ϕ 40

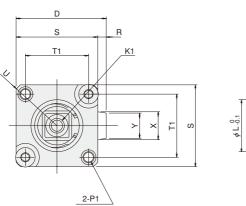

CDAL Bore size

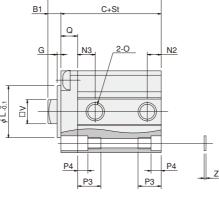
Туре	Standard	d cylinder	(CDAL)	Cylinder v	vith magnet	(CDALS)	Standard cyli	nder with bump	oer (CDAL-R)	Cylinder w	ith magnei	and bumpe	er (CDALS-R)	D	Е		K 1	N		N2	ο
Bore Code mm [in.]	Α	B1	С	Α	B 1	С	A	B1	С	Α		B1	С				K 1			112	0
20 [0.787]	32	6	26	42	6	36	37	6	31	47		6	41	-	12	.2 M4>	K0.7 Dept	h8 16	; !	5	M5×0.8
25 [0.984]	33.5	6	27.5	43.5	6	37.5	38.5	6	32.5	48.5		6	42.5	-	12	.2 M4>	K0.7 Dept	h8 17	, í	5	M5×0.8
32 [1.260]	39	7	32	49	7	42	44	7	37	49		7	42	48.5	i 18	.2 M8>	<1.25 Depth	12 18	.5 7	7.5(6)	Rc1/8
40 [1.575]	43	7	36	53	7	46	43	7	36	53		7	46	56.5	i 18	.2 M8>	<1.25 Depth	12 20	.5 7	7.5	Rc1/8
50 [1.969]	53.7	10.7	43	63.7	10.7	53	53.7	10.7	43	63.7	' 1	0.7	53	70	24	. 8 M10	X1.5 Depth	15 26	; 9	9.5	Rc1/4
63 [2.480]	56.2	9.2	47	66.2	9.2	57	56.2	9.2	47	66.2		9.2	57	83	26	. 8 M10	X1.5 Depth	15 27	'.5 1 [.]	1	Rc1/4
Bore Code			Pı					P ₂		P 3	P 4	R	S	T 1	U	v	х	Y	z	App throu	ropriate gh bolt %
20 [0.787]	φ 4.3 (Thru	hole) C'bore	e φ 6.5 (Both	sides) and M	5×0.8 (Both :	sides) Co	ounterbore ¢	6.5 and N	15×0.8	9.5	4.5	-	34	24	R22	7.4	-	—	1		M3
25 [0.984]	φ 5.1 (Thru	hole) C'bore	e ϕ 8 (Both si	des) and M63	×1 (Both side	s) Co	ounterbore ¢	8 and N	16×1	11.5	5.5	-	40	28	R25	7.4	_	—	1		M4
32 [1.260]	φ 5.1 (Thru	hole) C'bore	e ϕ 8 (Both si	des) and M62	×1 (Both side	s) Co	ounterbore ¢	8 and N	16×1	11.5	5.5	4.5	44	34	R29.5	13	15	13.6	1		M4
40 [1.575]	φ 6.9 (Thru	hole) C'bore	e φ 9.5 (Both	sides) and M	8×1.25 (Both	sides) Co	ounterbore ¢	9.5 and M	18×1.25	15.5	7.5	4.5	52	40	R35	13	15	13.6	1.6		M5
50 [1.969]	φ 6.9 (Thru	hole) C'bore	ϕ 11 (Both	sides) and M8	8×1.25 (Both	sides) Co	ounterbore ¢	11 and M	18×1.25	16.5	8.5	8	62	48	R41	18	21.6	19	1.6		M6
63 [2.480]	ϕ 6.9 (Thru	hole) C'bore	e φ 11 (Both :	sides) and M8	8×1.25 (Both	sides) Co	ounterbore ¢	11 and M	18×1.25	16.5	8.5	8	75	60	R50	18	21.6	19	1.6		M6

Note: Figure in parentheses [] is for the standard cylinder (CDAL) with 5mm stroke. % Some types of mounting screws are available (to be ordered separately). See p.209.

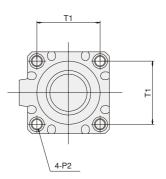
Dimensions of Square Rod Cylinder Double Acting Type (mm)

152

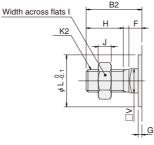



Bore Code	B ₂	F	Н	I	J	K2	v
20 [0.787]	21	6	13	10	5	M6×1	7.4
25 [0.984]	23	6	15	12	5	M8×1	7.4
32 [1.260]	30	7	20	17	7	M12×1.25	13
40 [1.575]	35	7	25	19	8	M14×1.5	13
50 [1.969]	38.7	10.7	25	27	11	M18×1.5	18
63 [2.480]	37.2	9.2	25	27	11	M18×1.5	18

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.


Dimensions of Centering Location (mm)

• Female thread specification, with centering location



A+St

Male thread specification, with centering location

Bore Code	B1	G	L	Nз	Q
20 [0.787]	6	1.5	18	9.5	6.5
25 [0.984]	6	2	18	10.5	6.5
32 [1.260]	7	2	28	9.5	9
40 [1.575]	7	2	28	10.5	10
50 [1.969]	10.7	2	38	11	15
63 [2.480]	9.2	2	40	12.5	15

The outward view of the square rod cylinder with centering location differs from the view in the case of no centering location, in that a rod cover is mounted on the piston rod side, as shown in the dimension above. For the dimension tables for female thread specification with centering location, also use the table on p.152, while for male thread specification with centering location, see the above this page.

JIG CYLINDERS C SERIES **DOUBLE ROD CYLINDERS**

Double Acting Type, Single Acting Type

Symbols

Double acting type

Single acting type

Specifications

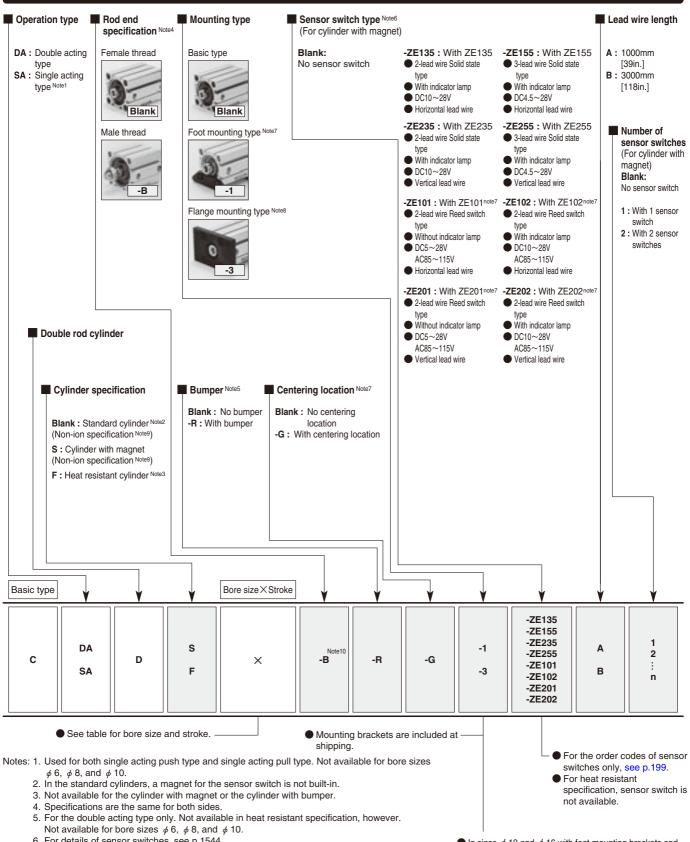
Item	Bore size mm [in.]	6 [0.236] 8 [0.31	5] 10 [0.394]	12 [0.472]	16 [0.630] 20 [0.787] 25 [0.984]	32 [1.260] 40 [1.575]	50 [1.969]	63 [2.480] 80 [3.1	50] 100 [3.940]
Operation type		Double actir	ng type		Double acting type, Sing	gle acting type		Double ac	ting type
Media					Air				
Operating pressure range	Double acting type		0.15~0.9 [22~131] 0.1~1.0 [15~145]					0.05~1.0 [7~145]	
MPa [psi.] Single acting 0.18~1.0 0.15~1 type [26~145] 0.15~1 [22~14]							0.1~1.0 [15~145]	_	
Proof pressure	MPa [psi.]	1.35 [19	96]		•	1.5 [218]			
Operating temperature range	°C [°F]		0,	~60 [32~	\sim 140] (The heat resistant s	pecification is 120	[248]. Note	^{e1})	
Operating speed range	Double acting type	50~500 [2.0	~19.7]		30~500 [1.2~19.7	7]	3	0~300 [1.2~	11.8]
mm/s [in./sec.	Single acting type	_			100~500 [3.9~19.	7]	100~300 [3.9~11.8]	-	
Qualities	Double acting type	None			Rubb	er bumper (Optior	Note2)		
Cushion	Single acting type — None —								
Lubrication		N	ot required	(If lubrica	ation is required, use Turbin	e Oil Class 1 [ISO	VG32] o	r equivalent.)	
Port size		M3×0	.5		M5×0.8	Rc1/8	Rc	1/4	Rc3/8

Remark: For Handling Instructions and Precautions, see p.205.

Notes: 1. For heat resistant specification, consult us. Not available for bore sizes ϕ 6, ϕ 8, and ϕ 10.

2. Not available for heat resistant specification.

Bore Size and Stroke


	D	Standard	1 strokes
Operation type	Bore size	Standard cylinder	Cylinder with magnet
	6		
	8	5, 10, 15, 20	5, 10, 15, 20
	10		
	12	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
	16	3, 10, 13, 20, 23, 30	5, 10, 13, 20, 23, 30
Double	20	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50
acting type	25	3, 10, 13, 20, 23, 30, 33, 40, 43, 30	5, 10, 15, 20, 25, 50, 55, 40, 45, 50
32		5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	40	3, 10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100	3, 10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100
	50		
	63	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	80		
	100		
	12		
	16		
Single	20	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
acting type	25	0, 10, 10, 20, 20, 00	0, 10, 10, 20, 20, 00
32			
	40		
	50	10, 15, 20, 25, 30, 35, 40	10, 15, 20, 25, 30, 35, 40

Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$]

2. In most cases, body cutting is used for the non-standard strokes.

However, body cutting is not used for strokes of less than 5mm for ϕ 12 $\sim \phi$ 40, and strokes of less than 10mm for ϕ 50 $\sim \phi$ 100. The collar packed is used for these cases. Bore sizes ϕ 6 to ϕ 10 are collar packed only.

Order Codes for Double Rod Cylinders

- 6. For details of sensor switches, see p.1544.
- 7. Not available for bore sizes ϕ 6, ϕ 8, ϕ 10 and ϕ 12.
- Cannot be mounted on bore size \$\phi\$ 40 with centering location (-G). Not available for bore sizes \$\phi\$ 6, \$\phi\$ 8, and \$\phi\$ 10.
- 9. Bore sizes ϕ 6, ϕ 8, ϕ 10, and ϕ 12 are not non-ion specification.
- 10. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

Additional Parts (To be ordered separately)

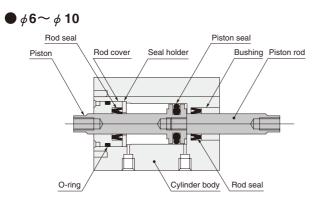
2:-

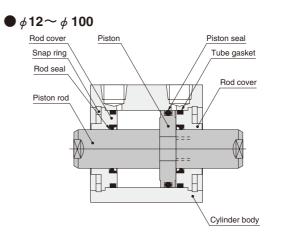
Foot mounting

bracket

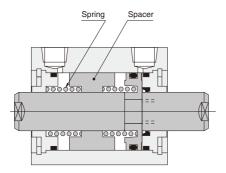
(p.197)

155

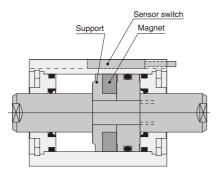

Flange mounting bracket


(p.198)

Mounting screws (p.209)

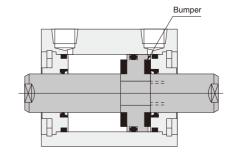

In sizes \$\u03c6\$ 12 and \$\u03c6\$ 16 with foot mounting brackets and strokes of less than 10mm, the foot mounting bracket and sensor switch may interfere with each other, which could prevent 2 sensor switches from being mounted. For details, consult us.

Double acting type (CDAD)



Single acting type (CSAD)

Note: Bore sizes ϕ 6 to ϕ 10 are not available as single acting cylinders.


• Cylinder with magnet

Major Parts and Materials

Parts Bore mm	φ 6	φ 8	φ 10	φ 12	φ 16	φ 20	φ 25	φ 32	φ 40	φ 50	φ 63	φ 80	φ100
Cylinder body					Alum	inum	alloy	(and	odize	d)			
Piston	Stai	nless	s steel Aluminum alloy (special rust prevention treatment)							nent)			
Piston rod	Stai	nless	steel	Stainle	ss steel	(chrome	plated)	9	Steel	(chro	me p	late	d)
Seal				Synthetic rubber (NBR)									
Rod cover		Α	lumin	num alloy (special wear-resistant treatment)									
Snap ring		_		Steel (phosphate coating)									
Spring		_				Pia	ano w	vire				—	
Spacer		_		Alumir	num allo	oy (spec	ial rust	prevent	ion trea	tment)		_	
Bumper		-		Syr	ntheti	c rub	ber (I	NBR;	ureth	nane	for ϕ	12 0	only)
Magnet	Neody	Neodymium magnet		et Plastic magnet									
Support		_		Aluminum alloy (special rust prevention treatment)					nent)				
Bushing	Cop	per a	alloy	у —									

•With bumper

Note: Bore sizes ϕ 6 to ϕ 10 are not available with bumpers.

Seals

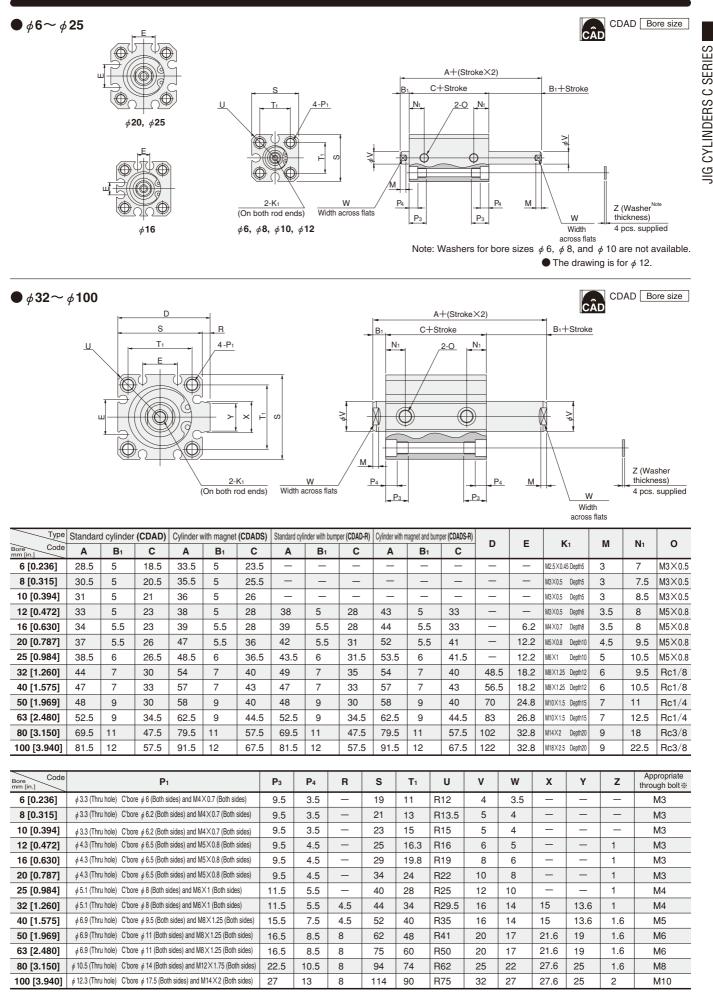
Parts Bore mm	Rod seal	Piston seal	Tube gasket
φ 12	MYR-6	COP-12	Y090260
<i>φ</i> 16	MYR-8	COP-16	Y090207
φ 20	MYR-10	COP-20(MYA-16)	Y090216
φ 25	MYR-12	COP-25(MYA-21)	Y090210
φ 32	MYR-16	COP-32	L090084
φ 40	MYR-16	COP-40	L090151
φ 50	MYR-20	COP-50	L090174
φ 63	MYR-20	COP-63	L090180
φ 80	PNY-25	COP-80	L090171
φ 100	PNY-32	COP-100	L090172

Note: Items in parentheses () are for the single acting type.

Double acting type

	sung type							g [oz.]
Bore size	Zaro stroko maso	Additional mass for each 1mm	Additional mass of	Additional mass of	Mass of mou	inting bracket	Additional mass o	f sensor switch Note
mm [in.]	Zero stroke mass	[0.0394in.] stroke	cylinder with bumper	cylinder with magnet	Foot bracket	Flange bracket	ZE	ZE
6 [0.236]	12.7 [0.448]	0.84 [0.0296]	—	3.9 [0.138]	—	-		
8 [0.315]	19.2 [0.677]	1.11 [0.0392]	-	5.3 [0.187]	—	-		
10 [0.394]	21.0 [0.741]	1.27 [0.0448]	—	6.7 [0.236]	_	—]	
12 [0.472]	30.41 [1.073]	1.51 [0.0533]	7.53 [0.266]	6.59 [0.232]	50 [1.76]	55 [1.94]		
16 [0.630]	44.4 [1.566]	2.01 [0.0709]	10.05 [0.354]	9.93 [0.350]	62 [2.19]	71 [2.50]		
20 [0.787]	73.31 [2.586]	2.88 [0.102]	14.38 [0.507]	25.71 [0.907]	84 [2.96]	101 [3.56]		
25 [0.984]	104.2 [3.675]	3.99 [0.141]	19.97 [0.704]	37.47 [1.322]	104 [3.67]	160 [5.64]	15 [0.53]	35 [1.23]
32 [1.260]	165.44 [5.836]	5.69 [0.201]	28.47 [1.004]	52.43 [1.849]	126 [4.44]	186 [6.56]		
40 [1.575]	241.43 [8.516]	6.35 [0.224]	0	69.15 [2.439]	160 [5.64]	335 [11.82]]	
50 [1.969]	328.92 [11.602]	9.5 [0.335]	0	108 [3.81]	220 [7.76]	447 [15.77]		
63 [2.480]	499.3 [17.61]	11.16 [0.394]	0	159 [5.61]	300 [10.58]	591 [20.85]		
80 [3.150]	1029.17 [36.302]	16.91 [0.596]	0	245 [8.64]	644 [22.72]	1414 [49.88]		
100 [3.940]	1872.15 [66.037]	24.93 [0.879]	0	360 [12.70]	1172 [41.34]	2606 [91.92]		

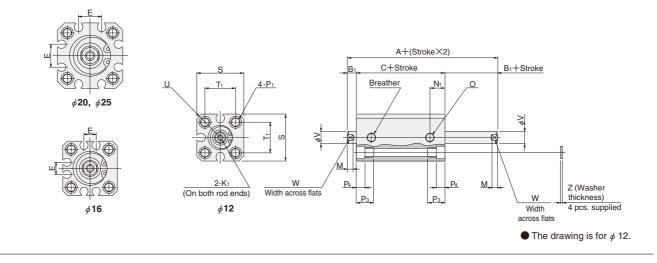
Note: Sensor switch codes A and B show the lead wire lengths. A: 1000mm [39in.] B: 3000mm [118in.]


Single acting type

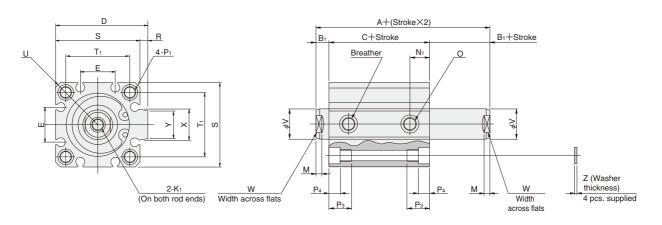
Single act	ing ty	/pe											g [oz.]
Item				Basic m	ass Note1				Additional mass of cylinder with magnet	Mass of mou	nting bracket	Additional mass of sensor switch Note2	
Bore Stroke mm mm [in.]	5	10	15	20	25	30	35	40	5∼30 (<i>φ</i> 50: 10∼40.)	Foot bracket	Flange bracket	ZE	ZEBB
12 [0.472]	42.64 [1.504]	50.16 [1.769]	57.69 [2.035]	76.83 [2.710]	84.35 [2.975]	91.88 [3.241]	-	-	7.78 [0.274]	50 [1.76]	55 [1.94]		
16 [0.630]	62.08 [2.190]	72.13 [2.544]	82.18 [2.899]	106.48 [3.756]	116.53 [4.110]	126.58 [4.465]	_	_	10.32 [0.364]	62 [2.19]	71 [2.50]		
20 [0.787]	84.93 [2.996]	99.31 [3.503]	113.68 [4.010]	147.6 [5.206]	161.98 [5.714]	176.35 [6.220]	—	-	23.38 [0.825]	84 [2.96]	101 [3.56]		
25 [0.984]	120.1 [4.236]	140.07 [4.941]	160.04 [5.645]	206.73 [7.292]	226.7 [7.996]	246.67 [8.701]	—	—	39.1 [1.379]	104 [3.67]	160 [5.64]	15 [0.53]	35 [1.23]
32 [1.260]	187.86 [6.626]	216.33 [7.631]	244.79 [8.635]	335.01 [11.817]	363.48 [12.821]	391.94 [13.825]	-	-	50.58 [1.784]	126 [4.44]	186 [6.56]		
40 [1.575]	266 [9.38]	297.75 [10.503]	329.49 [11.622]	448.28 [15.812]	480.02 [16.932]	511.77 [18.052]	-	-	69.42 [2.449]	160 [5.64]	335 [11.82]		
50 [1.969]		401.18 [14.151]	448.67 [15.826]	496.15 [17.501]	639.23 [22.548]	686.72 [24.223]	734.2 [25.898]	781.69 [27.573]	106.05 [3.741]	220 [7.76]	447 [15.77]		

Notes: 1. The above table is for the standard strokes. 2. Sensor switch codes A and B show the lead wire lengths. A: 1000mm [39in.] B: 3000mm [118in.]

 $\begin{array}{l} \mbox{Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches ($ **ZE135A** $) \\ 104.2+(3.99\times30)+37.47+(15\times2)=291.37g \ [10.278oz.] \end{array}$

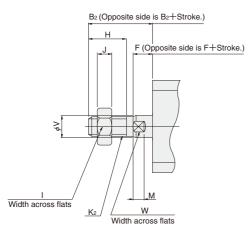


※ Some types of mounting screws are available (to be ordered separately). See p.209.

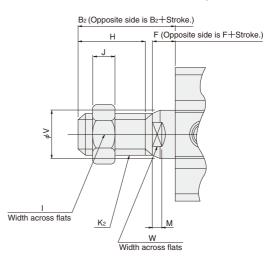


$$\phi$$
 32 \sim ϕ 50

CSAD Bore size

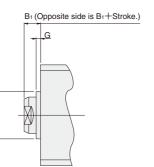

Туре	Standard cylinder (CSAD) Cylinder with magn								magne	t (CSAD	S)								
Stroke	5~15	(φ 50 : 10	0~ 20)	16~30	ο (φ 50 : 2	1~40)	5~	15 (<i>φ</i> 50	: 10~20) 16~	~ 30 (<i>φ</i> 5	0: 21~4	D) D	E	1	K 1	М	N 1	0
Bore Code mm [in.]	Α	B 1	С	Α	B1	С	Α	B 1	С	A	B	1 C							
12 [0.472]	38	5	28	48	5	38	43	5	33	53	5	43	-	-	M3×0.5	5 Depth6	3.5	8	M5×0.8
16 [0.630]	39	5.5	28	49	5.5	38	44	5.5	33	54	5.	5 43		6.	2 M4X0.7	Depth8	3.5	8	M5×0.8
20 [0.787]	37	5.5	26	47	5.5	36	47	5.5	36	57	5.	5 46	-	12.	2 M5×0.8	B Depth10	4.5	9.5	M5×0.8
25 [0.984]	38.5	6	26.5	48.5	6	36.5	48.5	6	36.	5 58.	5 6	46.	5 —	12.	2 M6X1	Depth10	5	10.5	M5×0.8
32 [1.260]	44	7	30	59	7	45	54	7	40	69	7	55	48.	5 18.	2 M8×1.2	25 Depth12	6	9.5	Rc1/8
40 [1.575]	47	7	33	62	7	48	57	7	43	72	7	58	56.	5 18.	2 M8X1.2	25 Depth12	6	10.5	Rc1/8
50 [1.969]	48	9	30	63	9	45	58	9	40	73	9	55	70	24.	8 M10X1.	.5 Depth15	7	11	Rc1/4
Bore Code			P	1			P ₃	P 4	R	S	T 1	U	v	w	х	Y	Z		propriate ugh bolt %
12 [0.472]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)			n sides)	9.5	4.5	-	25	16.3	R16	6	5	-	-	1		M3		

r	nm (in.)													through bolt %
	12 [0.472]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	-	25	16.3	R16	6	5	-	-	1	M3
	16 [0.630]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	-	29	19.8	R19	8	6	-	-	1	M3
	20 [0.787]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	-	34	24	R22	10	8	-	-	1	M3
	25 [0.984]	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 $\times1$ (Both sides)	11.5	5.5	-	40	28	R25	12	10	-	-	1	M4
_	32 [1.260]	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6 \times 1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
	40 [1.575]	ϕ 6.9 (Thru hole) Counterbore ϕ 9.5 (Both sides) and M8 \times 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
	50 [1.969]	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6


% Some types of mounting screws are available (to be ordered separately). See p.209.

Double acting type, Single acting type

• ϕ 32 ~ ϕ 100 (Single acting type available up to ϕ 50)



Bore Code	B ₂	F	н	I	J	K2	М	v	W
6 [0.236]	15	5	8	5.5	1.8	M3×0.5	3	4	3.5
8 [0.315]	15	5	8	7	2.4	M4×0.7	3	5	4
10 [0.394]	15	5	8	7	2.4	M4×0.7	3	5	4
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

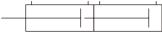
φL.⁰.1

Bore Code mm [in.]	B 1	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

•Not available for bore sizes $\phi 6, \phi 8, \phi 10$ and $\phi 12$.

JIG CYLINDERS C SERIES TANDEM CYLINDERS

Double Acting Type, Single Acting Push Type



Symbols

Double acting type

Specifications

Bore Item	size	e mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]		
Operation typ	е		Double acting type, Single acting push type							Doub	le acting	g type		
Media				Air										
Operating	2	Double acting type		0.2~1.0 [29~145]						0.1~1.0 [15~145]				
pressure rang MPa [ps	·	Single acting type		0.3~1.0 [44~145] 0.2~							_			
Proof pressure	N	IPa [psi.]					1.5 [218]						
Operating temperatu	re ra	inge °C [°F]	0~	~60 [32	~140]	(The hea	at resista	ant spec	cificatior	n is 120	[248]. ^{No}	^{ote1})		
Operating speed	Dou	uble acting type		30	~500 [1.2~19	9.7]		30	~300 [1.2~11	.8]		
range mm/s [in./sec.]	Sin	gle acting type		100)~500	[3.9~1	9.7]		100~300 [3.9~11.8]		_			
Cushion	Dou	uble acting type		Rubber bumper (Option Note2)										
Cushion	Sin	gle acting type				None					-			
Lubrication			Not req	uired (If Iu	ubrication	is require	ed, use T	urbine Oi	Class 1	ISO VG3	2] or equ	ivalent.)		
Port size				M5×0.8 Rc1/8 Rc1/4 Rc3/8					3/8					

Remark: For Handling Instructions and Precautions, see p.205.

Notes: 1. For heat resistant specification, consult us.

2. Not available for heat resistant specification.

Bore Size and Stroke

Operation of	f Tandem	Cylinders
--------------	----------	-----------

Tandem Cylinders are a set of 2 cylinders joined end to end.

It can be used as a two-stage stroke cylinder by supplying air to either Port A or Port B. It can also obtain twice the thrust within the "stroke I" range.

The rods retract strokes II and I when air is supplied from Port ©.

The rod moves stroke I when air is supplied from Port $\, \, \underline{\ensuremath{\mathbb{R}}} \,$

The rod moves stroke ${\rm I\!I}$ when air is supplied from Port ${}^{\textcircled{B}}.$

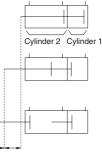
ç ®√ A√

Twice the thrust is obtained within the stroke I range when air is supplied from Ports (A) and (B).

For non-	standa	rd stro	kes, see p.2	206.										mm
Operation type	Stroke1 Bore size		5	10	15	20	25	30	35	40	45	50	75	100
	12,	16	0,5,10 15,20,25	0,5,10 15,20	0,5,10,15	0,5,10	0,5	0	—	_	_	_	_	_
Double acting	20,	25	0,5,10,15 20,25,30 35,40,45	0,5,10,15 20,25,30 35,40	0,5,10 15,20,25 30,35	0,5,10,15 20,25,30	0,5,10 15,20,25	0,5,10 15,20	0,5,10,15	0,5,10	0,5	0	-	_
type CDAT CDATS	32,	40	0,5,10,15 20,25,30,35 40,45,70,95	0,5,10,15 20,25,30,35 40,65,90	0,5,10,15 20,25,30 35,60,85	0,5,10,15 20,25,30 55,80	0,5,10 15,20,25 50,75	0,5,10 15,20 45,70	0,5,10,15 40,65	0,5,10 35,60	0,5,30,55	0,25,50	0,25	0
	50, 63 80, 100		_	0,5,10,15 20,25,30,35 40,65,90	0,5,10,15 20,25,30 35,60,85	0,5,10,15 20,25,30 55,80	0,5,10 15,20,25 50,75	0,5,10,15 20,45,70	0,5,10,15 40,65	0,5,10 35,60	0,5,30,55	0,25,50	0,25	0
Single acting	12, 16, 20 25, 32, 40		0,5,10 15,20,25	0,5,10 15,20	0,5,10,15	0,5,10	0,5	0	—	_	_	_	_	-
type CSAT CSATS	5	0	—	0,5,10,15 20,25,30	0,5,10 15,20,25	0,5,10 15,20	0,5,10,15	0,5,10	0,5	0	_	_	_	-

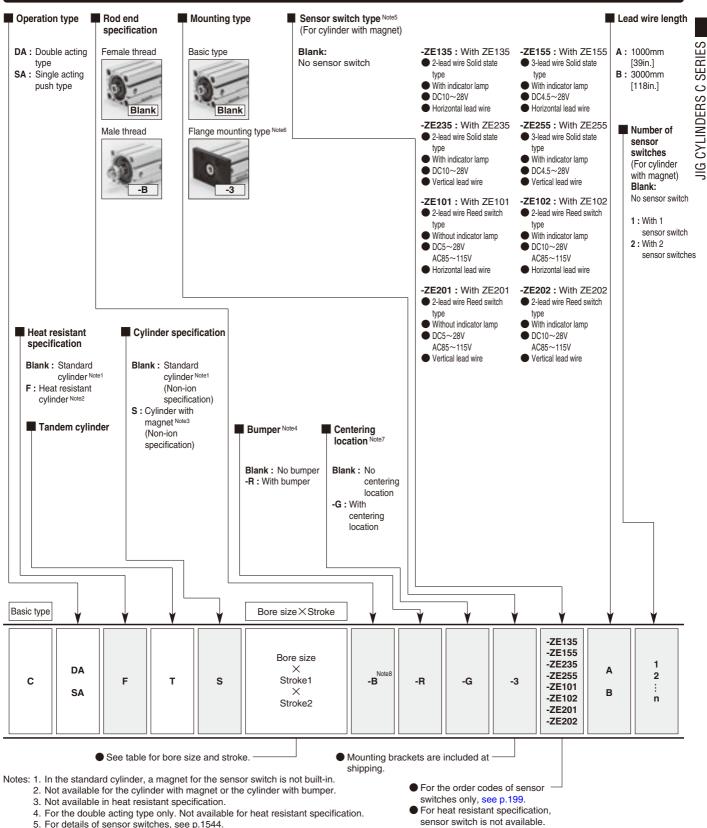
Remarks: 1. Stroke tolerance: Stroke 1 side $^{+1}_{-0.2}$ [$^{+0.039in.}_{-0.008in.}$], stroke 2 side $^{+1}_{0}$ [$^{+0.039in.}_{0}$]

The figures in the table are combinations of stroke 2 (standard) responding to stroke 1 (standard).
 In most cases, body cutting is used for the non-standard strokes.


However, body cutting is not used for "Stroke 1" or "Stroke 1 + Stroke 2" under the condition mentioned below. The collar packed is used for these cases.

 ϕ 12 $\sim \phi$ 40: less than 5mm ϕ 50 $\sim \phi$ 100: less than 10mm

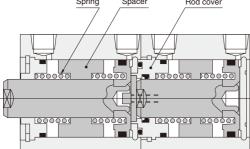
About stroke 1 and stroke 2

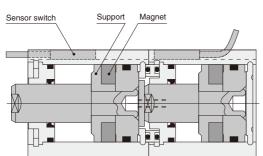

Stroke 1 is the stroke of cylinder 1.

Stroke 2 is obtained by subtracting stroke 1 from the stroke of cylinder 2.

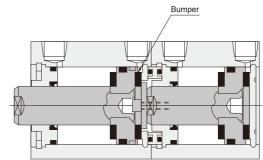
Order Codes for Tandem Cylinders

- 5. For details of sensor switches, see p.1544.
- 6. The flange mounting bracket can be mounted on the rod side only.
- Moreover, it cannot be mounted on the bore size ϕ 40 with centering location (-G).
- 7. Not available for the bore size ϕ 12.
- 8. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

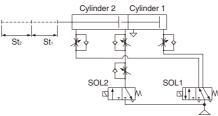

Additional Parts (To be ordered separately)

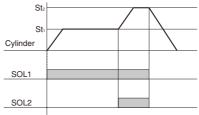


Flange mounting bracket (p.198)

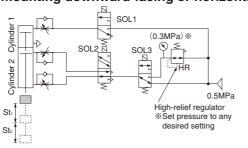

Double acting type (CDAT) ϕ 12 $\sim \phi$ 40 ϕ 50 $\sim \phi$ 100 Tube gasket Rod cover A Gasket for joint section Piston seal Rod sea Snap ring Head cover Piston rod Piston ľ ē Æ Cylinder body 5 Н Cylinder 2 Cylinder 1 Single acting push type (CSAT) Rod cover Spring Spacer

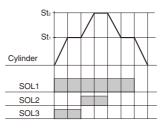
•Cylinder with magnet


With bumper



Tandem Cylinder Air Circuit Examples


When using a tandem cylinder as a 2-stage stroke cylinder, refer to the air circuits shown below. For application of other air circuits not shown below, consult us.


For mounting upward-facing cylinders

For mounting downward-facing or horizontal cylinders

163

Parts Bore mm	φ 12	<i>φ</i> 16	<i>φ</i> 20	<i>φ</i> 25	φ 32	<i>φ</i> 40	φ 50	<i>φ</i> 63	<i>φ</i> 80	<i>φ</i> 100					
Cylinder body			/	Alumin	um all	oy (an	odized)							
Piston		Aluminum alloy (special rust prevention treatment)													
Piston rod	Stainle	Stainless steel (chrome plated) Steel (chrome plated)													
Seal		Synthetic rubber (NBR)													
Rod cover		Aluminum alloy (special wear-resistant treatment)													
Head cover			/	Alumin	um all	oy (an	odized)							
Snap ring				Steel (phosp	hate c	oating))							
Spring			Pi	ano wi	re				—						
Spacer	Alum	inum all	oy (spec	cial rust	preventi	on treati	ment)		_						
Bumper		Synt	hetic r	ubber	(NBR;	uretha	ine for	φ 12 (only)						
Magnet				F	Plastic	magne	et								
Support		Alumi	num al	loy (sp	ecial r	ust pre	eventic	on trea	tment)						

Seals

Parts	Rod seal	Piston seal	Tube	Gasket for				
Bore mm	Hou seal	Fision sea	Rod side	Head side	joint section			
φ 12	MYR-6	COP-12	Y090260	None	Y090119			
φ 16	MYR-8	COP-16	Y090207	None	M202208			
φ 20	MYR-10	COP-20(MYA-16)	Y090216	None	L090134			
φ 25	MYR-12	COP-25(MYA-21)	Y090210	None	Y090196			
φ 32	MYR-16	COP-32	L090084	None	L090015			
φ 40	MYR-16	COP-40	L090151	None	L090028			
<i>φ</i> 50	MYR-20	COP-50	L090174	L090106	None			
φ 63	MYR-20	COP-63	L090180	L090107	None			
φ 80	PNY-25	COP-80	L090171	L090108	None			
<i>φ</i> 100	PNY-32	COP-100	L090172	L090109	None			

Note: Items in parentheses () are for the single acting type.

Mass

Double acting type

Double ad	cting type							g [oz.]				
Bore size	Zero stroke	Additional mass for each 1mm [0.0394in.]	Additional mass for each 1mm [0.0394in.]	Additional mass of	Additional mass of	Mass of mounting bracket	Additional mass of sensor switch Not					
mm [in.]	mass Note1	of stroke1	of stroke2	cylinder with bumper	cylinder with magnet	Flange bracket	ZE	ZE				
12 [0.472]	44.26 [1.561]	2.68 [0.095]	1.28 [0.045]	13.39 [0.472]	13.73 [0.484]	55 [1.94]						
16 [0.630]	61.11 [2.156]	3.34 [0.118]	1.62 [0.057]	16.71 [0.589]	20.41 [0.720]	71 [2.50]						
20 [0.787]	96.79 [3.414]	4.63 [0.163]	2.26 [0.080]	23.14 [0.816]	52.54 [1.853]	101 [3.56]						
25 [0.984]	147.69 [5.210]	6.41 [0.226]	3.11 [0.110]	32.05 [1.131]	76.92 [2.713]	160 [5.64]	15 [0 52]					
32 [1.260]	220.3 [7.771]	8.43 [0.297]	4.11 [0.145]	42.13 [1.486]	106.84 [3.769]	186 [6.56]		25 [1 02]				
40 [1.575]	345.12 [12.174]	9.85 [0.347]	4.77 [0.168]	0	141.38 [4.987]	335 [11.82]	15 [0.53]	35 [1.23]				
50 [1.969]	562.47 [19.840]	14.51 [0.512]	7.03 [0.248]	0	220.44 [7.776]	447 [15.77]						
63 [2.480]	890.99 [31.428]	17.83 [0.629]	8.69 [0.307]	0	322.44 [11.374]	591 [20.85]						
80 [3.150]	1770.07 [62.436]	26.91 [0.949]	13.06 [0.461]	0	497.9 [17.563]	1414 [49.88]						
100 [3.940]	3252 [114.7]	38.46 [1.357]	18.61 [0.656]	0	732.34 [25.832]	2606 [91.92]						

Notes: 1. The above table is for the standard strokes.

2. Sensor switch codes A and B show the lead wire lengths.

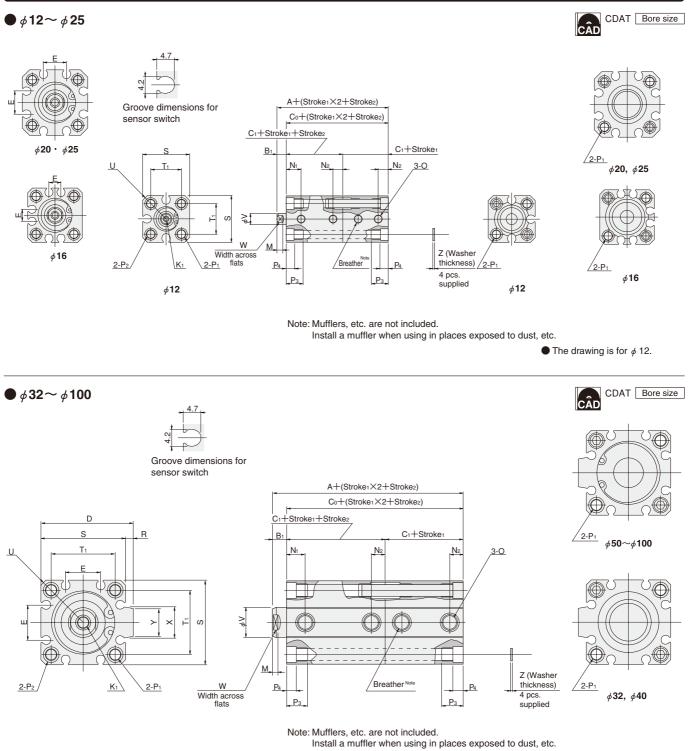
A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 25mm, 30mm for stroke 1, 10mm for stroke 2, and 2 sensor switches (ZE135A) $147.69 + (6.41 \times 30) + (3.11 \times 10) + 76.92 + (15 \times 2) = 478.01g [16.861oz.]$

Single acting push type

Single ac	ting push type								g [oz.]	
		Zero stroke mass Note1		Additional mass for	Additional		Mass of mounting	Additional mass of sensor switch Note2		
. .		Stroke1			mass for	Additional	bracket			
Bore size mm [in.]	5~15 (<i>φ</i> 5	50: 10~20)	16~30 (<i>φ</i> 50: 21~40)	each 1mm	each 1mm	mass of cylinder with	-	ZE		
		Stroke1+Stroke2		[0.0394in.]	[0.0394In.]	magnet	Flange bracket		ZE	
	5~15 (φ 50: 10~20)	16~30 (<i>ϕ</i> 5	i0: 21~40)	of stroke1	of stroke2		bracket			
12 [0.472]	55.88 [1.971]	69.98 [2.468]	85.21 [3.006]	2.68 [0.0945]	1.28 [0.0451]	16.11 [0.568]	55 [1.94]			
16 [0.630]	80.31 [2.833]	99.64 [3.515]	120.1 [4.236]	3.34 [0.118]	1.62 [0.0571]	21.21 [0.748]	71 [2.50]			
20 [0.787]	96.88 [3.417]	124.84 [4.404]	153.93 [5.430]	4.63 [0.163]	2.26 [0.0797]	51.89 [1.830]	101 [3.56]			
25 [0.984]	147.45 [5.201]	186 [6.561]	226.53 [7.990]	6.41 [0.226]	3.11 [0.110]	80.18 [2.828]	160 [5.64]	15 [0.53]	35 [1.23]	
32 [1.260]	223.01 [7.866]	306.96 [10.828]	393.89 [13.894]	8.43 [0.297]	4.11 [0.145]	103.14 [3.638]	186 [6.56]			
40 [1.575]	345.03 [12.170]	453.44 [15.994]	566.48 [19.982]	9.85 [0.347]	4.77 [0.168]	141.93 [5.006]	335 [11.82]			
50 [1.969]	561.93 [19.821]	691.19 [24.381]	827.1 [29.175]	14.51 [0.512]	7.03 [0.248]	216.54 [7.638]	447 [15.77]			

Notes 1: The above table is for the standard strokes.

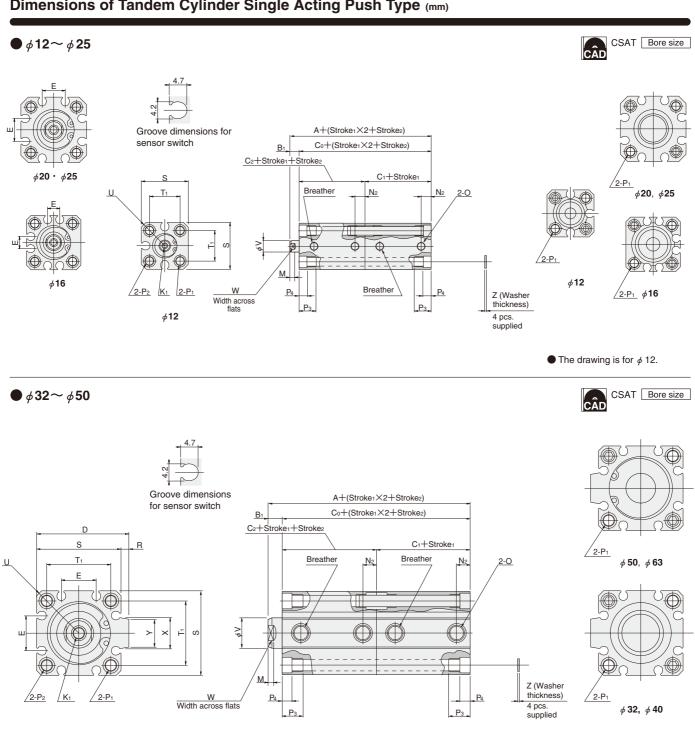

2: Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a single acting push type cylinder with magnet, bore size of 25mm,

10mm for stroke 1, 20mm for stroke 2, and 2 sensor switches (ZE135A)

 $186 + (6.41 \times 10) + (3.11 \times 20) + 80.18 + (15 \times 2) = 422.48g [14.902oz.]$

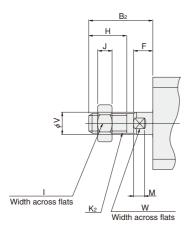


Dimensions of Tandem Cylinder Double Acting Type (mm)

Туре	Stand	ard cyli	inder (C	CDAT)	Cylinde	r with m	agnet (C	DATS)	Standard	cylinder wi	th bumper	(CDAT-R)	Cylinder wi	th magnet w	ith bumper (CDATS-R)	D	Е	K 1	м	N1	N2	0
Bore Code	Α	B1	C ₀	C 1	Α	B1	C ₀	C 1	Α	B 1	C ₀	C 1	Α	B1	C ₀	C 1	U	E	N 1	IVI	IN1	IN2	0
12 [0.472]	39	5	34	17	49	5	44	22	49	5	44	22	59	5	54	27	—	—	M3×0.5 Depth6	3.5	8	5	M5×0.8
16 [0.630]	39.5	5.5	34	17	49.5	5.5	44	22	49.5	5.5	44	22	59.5	5.5	54	27	—	6.2	M4×0.7 Depth8	3.5	8	5	M5×0.8
20 [0.787]	44.5	5.5	39	19.5	64.5	5.5	59	29.5	54.5	5.5	49	24.5	74.5	5.5	69	34.5	—	12.2	M5×0.8 Depth10	4.5	9.5	5	M5×0.8
25 [0.984]	48	6	42	21	68	6	62	31	58	6	52	26	78	6	72	36	—	12.2	M6×1 Depth10	5	10.5	5	M5×0.8
32 [1.260]	53	7	46	23	73	7	66	33	63	7	56	28	73	7	66	33	48.5	18.2	M8×1.25 Depth12	6	9.5	7.5(6)	Rc1/8
40 [1.575]	59	7	52	26	79	7	72	36	59	7	52	26	79	7	72	36	56.5	18.2	M8×1.25 Depth12	6	10.5	7.5	Rc1/8
50 [1.969]	65	9	56	28	85	9	76	38	65	9	56	28	85	9	76	38	70	24.8	M10×1.5 Depth15	7	11	9.5	Rc1/4
63 [2.480]	73	9	64	32	93	9	84	42	73	9	64	32	93	9	84	42	83	26.8	M10×1.5 Depth15	7	12.5	11	Rc1/4
80 [3.150]	93	11	82	41	113	11	102	51	93	11	82	41	113	11	102	51	102	32.8	M14×2 Depth20	9	18	12	Rc3/8
100 [3.940]	114	12	102	51	134	12	122	61	114	12	102	51	134	12	122	61	122	32.8	M18×2.5 Depth20	9	22.5	16.5	Rc3/8

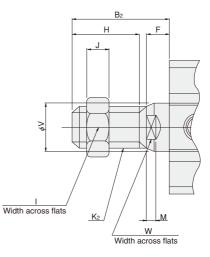
Bore Code mm [in.]	P 1	P ₂	P3	P 4	R	s	T 1	U	v	w	х	Y	z	Appropriate through bolt %
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)	Counterbore ϕ 6.5 and M5×0.8	9.5	4.5	-	25	16.3	R16	6	5	-	-	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)	Counterbore ϕ 6.5 and M5×0.8	9.5	4.5	—	29	19.8	R19	8	6	—	-	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Both sides) and M5 $\times 0.8$ (Both sides)	Counterbore ϕ 6.5 and M5×0.8	9.5	4.5	-	34	24	R22	10	8	-	-	1	M3
25 [0.984]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6×1 (Both sides)	Counterbore $\phi 8$ and M6×1	11.5	5.5	_	40	28	R25	12	10	-	-	1	M4
32 [1.260]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both sides) and M6×1 (Both sides)	Counterbore $\phi 8$ and M6×1	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore ϕ 9.5 (Both sides) and M8 $\times1.25$ (Both sides)	Counterbore ϕ 9.5 and M8×1.25	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)	Counterbore ϕ 11 and M8×1.25	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both sides) and M8 \times 1.25 (Both sides)	Counterbore ϕ 11 and M8×1.25	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 [3.150]	ϕ 10.5 (Thru hole) C'bore ϕ 14 (Both sides) and M12×1.75 (Both sides)	Counterbore ϕ 14 and M12×1.75	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 [3.940]	ϕ 12.3 (Thru hole) C'bore ϕ 17.5 (Both sides) and M14 $\times 2$ (Both sides)	Counterbore ϕ 17.5 and M14 \times 2	27	13	8	114	90	R75	32	27	27.6	25	2	M10

Note: Figure in parentheses () is for the standard cylinder (**CDAT**) when stroke 1, or stroke 1 + stroke 2 is 5mm. % Some types of mounting screws are available (to be ordered separately). See p.209.


Dimensions of Tandem Cylinder Single Acting Push Type (mm)

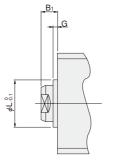
	Type oke1					dard cyli									-	r with m		- - - - 5.5 79 39.5 39.5 - - - - 6 82 41 41 - - - - 7 96 48 48 - - - - 7 96 51 51 7 102 51 51 - - - - 9 106 53 53 re ϕ 6.5 (Both sides) oth sides)											
~	Code			· ·	10~20)	•			<u>, , , , , , , , , , , , , , , , , , , </u>	21~40)	0		1	(¢ 50: 1	,	•			.,		,								
mm [in.] Note	D1	A 49	B1	C ₀ 44	C 1	C ₂ 22	A	B 1	C ₀	C1	C ₂	A 59	B1	C ₀ 54	C 1	C ₂ 27	A 	B 1			C2								
12 [0.472]	D2	49 59	5	54	22	32	69	5	64	32	32	69	5	64	27	37	79	5			37								
16	D1	49.5		44		22	_	_	-	-	_	59.5		54		27	_				-								
[0.630]	D2	59.5	5.5	54	- 22	32	69.5	5.5	64	32	32	69.5	- 5.5	64	27	37	79.5	5.5	74	37	37								
20	D1	44.5	5.5	39	19.5	19.5	-	—	-	—	-	64.5	5.5	59	29.5	29.5	-	—	—	-	-								
[0.787]	D2	54.5	5.5	49	19.5	29.5	64.5	5.5	59	29.5	29.5	74.5	5.5	69	29.5	39.5	84.5	5.5	79	39.5	39.5								
25	D1	48	6	42	21	21		_	-	-	_	68	6	62	31	31	-				-								
[0.984]	D2	58		52		31	68	6	62	31	31	78 73		72		41	88												
32 [1.260]	D1 D2	53 68	7	46 61	23	23 38	83	7	76	38	38	88	7	66 81	33	33 48	103												
40	D1	59		52		26	_	_	-	-	_	79		72		36	_				-								
[1.575]	D2	74	7	67	26	41	89	7	82	41	41	94	- 7	87	36	51	109	7	102	51	51								
50	D1	65	0	56	00	28	-	-	-	-	-	85	0	76	00	38	-	-	-	-	-								
[1.969]	D2	80	9	71	- 28	43	95	9	86	43	43	100	9	91	38	53	115	9	106	53	53								
	0																												
_mm [in.]	Code	D	E		- 1	(1	N	Λ	N2		0			1 4 0 (TI		P 1		(D	1.1.e.e.)									
12 [0.472]	D1 D2	_	-	-	M3×0.5	Depth6	3	.5	5	М	5×0.8			φ4.3 (-				ides)									
16	D2	— 62 M4×												d 4 3 (oth sides) re ϕ 6.5 (Both sides) oth sides)											
[0.630]	D2	<u> </u>				Depth8	3	.5	5	M	5×0.8			φ 1.0 (-				1000)									
20	D1					Durild		_	-		= > / 0 0			φ 4.3 (,	ides)									
[0.787]	D2		12	2.2	M5×0.8	Depth1	0 4	and M5×0.8 (Both sides)																					
25	D1	-	12	2.2	$M6 \times 1$	Depth1	0 5		5	м	5×0.8			φ 5.1 (Thru ho	le) Cou	nterbore	e ø8	(Both s	ides)									
[0.984]	D2					Dopun										M6×1			,										
32 [1.260]	D1 D2	48.5	18	3.2	M8×1.25	5 Depth1	2 6		7.5	F	Rc1/8	8 ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides and M6×1 (Both sides)					ides)												
40	D2	-												469(,	ides)									
[1.575]	D2	56.5	18	3.2	M8×1.25	5 Depth1	2 6		7.5	F	Rc1/8			φ 0.5 (iues)									
50	D1	70												φ 6.9 (-	des)									
[1.969]	D2	70	24	.8	M10×1.5	5 Depth1	5 7		9.5	F	Rc1/4				and	M8×1	.25 (Bo	th sides	5)										
Bore mm [in.]	Code		F	2		P3	F	4	R	s	1	F1	U	v	V	v	x	Y	1										
12	D1	Co	ounterb	ore ϕ	6.5			_					Dif			_					<u> </u>								
[0.472]	D2		and M	, 5×0.	8	9.5	4	5	_	25	16	5.3	R16	6		5	_		1		M3								
16	D1	Co	ounterb	ore ϕ	6.5	9.5	4	5	_	29	10	9.8	R19	8		6	_	_	1		M3								
[0.630]	D2		and M			5.5		-		23	13			0		<u> </u>			-		WIO								
20 [0.787]	D1		ounterb			9.5	4	.5	_	34	24	4	R22	10		8	_	_	1		M3								
25	D2 D1		and M ounter																										
25 [0.984]	D1 D2	U	and N			11.5	5	.5	-	40	28	3	R25	12	1	0	-	—	1		M4								
32	D1	C	counter			44.5	-	_	4.5		-		D00 5				45	40.5											
[1.260]	D2		and M	16×1		11.5	5	.5	4.5	44	34	+	R29.5	16	1	4	15	13.6	1		M4								
40	D1		ounterb			15.5	7.	5	4.5	52	4(5	R35	16	1	4	15	13.6	1	.6	M5								
[1.575]	D2		and M8				_																						
50 [1 969]	D1		ounterk			16.5	8	5	8	62	48	з	R41	20	1	7	21.6	19	1	.6	M6								
[1.969]	D2	á	and M8	5×1.2	25																								

Notes: D1 is when stroke1 + stroke2 is 5~15 (¢ 50: 10~20) mm. D2 is when stroke1 + stroke2 is 16~30 (¢ 50: 21~40) mm.
※ Some types of mounting screws are available (to be ordered separately). See p.209.


JIG CYLINDERS C SERIES

- Double acting type, Single acting push type
- ϕ 12~ ϕ 25

● *ϕ* 32~ *ϕ* 100


(Single acting type available up to ϕ 50)

Bore Code mm [in.]	B ₂	F	Н	I	J	K2	М	V	W
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

Bore Code mm [in.]	B1	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

•Not available for bore size ϕ 12.

JIG CYLINDERS C SERIES DUAL STROKE CYLINDERS

Double Acting Type, Single Acting Push Type, Single Acting Pull Type

Symbols

• Double acting type • Single acting push type • Single acting pull type

Specifications

Bore Item	size	mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]	
Operation typ	е		Double a	acting type	, Single a	cting push	n type, Sin	gle acting	pull type	Doub	e acting	g type	
Media							A	ir					
Operating		Double acting type				~1.0 ~145]					0.05~1.0 [7~145]		
pressure rang MPa [ps	·	Single acting type	0.15~1.0 Note1 0.1~1.0 [22~145] [15~145]								_		
Proof pressure	M	Pa [psi.]					1.5 [218]					
Operating temperatu	re rar	nge °C [°F]	$0\sim\!60$ [32 $\sim\!140$] (The heat resistant specification is 120 [248]. Note2)										
Operating speed	Dou	ble acting type		30	~500 [1.2~19).7]		30	~300 [1.2~11	.8]	
range mm/s [in./sec.]	Sing	le acting type	e $100 \sim 500 [3.9 \sim 19.7]$ $\frac{100 \sim 30}{[3.9 \sim 11.7]}$								-		
Cushion	Dou	ble acting type	Rubber bumper (Option Note2)										
Cushion	Sing	le acting type	None -										
Lubrication			Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)										
Port size			M5×0.8 Rc1/8 Rc1/4 Rc3/8								3/8		

Remark: For Handling Instructions and Precautions, see p.205.

Notes: 1. The single acting pull type of ϕ 12 is 0.18~1.0MPa [26~145psi.].

2. For heat resistant specification, consult us.

3. Not available for heat resistant specification.

Bore Size and Stroke

_		Standard	d strokes				
For non-standard strol Operation type B Double acting type Single acting type	Bore size	Standard cylinder	Cylinder with magnet				
	12						
	16	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30				
	20	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50				
	25	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50				
Double	32	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100				
acting type	40	3, 10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100					
	50						
	63	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100				
	80	10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100				
	100						
	12						
	16						
Cingle	20	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30				
•	25	3, 10, 13, 20, 23, 30	3, 10, 13, 20, 23, 30				
acting type	32						
	40						
	50	10, 15, 20, 25, 30, 35, 40	10, 15, 20, 25, 30, 35, 40				

Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$]

2. In most cases, body cutting is used for the non-standard strokes.

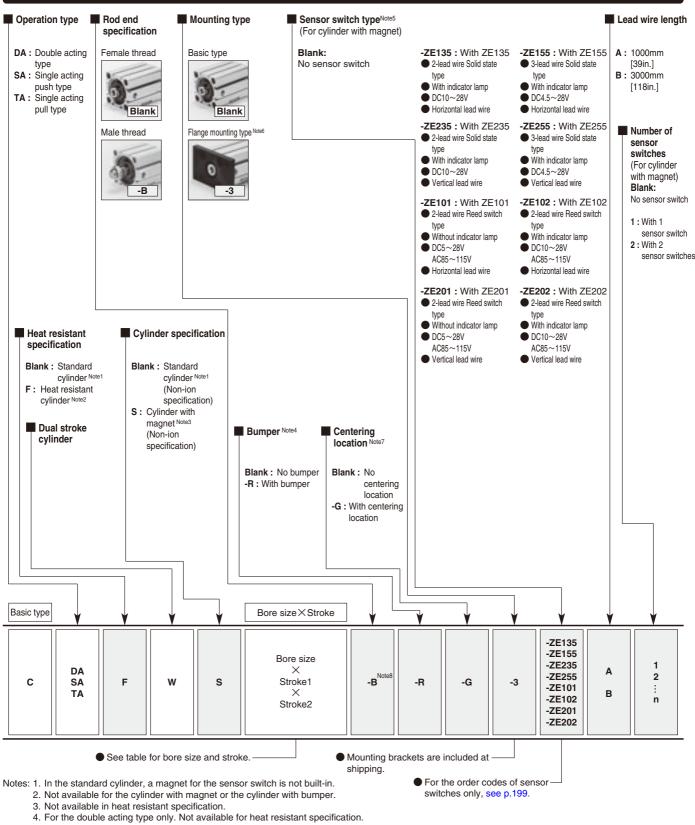
However, body cutting is not used for strokes of less than 5mm for ϕ 12 $\sim \phi$ 40, and strokes of

less than 10mm for ϕ 50 $\sim \phi$ 100. The collar packed is used for these cases.

Operation of Dual Stroke Cylinders

Dual Stroke Cylinders are a set of 2 cylinders connected back to back.

The cylinder body can be secured in place and each stroke can be controlled separately. It can also be used to obtain 2-stage or 3-stage strokes by securing the piston rod on one side in place.


The rods retract stroke 1 and stroke 2 when air is supplied from Ports B and D .

The rod moves stroke 1 when air is supplied from Ports B and D.

The rod moves stroke 2 when air is supplied from Ports (Å) and C.

The rod moves stroke 1 and stroke 2 when air is supplied from Ports (B) and $(\bar{\mathbb{O}}).$

Order Codes for Dual Stroke Cylinders

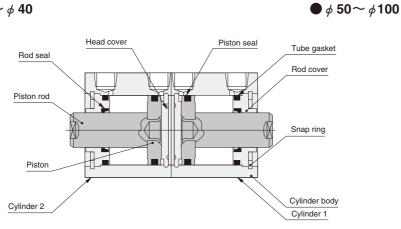
5. For details of sensor switches, see p.1544.

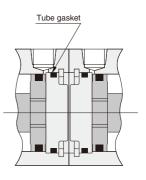
6. The flange mounting bracket can be mounted on the end of cylinder 2 only. Moreover,

it cannot be mounted on the bore size ϕ 40 with centering location (-G).

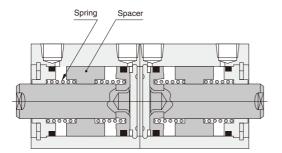
7. Not available for the bore size ϕ 12.

8. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

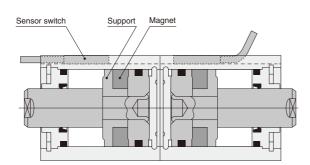

Additional Parts (To be ordered separately)



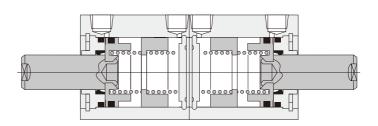
Flange mounting bracket (p.198)

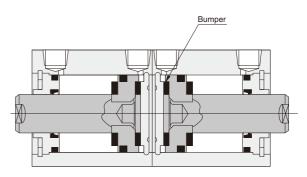

Double acting type (CDAW)

ϕ 12 $\sim \phi$ 40



• Single acting push type (CSAW)


• Cylinder with magnet


Major Parts and Materials

Parts Bore mm	φ 12	<i>φ</i> 16	φ 20	φ 25	φ 32	φ 40	φ 50	φ 63	φ 80	<i>φ</i> 100		
Cylinder body			1	Alumin	um allo	oy (an	odized)				
Piston		Alumi	num al	loy (sp	ecial r	ust pre	eventic	on trea	tment)			
Piston rod	Stainless steel (chrome plated) Steel (chrome plated)											
Seal	Synthetic rubber (NBR)											
Rod cover	Aluminum alloy (special wear-resistant treatment)											
Head cover			/	Alumin	um allo	oy (and	odized)				
Snap ring				Steel (phosp	hate c	oating))				
Spring				-								
Spacer	Alum	inum all	oy (spec	cial rust	oreventi	on treati	ment)		_			
Bumper	Synthetic rubber (NBR; urethane for ϕ 12 only)											
Magnet				F	lastic	magne	et					
Support		Alumi	num al	loy (sp	ecial r	ust pre	eventic	on treat	tment)			

• Single acting pull type (CTAW)

• With bumper

Seals

Parts	Rod seal	Piston seal	Tube	gasket
Bore mm	Hou seal	FISION Seal	Rod side	Head side
φ 12	MYR-6	COP-12	Y090260	None
<i>φ</i> 16	MYR-8	COP-16	Y090207	None
φ 20	MYR-10	COP-20(MYA-16)	Y090216	None
φ 25	MYR-12	COP-25(MYA-21)	Y090210	None
φ 32	MYR-16	COP-32	L090084	None
<i>φ</i> 40	MYR-16	COP-40	L090151	None
<i>φ</i> 50	MYR-20	COP-50	L090174	L090106
φ 63	MYR-20	COP-63	L090180	L090107
φ 80	PNY-25	COP-80	L090171	L090108
φ 100	PNY-32	COP-100	L090172	L090109

Note: Items in parentheses () are for the single acting type.

Dual stroke

Double acting type

Double a	cting type							g [oz.]
Bore size	Zero stroke	Additional mass for each 1mm [0.0394in.]	Additional mass for each 1mm [0.0394in.]	Additional mass of	Additional mass of	Mass of mounting bracket	Additional mass of	sensor switch Note2
mm [in.]	mass Note1	of stroke1	of stroke2	cylinder with bumper	cylinder with magnet	Flange bracket	ZE	ZE
12 [0.472]	44.26 [1.561]	1.4 [0.0494]	1.28 [0.0451]	13.39 [0.472]	13.73 [0.484]	55 [1.94]		
16 [0.630]	61.11 [2.156]	1.73 [0.0610]	1.62 [0.0571]	16.71 [0.589]	20.41 [0.720]	71 [2.50]		
20 [0.787]	96.79 [3.414]	2.37 [0.0836]	2.26 [0.0797]	23.14 [0.816]	52.54 [1.853]	101 [3.56]		
25 [0.984]	147.69 [5.210]	3.3 [0.116]	3.11 [0.110]	32.05 [1.131]	76.92 [2.713]	160 [5.64]		
32 [1.260]	220.3 [7.771]	4.31 [0.152]	4.11 [0.145]	42.13 [1.486]	106.84 [3.769]	186 [6.56]	15 [0.53]	35 [1.23]
40 [1.575]	345.12 [12.174]	5.08 [0.179]	4.77 [0.168]	0	141.38 [4.987]	335 [11.82]	15 [0.55]	35 [1.23]
50 [1.969]	562.47 [19.840]	7.48 [0.264]	7.03 [0.248]	0	220.44 [7.776]	447 [15.77]		
63 [2.480]	896.12 [31.609]	9.14 [0.322]	8.69 [0.307]	0	322.4 [11.37]	591 [20.85]		
80 [3.150]	1755.88 [61.936]	13.51 [0.477]	13.06 [0.461]	0	494.4 [17.44]	1414 [49.88]		
100 [3.940]	3207.76 [113.15]	19.06 [0.672]	18.61 [0.656]	0	724.4 [25.55]	2606 [91.92]		

Notes 1: The above table is for the standard strokes.

2: Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 25mm, 30mm for stroke 1, 10mm for stroke 2, and with 2 sensor switches (**ZE135A**)

147.69+(3.3×30)+(3.11×10)+76.92+(15×2)=384.71g [13.570oz.]

Dual stroke

Single acting push type

Single ac	ting push t	уре								g [oz.]
		Zero stroke	e mass Note1		Additional	Additional		Mass of mounting	Additiona	I mass of
_		Stro	ke1		mass for	mass for	Additional	bracket	sensor s	witch Note2
Bore size mm [in.]	5~15 (¢ 5	50: 10~20)	16~30 (<i>φ</i>	50: 21~40)	each 1mm	each 1mm	mass of cylinder with			
		Stro	ke2		[0.0394in.]	[0.0394in.]	magnet	Flange bracket	ZE	ZE
	5~15 (¢ 50: 10~20)	16~30 (<i>φ</i> 50: 21~40)	5~15 (<i>φ</i> 50: 10~20)	16~30 (<i>φ</i> 50: 21~40)	of stroke1	of stroke2		Diacket		
12 [0.472]	55.88 [1.971] 69.98 [2.468]		71.1 [2.508]	85.21 [3.006]	1.4 [0.0494]	1.28 [0.0451]	16.11 [0.568]	55 [1.94]		
16 [0.630]	80.31 [2.833]	99.64 [3.515]	100.76 [3.554]	120.1 [4.236]	1.73 [0.0610]	1.62 [0.0571]	21.21 [0.748]	71 [2.50]		
20 [0.787]	96.88 [3.417]	124.84 [4.404]	125.96 [4.443]	153.93 [5.430]	2.37 [0.0836]	2.26 [0.0797]	51.89 [1.830]	101 [3.56]		
25 [0.984]	147.45 [5.201]	186 [6.561]	187.98 [6.631]	226.53 [7.990]	3.3 [0.116]	3.11 [0.110]	80.18 [2.828]	160 [5.64]	15 [0.53]	35 [1.23]
32 [1.260]	223.01 [7.866]	306.96 [10.828]	309.93 [10.932]	393.89 [13.894]	4.31 [0.152]	4.11 [0.145]	103.14 [3.638]	186 [6.56]		
40 [1.575]	345.03 [12.170]	453.44 [15.994]	458.06 [16.157]	566.48 [19.982]	5.08 [0.179]	4.77 [0.168]	141.93 [5.006]	335 [11.82]		
50 [1.969]	561.93 [19.821]	691.19 [24.381]	697.85 [24.616]	827.1 [29.175]	7.48 [0.264]	7.03 [0.248]	216.54 [7.638]	447 [15.77]		

Notes 1: The above table is for the standard strokes.

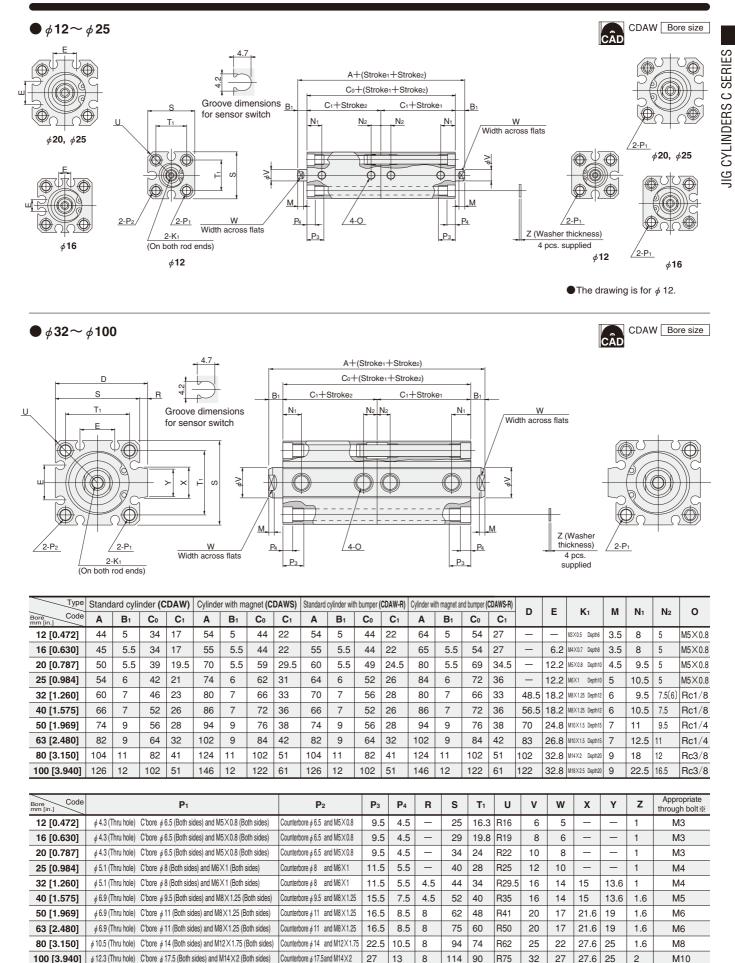
2: Sensor switch codes A and B show the lead wire lengths.

A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a single acting push type cylinder with magnet, bore size of 25mm, 20mm for stroke 1, 20mm for stroke 2, and with 2 sensor switches (ZE135A) $226.53 + (3.3 \times 20) + (3.11 \times 20) + 80.18 + (15 \times 2) = 464.91g [16.399oz.]$

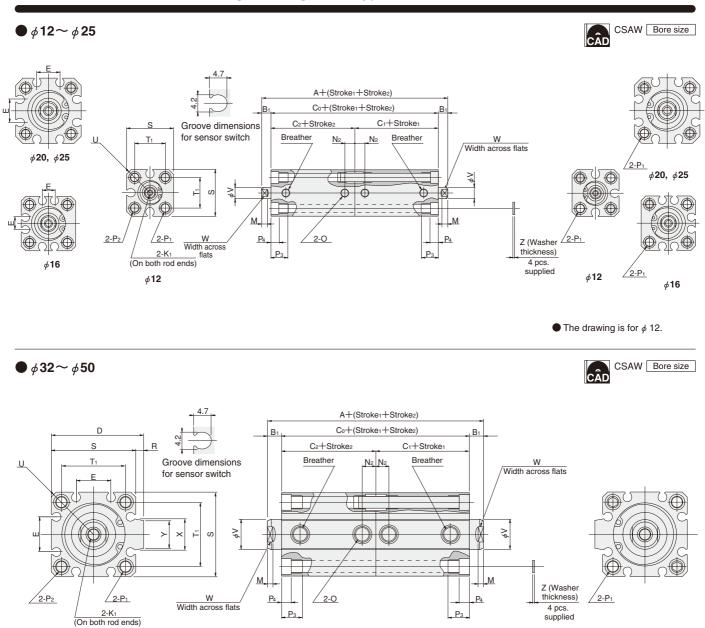
Dual stroke

Single acting pull type


Single act	ting pull ty	ре								g [oz.]	
		Zero stroke	e mass Note1		Additional	Additional		Mass of mounting	Additiona	l mass of	
		Stro	oke1		mass for	mass for	Additional	bracket	sensor s	witch Note2	
Bore size mm [in.]	5~15 (φ 5	i0: 10~20)	16~30 (<i>φ</i>	50: 21~40)	each 1mm	each 1mm	mass of cylinder with				
5		Stro	oke2		[0.0394in.] of stroke1	[0.0394in.] of stroke2	magnet	Flange bracket	ZE	ZE	
	5~15 (<i>q</i> 50: 10~20)	16~30 (<i>φ</i> 50: 21~40)	5~15 (φ 50: 10~20)	16~30 (<i>φ</i> 50: 21~40)	OI SHOKET	OI SUOKEZ		bracket			
12 [0.472]	54.88 [1.936] 66.76 [2.355]		67.88 [2.394]	79.77 [2.814]	1.4 [0.0494]	1.28 [0.0451]	17.67 [0.623]	55 [1.94]			
16 [0.630]	54.88 [1.936] 66.76 [2.355] 78.77 [2.778] 94.15 [3.321]		95.27 [3.360]	110.66 [3.903]	1.73 [0.0610]	1.62 [0.0571]	23.31 [0.822]	71 [2.50]			
20 [0.787]	117.58 [4.147]	139.48 [4.920]	140.6 [4.959]	162.49 [5.732]	2.37 [0.0836]	2.26 [0.0797]	53.74 [1.896]	101 [3.56]			
25 [0.984]	175.72 [6.198]	205.63 [7.253]	207.61 [7.323]	237.52 [8.378]	3.3 [0.116]	3.11 [0.110]	78.89 [2.783]	160 [5.64]	15 [0.53]	35 [1.23]	
32 [1.260]	255.75 [9.021]	316.83 [11.176]	319.8 [11.280]	380.88 [13.435]	4.31 [0.152]	4.11 [0.145]	105.39 [3.717]	186 [6.56]			
40 [1.575]	395.6 [13.954]	480.5 [16.949]	485.12 [17.112]	570.02 [20.107]	5.08 [0.179]	4.77 [0.168]	138.9 [4.899]	335 [11.82]			
50 [1.969]	634.13 [22.368]	726.4 [25.623]	733.06 [25.857]	825.32 [29.112]	7.48 [0.264]	7.03 [0.248]	144.56 [5.099]	447 [15.77]			

Notes 1: The above table is for the standard strokes.

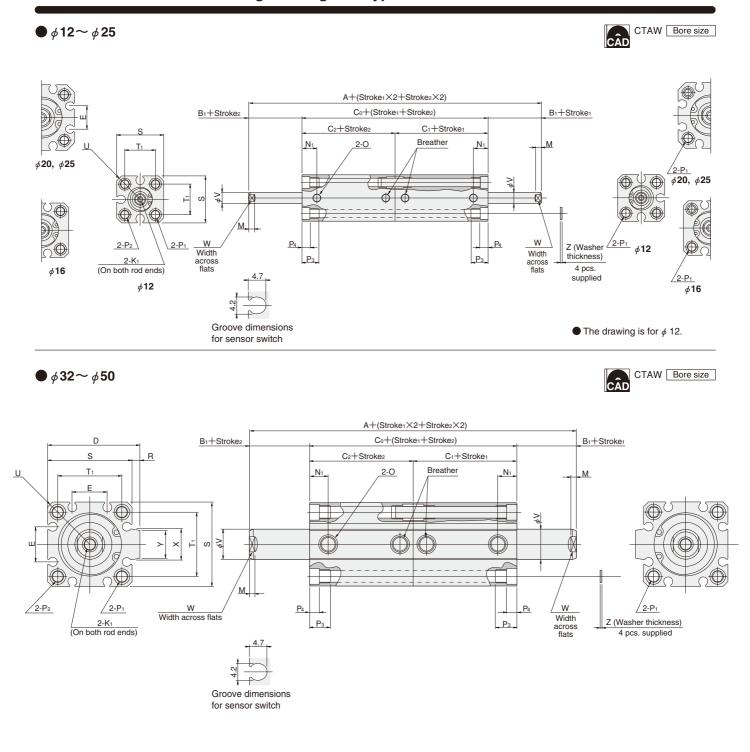
2: Sensor switch codes A and B show the lead wire lengths.


A: 1000mm [39in.] B: 3000mm [118in.]

Calculation example: For the mass of a single acting pull type cylinder with magnet, bore size of 25mm, 20mm for stroke 1, 20mm for stroke 2, and with 2 sensor switches (ZE135A) 237.52+(3.3×20)+(3.11×20)+78.89+(15×2)=474.61g [16.741oz.]

Dimensions of Dual Stroke Double Acting Type (mm)

Note: Figure in parentheses () is for the standard cylinder (**CDAW**) with 5mm stroke. % Some types of mounting screws are available (to be ordered separately). See p.209.


Dimensions of Dual Stroke Single Acting Push Type (mm)

	Type oke1					lard cylii	-								-	with m	agnet ((-				
~				<u> </u>	10~20)	-) (φ 50 : 2	,				(¢ 50: 1	,	•			(φ 50 : 2		1		
mm [in.] Note		A	B1	C ₀	C 1	C ₂	A	B1	C ₀	C 1	C ₂	A	B 1	C ₀	C 1	C ₂	A 74	B1	C ₀	C 1	C ₂		
12 [0.472]	D1 D2	54 64	5	44 54	22	22 32	64 74	5	54 64	32	22 32	64 74	5	54 64	27	27 37	74 84	5	64 74	37	27		
16	D2	55		44		22	65		54		22	65		54		27	75		64		27		
[0.630]	D2	65	5.5	54	- 22	32	75	5.5	64	32	32	75	5.5	64	27	37	85	5.5	74	37	37		
20	D1	50	_	39		19.5	60		49		19.5	70		59		29.5	80		69		29.5		
[0.787]	D2	60	5.5	49	19.5	29.5	70	5.5	59	29.5	29.5	80	5.5	69	29.5	39.5	90	5.5	79	39.5	39.5		
25	D1	54		42		21	64		52		21	74		62		31	84		72		31		
[0.984]	D2	64	6	52	21	31	74	6	62	31	31	84	6	72	31	41	94	6	82	41	41		
32	D1	60	7	46	23	23	75	7	61	38	23	80	- 7	66	33	33	95	7	81	48	33		
[1.260]	D2	75	1	61	20	38	90	1	76	50	38	95	· ·	81	55	48	110	1	96	40	48		
40	D1	66	7	52	26	26	81	7	67	41	26	86	- 7	72	36	36	101	7	87	51	36		
[1.575]	D2	81		67		41	96		82		41	101		87		51	116		102	-	51		
50 [1.969]	D1	74	9	56	28	28	89	9	71	43	28	94	9	76	38	38	109	9	91	53	38		
[1.909]	D2	89		71		43	104		86		43	109		91		53	124		106		53		
Bore mm [in.]	Code	D	E		ŀ	(1		/	N2		0						P 1						
12	D1	_		_										φ 4.3 (Thru ho	le) Cou	nterbor	e φ6.5	(Both s	ides)			
[0.472]	D2	_	-	-	M3×0.5	Depth6	3	.5	5	M	5×0.8				and	M5×0).8 (Bo	th sides	5)				
16	D1	_	6	6.2	M4×0.7	Dopth®	2	.5	5	м	5×0.8	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides)											
[0.630]	D2			.2	1014 / 0.7	Deptilo		.5	5	IVI	370.0				and	M5×0).8 (Bo	th sides	s)				
20	D1	_	12	2.2	M5×0.8	Depth1	0 4	.5	5	м	5×0.8			φ 4.3 (Thru ho	le) Cou	nterbore	e ø 6.5	(Both s	ides)			
[0.787]							-	-).8 (Bo						
25 [0.984]	D1 D2	_	12	2.2	$M6 \times 1$	Depth1	0 5		5	М	5×0.8			φ 5.1 (,	nterbor	'		ides)			
32	D2 D1						-							451($M6 \times 1$		th sides	(Both sides)				
[1.260]		48.5	18	3.2	M8×1.25	5 Depth1	2 6		7.5	F	Rc1/8			φ 5.1 ($M6\times1$		th sides	-	iues)			
40	D1													φ 6.9 (nterbor		<i>.</i>	ides)			
[1.575]	D2	56.5	18	3.2	M8×1.25	5 Depth1	2 6		7.5	ŀ	Rc1/8				and	M8×1	I.25 (Bo	th sides	5)				
50	D1	70	24	1.8	M10×1.5	5 Denth1	5 7		9.5	F	Rc1/4			φ 6.9 (Thru ho	ole) Cou	unterbor	re ø 11	(Both si	des)			
[1.969]	D2	70	27	F.0	10/110	Depun	5 1		5.5	I	101/4				and	$M8 \times 1$	l.25 (Bo	th sides	6)				
																					Appropriate		
Bore (mm [in.]	Code		P	2		P3	F	4	R	S	1	Г1	U	v	V	v	х	Y	2		hrough bolt %		
12	D1	Co	unterb	ore ϕ	6.5	9.5	А	.5	_	25	-1/	6.3	R16	6		5	_	_	1		M3		
[0.472]			and M			9.5	4			25		0.0		0		<u> </u>							
16	D1		unterb	'		9.5	4	.5	_	29	19	9.8	R19	8		6	_	_	1		M3		
[0.630]			and M																				
20 [0.787]	D1		unterb and M			9.5	4	.5	-	34	24	4	R22	10		8	_	_	1		M3		
25	D2		ounter																				
[0.984]			and M			11.5	5	.5	-	40	28	В	R25	12	1	0	-	_	1		M4		
32	D1		ounter			14.5	_	5	1 E			4	DO0 F	10		4	15	10.0	1				
[1.260]	D2		and M	16×1		11.5	5	.5	4.5	44	34	+	R29.5	16		4	15	13.6	1		M4		
40	D1		unterb			15.5	7	.5	4.5	52	4(R35	16	1	4	15	13.6	1	.6	M5		
[1.575]			Ind M8					-															
50 [1 969]	D1					16.5	8	.5	8	62	48	в	R41	20	1	7	21.6	19	1	.6	M6		
[1.969]	D2				5																		

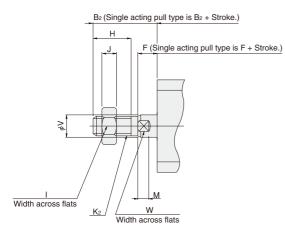
Note: D1 is when stroke 2 is 5~15 (¢ 50: 10~20)mm. D2 is when stroke 2 is 16~30 (¢ 50: 21~40)mm.
※ Some types of mounting screws are available (to be ordered separately). See p.209.

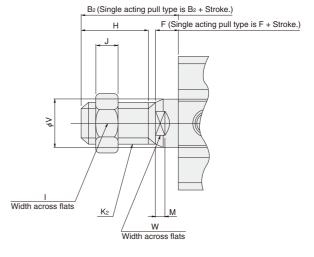
176

JIG CYLINDERS C SERIES

Dimensions of Dual Stroke Single Acting Pull Type (mm)

	Type Standard cylinder (CTAW) Cylinder with magnet (CTAWS) Oke1 5~15 (\$\phi\$ 50: 10~20) 16~30 (\$\phi\$ 50: 21~40)																							
0	Type				Stand	lard cyli	nder (C	TAW)						C	Cylinder	with m	agnet ((CTAWS)					
~		5	5~15	(φ 50 :	10~20)			16~3	Ο (φ 50 : 2	21~40)			5~15	(φ 50 : 1	0~20)			16~30	(φ 50 : 2	21~40	<u></u>			
Bore mm [in.] Note	Code	A	B1	C ₀	C 1	C ₂	Α	B 1	C ₀	C 1	C ₂	A	B 1	C ₀	C 1	C ₂	A	B 1	C ₀	C 1	C ₂			
12	D1	54	5	44	22	22	64	5	54	32	22	64	- 5	54	27	27	74	5	64	37	27			
[0.472]	D2	64		54		32	74		64		32	74	_	64		37	84		74		37			
16 [0.630]	D1 D2	55 65	5.5	44 54	_ 22	22	65 75	5.5	54 64	32	22 32	65 75	- 55	54	27	27 37	75 85	5.5	64 74	37	27			
	D2	60		54 49		32 24.5	75		59		24.5	75 80	_	64 69		34.5	90		74		37 34.5			
20 [0.787]	D1 D2	70	5.5	59	24.5	34.5	80	5.5	69	34.5	34.5	90	55	79	34.5	44.5	100	5.5	89	44.5	44.5			
25	D1	64		52		26	74		62		26	84		72		36	94		82		36			
[0.984]	D2	74	6	62	- 26	36	84	6	72	36	36	94	- 6	82	36	46	104	6	92	46	46			
32	D1	70	-	56		28	85	_	71	4.0	28	90	_	76		38	105	_	91		38			
[1.260]	D2	85	7	71	28	43	100	7	86	43	43	105	7	91	38	53	120	7	106	53	53			
40	D1	76	7	62	31	31	91	7	77	46	31	96	- 7	82	41	41	111	7	97	56	41			
[1.575]	D2	91	/	77	51	46	106	1	92	40	46	111		97	41	56	126	1	112	50	56			
50	D1	74	9	56	28	28	89	9	71	43	28	94	- 9	76	38	38	109	9	91	53	38			
[1.969]	D2	89	Ŭ	71	20	43	104	U	86	.0	43	109	Ũ	91		53	124	Ũ	106		53			
Borg	Code	-	-	-			-				-													
mm [in.]		D	1	=	ľ	(1	N	n	N 1		0			1400	Thruba		P1		(Dath a	idee)				
12 [0.472]	D1 D2	-	-	-	M3×0.5	Depth6	3	.5	8	М	5×0.8			φ4.3 (terbore ϕ 6.5 (Both sides) 8 (Both sides)						
16	D2						_					ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides)												
[0.630]	D2	—	6	6.2	M4×0.7	Depth8	3	.5	8	М	5×0.8		ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5×0.8 (Both sides)											
20	D1		-				-							φ 4.3 (nterbor		,	ides)				
[0.787]	D2	_	12	2.2	M5×0.8	Depth1	0 4	.5	9.5	M	5×0.8			, 、		,).8 (Bo	,	•	,				
25	D1					Durila	a 5		10.5					φ 5.1 (Thru ho	le) Cou	nterbor	e ø 8	(Both s	ides)				
[0.984]	D2	_	12	2.2	M6×1	Depth1	0 5		10.5	IVI	5×0.8				and	$M6 \times 1$	(Bo	th sides	s)					
32	D1	48.5	18	3.2	M8×1.25	5 Denth1	2 6		9.5	F	Rc1/8			φ 5.1 (Thru ho	le) Cou	nterbor	e ø 8	(Both s	ides)				
[1.260]	D2	40.5			10// 1.20		2 0		5.5		Rc1/8 and M6×1 (Both sides)													
40	D1	56.5	18	3.2	M8×1.25	5 Depth1	2 6		10.5	F	Rc1/8			φ 6.9 (-	nterbor			ides)				
[1.575]	D2						_										.25 (Bo		-					
50 [1.969]	D1	70	24	1.8	M10×1.5	5 Depth1	5 7		11	F	Rc1/4			φ 6.9 (unterboi			des)				
[1.909]	D2														and	1M8 X 1	.25 (Bo	th sides	5)					
Bore	Code		_			_			_	_	_	-					~			-	Appropriate			
mm [in.]			F	2		P3	P	4	R	S		Г1	U	V	V	v	х	Y			nrough bolt ※			
12	D1		unterb			9.5	4.	5	_	25	16	5.3	R16	6		5	_	_	.	1	M3			
[0.472]	D2		and M										-											
16 [0.630]	D1		unterb			9.5	4.	5	-	29	19	9.8	R19	8	(6	_	_		1	M3			
	D2 D1		and M unterb																					
20 [0.787]						9.5	4.	5	—	34	2	24	R22	10	8	3	-	_	·	1	M3			
25	D2																							
[0.984]	D2	Counterbore ϕ 8 and M6 \times 1				11.5	5.	5	_	40	2	28	R25	12	1	0	-	-		1	M4			
32	D1						_	_																
[1.260]	D2					11.5	5.	5	4.5	44	3	84	R29.5	16	1	4	15	13.6		1	M4			
40	D1	Co	unterb	ore ϕ	9.5	15.5	-	5	4.5	50			D25	10		4	15	10.0	4	6	ME			
[1.575]	D2	Counterbore ϕ 9.5 and M8 \times 1.25		25	15.5	7.	.5	4.0	52	4	0	R35	16	1	4	15	13.6	1	.6	M5				
50	D1	Counterbore ϕ 11			16.5	8.	5	8	62		8	R41	20	1	7	21.6	19	1	.6	M6				
[1.969]	D2							-	Ĩ	02		-		20			0							

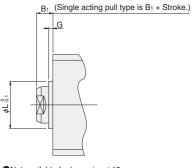

Note: D1 is when stroke 2 is 5~15 (¢ 50: 10~20)mm.
D2 is when stroke 2 is 16~30 (¢ 50: 21~40)mm.
※ Some types of mounting screws are available (to be ordered separately). See p.209.


JIG CYLINDERS C SERIES

• Double acting type, Single acting push type, Single acting pull type

 ϕ 12 \sim ϕ 25

• ϕ 32 ~ ϕ 100 (Single acting type available up to ϕ 50)



Bore Code	B ₂	F	Н	I	J	K ₂	М	V	W
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

Bore Code mm [in.]	B 1	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

•Not available for bore size ϕ 12.

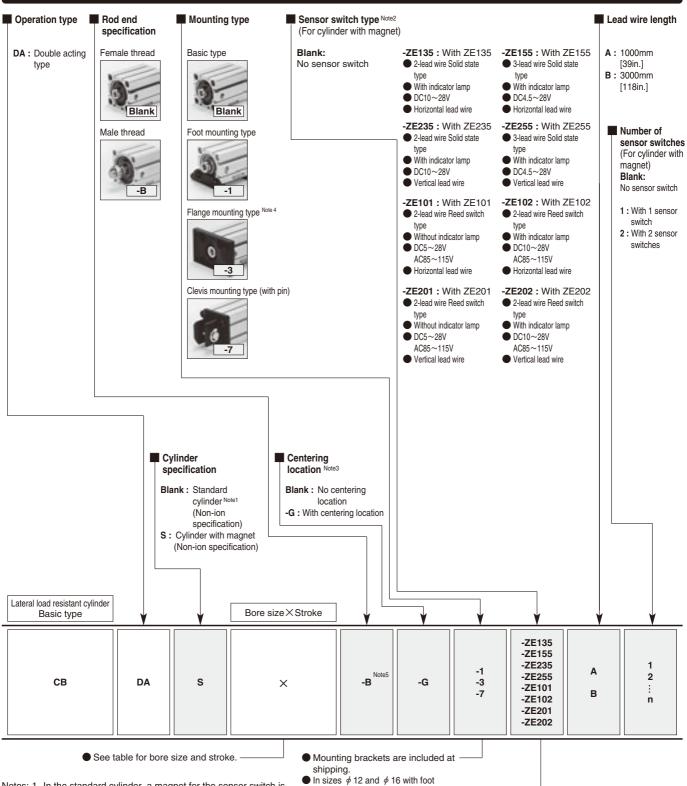
JIG CYLINDERS C **SERIES** LATERAL LOAD RESISTANT CYLINDERS

Double Acting Type

Symbol

Specifications

Item	Bore size mm [in.	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]	
Operation type			Double acting type									
Media			Air									
Operating pressure range	MPa [psi.]	0.15~1.0 [22~145]						0.1~1.0	[15~145]			
Proof pressure	MPa [psi.]		1.5 [218]									
Operating temperature rar	nge °C [°F		0~60 [32~140]									
Operating speed range	mm/s [in./sec.]		30~500 [1.2~19.7]						30~300 [1.2~11.8]		
Cushion			Rubber bumper (Standard equipment)									
Lubrication			Not requ	ired (If lubrid	cation is req	uired, use Ti	urbine Oil C	lass 1 [ISO)	VG32] or eq	uivalent.)		
Port size			M5>	<0.8		Rc	1/8	Rc	1/4	Rc	3/8	
Remark: For Handling Inst	ructions and Pr	ecautions, se	e p.205.									
Refer to p.206 of the gra	nt Cylinder]										


Bore Size and Stroke

	During	Standard	d strokes		
Operation type	Bore size	Standard cylinder	Cylinder with magnet		
	12	E 10 1E 00 0E 00	E 10 1E 20 2E 20		
	16	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30		
	20				
	25	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50		
Double acting	32	E 10 1E 00 0E 00 0E 40 4E E0 7E 100	E 10 1E 00 0E 00 0E 40 4E E0 7E 100		
type	40	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100		
	50				
	63	10 15 20 25 20 25 40 45 50 75 100	10 15 00 05 00 05 40 45 50 75 100		
	80	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100		
	100				

Remarks: 1. Stroke tolerance ${}^{+1}_{0} \begin{bmatrix} {}^{+0.039in.} \\ {}^{0}_{0} \end{bmatrix}$ 2. In most cases, body cutting is used for the non-standard strokes.

However, body cutting is not used for strokes of less than 5mm for ϕ 12 $\sim \phi$ 40, and strokes of less than 10mm for ϕ 50 $\sim \phi$ 100. The collar packed is used for these cases.

Order Codes for Lateral Load Resistant Cylinders

- Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in.
 - 2. For details of sensor switches, see p.1544.
 - 3. Not available for the bore size ϕ 12.
 - 4. Cannot be mounted on the bore size ϕ 40 with centering location (-G).
 - 5. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

Additional Parts (To be ordered separately)

bracket

Foot mounting bracket (p.197)

Flange mounting bracket (p.198)

Clevis mounting (with pin) (p.209) (p.198)

For the order codes of sensor

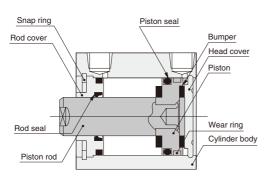
mounting brackets and strokes of less

than 10mm, the foot mounting bracket

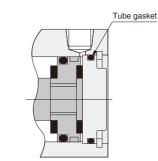
other, which could prevent 2 sensor

consult us.

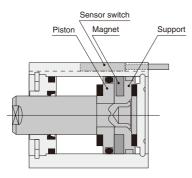
and sensor switch may interfere with each


switches from being mounted. For details,

switches only, see p.199.


181

Double acting type (CBDA)


 ϕ 12 $\sim \phi$ 40

 ϕ 50 \sim ϕ 100

• Cylinder with magnet

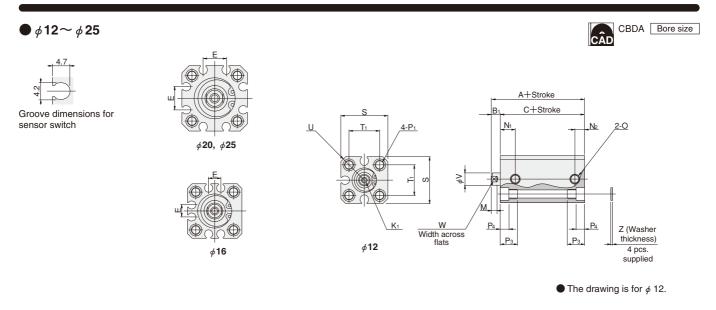
Major Parts and Materials

Parts Bore mm	φ 12	<i>φ</i> 16	φ 20	φ 25	φ 32	φ 40	φ 50	φ 63	φ 80	<i>φ</i> 100	
Cylinder body		Aluminum alloy (anodized)									
Piston		Alumi	num al	loy (sp	ecial r	ust pre	eventic	on trea	tment)		
Piston rod	Stainle	ss steel	(chrome	plated)		Stee	l (chro	me pla	ated)		
Seal		Synthetic rubber (NBR)									
Rod cover		Alumi	num a	lloy (sp	becial v	wear-r	esistar	nt treat	ment)		
Head cover			1	Alumin	um allo	oy (an	odized)			
Snap ring				Steel (phosp	hate c	oating)				
Bumper		Synt	hetic r	ubber	(NBR;	uretha	ane for	φ 12 (only)		
Magnet		Plastic magnet									
Support		Aluminum alloy (special rust prevention treatment)									
Wear ring					Pla	stic					

Seals

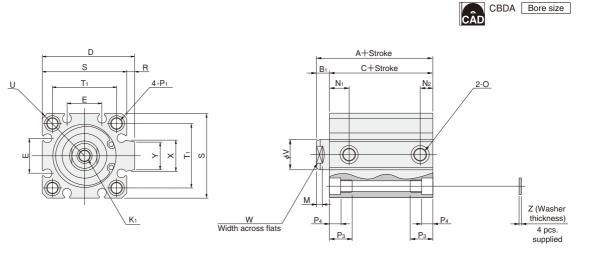
Parts	Rod seal	Piston seal	Tube g	gasket
Bore mm	nou seai	FISION Seal	Rod side	Head side
φ 12	MYR-6	COP-12	Y090260	None
<i>φ</i> 16	MYR-8	COP-16	Y090207	None
φ 20	MYR-10	COP-20	Y090216	None
φ 25	MYR-12	COP-25	Y090210	None
φ 32	MYR-16	COP-32	L090084	None
φ 40	MYR-16	COP-40	L090151	None
<i>φ</i> 50	MYR-20	COP-50	L090174	L090106
φ 63	MYR-20	COP-63	L090180	L090107
<i>φ</i> 80	PNY-25	COP-80	L090171	L090108
<i>φ</i> 100	PNY-32	COP-100	L090172	L090109

Mass


								g [oz.]
Bore size	Zero stroke	Additional mass for	Additional mass of	Mas	s of mounting bra	cket	Additional mass of	sensor switch Note2
mm [in.]	mass Note 1	each 1mm [0.0394in.] stroke	cylinder with magnet	Foot bracket	Flange bracket	Clevis bracket	ZE	ZE
12 [0.472]	26.17 [0.923]	1.28 [0.0451]	8 [0.28]	50 [1.76]	55 [1.94]	30 [1.06]		
16 [0.630]	36.85 [1.300]	1.62 [0.0571]	11 [0.39]	62 [2.19]	71 [2.50]	40 [1.41]		
20 [0.787]	57.42 [2.025]	2.26 [0.0797]	27 [0.95]	84 [2.96]	101 [3.56]	75 [2.65]		
25 [0.984]	85.94 [3.031]	3.11 [0.110]	39 [1.38]	104 [3.67]	160 [5.64]	100 [3.53]		
32 [1.260]	126.86 [4.475]	4.11 [0.145]	28 [0.99]	126 [4.44]	186 [6.56]	165 [5.82]	15 [0 52]	25 [1 02]
40 [1.575]	195.3 [6.889]	4.77 [0.168]	37 [1.31]	160 [5.64]	335 [11.82]	200 [7.05]	15 [0.53]	35 [1.23]
50 [1.969]	314.69 [11.100]	7.03 [0.248]	57 [2.01]	220 [7.76]	447 [15.77]	315 [11.11]		
63 [2.480]	501.06 [17.674]	8.69 [0.307]	79 [2.79]	300 [10.58]	591 [20.85]	495 [17.46]		
80 [3.150]	951.44 [33.560]	13.06 [0.461]	244 [8.61]	644 [22.72]	1414 [49.88]	1110 [39.15]		
100 [3.940]	1729.88 [61.019]	18.61 [0.656]	344 [12.13]	1172 [41.34]	2606 [91.92]	1490 [52.56]		

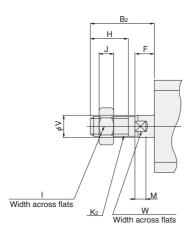
Notes: 1. The above table is for the standard strokes.

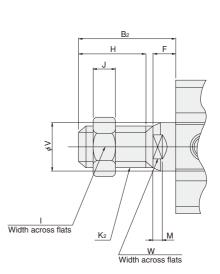
2. Sensor switch codes A and B show the lead wire lengths. A: 1000mm [39in.] B: 3000mm [118in.]


Calculation example: For the mass of a cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches (**ZE135A**) 85.94+(3.11×30)+39+(15×2)=248.24g [8.756oz.]

Dimensions of Lateral Load Resistant Double Acting Type (mm)

 ϕ 32 \sim ϕ 100

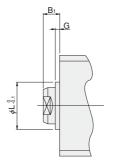

Groove dimensions for sensor switch



Туре	Standa	rd cylinder ((CBDA)	Cylinder	with ma	gnet (CE	BDAS)	-	_		IK.					
Bore Code mm [in.]	Α	B1	С	Α	B 1		С	D	E		K 1		М	N 1	N2	0
12 [0.472]	27	5	22	32	5		27	—	-	Мз×	0.5 C	Depth6	3.5	8	5	M5×0.8
16 [0.630]	27.5	5.5	22	32.5	5.5	5	27	—	6.2	M4×	0.7 C	Depth8	3.5	8	5	M5×0.8
20 [0.787]	30	5.5	24.5	40	5.5	5	34.5	—	12.2	M5×	0.8 De	epth10	4.5	9.5	5	M5×0.8
25 [0.984]	32	6	26	42	6		36	—	12.2	$M6 \times$	1 De	epth10	5	10.5	5	M5×0.8
32 [1.260]	35	7	28	40	7		33	48.5	18.2	$M8 \times$	1.25 De	epth12	6	9.5	7.5	Rc1/8
40 [1.575]	38	7	31	43	7		36	56.5	18.2	M8×	1.25 De	epth12	6	10.5	7.5	Rc1/8
50 [1.969]	42	9	33	47	9		38	70	24.8	M10>	<1.5 De	epth15	7	11	9.5	Rc1/4
63 [2.480]	46	9	37	51	9		42	83	26.8	M10>	<1.5 De	epth15	7	12.5	11	Rc1/4
80 [3.150]	57	11	46	67	11		56	102	32.8	M14>	<2 De	epth20	9	18	12	Rc3/8
100 [3.940]	68	12	56	78	12		66	122	32.8	M18>	<2.5 De	epth20	9	22.5	16.5	Rc3/8
Bore Code mm [in.]		P	P 1		P ₃	P 4	R	S	T1	U	v	w	х	Y	z	Appropriate through bolt %
12 [0.472]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Bot	th sides) and M5 $ imes$ 0	.8 (Both sides)	9.5	4.5	—	25	16.3	R16	6	5	—	—	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) C'bore φ 6.5 (Bot	th sides) and M5 $ imes$ O	.8 (Both sides)	9.5	4.5	—	29	19.8	R19	8	6	-	—	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) C'bore ϕ 6.5 (Bot	th sides) and M5 $ imes$ 0	.8 (Both sides)	9.5	4.5	—	34	24	R22	10	8	—	—	1	M3
25 [0.984]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both	sides) and M6 $ imes$ 1 (I	Both sides)	11.5	5.5	—	40	28	R25	12	10	—	—	1	M4
32 [1.260]	ϕ 5.1 (Thru hole) C'bore ϕ 8 (Both	sides) and M6 $ imes$ 1 (I	Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) C'bore φ 9.5 (Bot	th sides) and M8 $ imes$ 1	.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) C'bore ϕ 11 (Both	h sides) and M8 $ imes$ 1.	25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	ϕ 6.9 (Thru hole) C'bore	h sides) and M8 $ imes$ 1.	25 (Both sides)	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 [3.150]	ϕ 10.5 (Thru hole	C'bore	h sides) and M12 $ imes$	1.75 (Both sides)	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 [3.940]	ϕ 12.3 (Thru hole) C'bore φ 17.5 (B	oth sides) and M14>	<2 (Both sides)	27	13	8	114	90	R75	32	27	27.6	25	2	M10

% Some types of mounting screws are available (to be ordered separately). See p.209.

ϕ 12 \sim ϕ 25



Bore Code mm [in.]	B 2	F	Н	I	J	K 2	М	v	W
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

 $\phi 32 \sim \phi 100$

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

Bore Code B1 G L 16 [0.630] 5.5 1.5 9.4 20 [0.787] 5.5 1.5 12 25 [0.984] 6 2 15 7 32 [1.260] 2 21 40 [1.575] 7 2 29 50 [1.969] 9 2 38 63 [2.480] 9 2 40 80 [3.150] 11 2 45 100 [3.940] 12 2 55

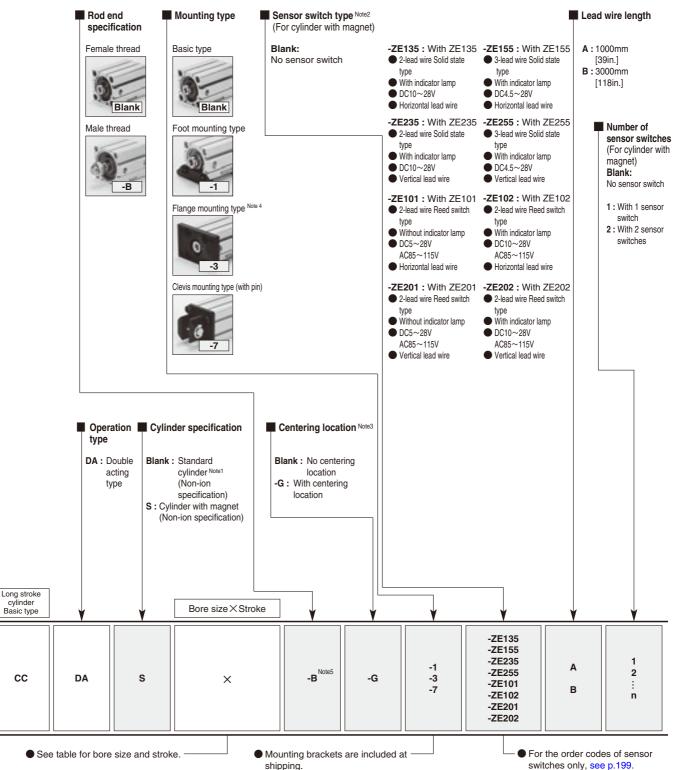
•Not available for bore size ϕ 12.

JIG CYLINDERS C SERIES LONG STROKE CYLINDERS

Double Acting Type

Symbol

Specifications


Item Bore size mm [in.]	12 [0.472] 16 [0.630] 20 [0.787] 25 [0.984]	32 [1.260] 40 [1.575]	50 [1.969] 63 [2.48	80] 80 [3.150] 100 [3.940]					
Operation type	Double acting type								
Media Air									
Operating pressure range MPa [psi.]	0.15~1.0 [22~145]	0.15~1.0 [22~145] 0.1~1.0 [15~145]							
Proof pressure MPa [psi.]	1.5 [218]								
Operating temperature range °C [°F]		0~60 [32~140]							
Operating speed range mm/s [in./sec.]	30~500 [1.2~19.7]	30~500 [1.2~19.7] 30~300 [1.2~11.8]							
Cushion	Rubbe	r bumper (Standard equ	ipment)						
Lubrication Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)									
Port size	M5×0.8 Rc1/8 Rc1/4 Rc								

Remark: For Handling Instructions and Precautions, see p.205.

Bore Size and Stroke

		Standard strokes							
Operation type	Bore size	Standard cylinder	Cylinder with magnet						
	12								
	16	35, 50, 75, 100, 125	35, 50, 75, 100, 125						
	20	75, 100, 125, 150, 175, 200	75, 100, 125, 150, 175, 200						
	25	75, 100, 125, 150, 175, 200, 225, 250	75, 100, 125, 150, 175, 200, 225, 250						
Double acting	32								
type	40								
	50								
	63	125, 150, 175, 200, 225, 250, 275, 300	125, 150, 175, 200, 225, 250, 275, 300						
	80								
-	100								

Remarks: 1. Stroke tolerance ⁺¹₀[⁺⁰.039in.]
2. In most cases, body cutting is used for the non-standard strokes. Body cutting is also used for strokes of 31~34mm for φ 12 and φ 16, strokes of 51~74mm for φ 20 and φ 25, strokes of 101~124mm for φ 32 and φ 100.

Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in.

- 2. For details of sensor switches, see p.1544.
- 3. Not available for the bore size ϕ 12.
- 4. Cannot be mounted on the bore size ϕ 40 with centering locator (-G).

5. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

Additional Parts (To be ordered separately)

bracket

(p.197)

bracket

(p.198)

bracket

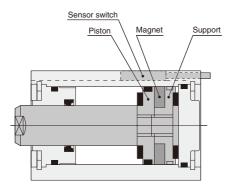
(with pin)

(p.198)

Mounting screws

(p.209)

switches only, see p.199.


CYLINDERS C SERIES

5

Double acting type (CCDA)

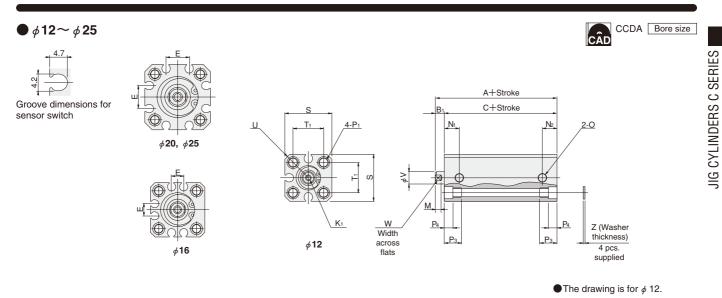
• Cylinder with magnet

Major Parts and Materials

Parts Bore mm	φ 12	<i>φ</i> 16	φ 20	φ 25	φ 32	φ 40	φ 50	φ 63	φ 80	<i>φ</i> 100		
Cylinder body		Aluminum alloy (anodized)										
Piston		Alumir	num al	loy (sp	ecial r	ust pre	eventio	on trea	tment)			
Piston rod	Stainle	ss steel	(chrome	plated)		Stee	l (chro	me pla	ated)			
Seal		Synthetic rubber (NBR)										
Rod cover		Aluminum alloy (special wear-resistant treatment)										
Head cover			/	Alumin	um alle	oy (an	odized)				
Snap ring				Steel (phosp	hate c	oating))				
Bumper		Synt	hetic r	ubber	(NBR;	uretha	ine for	φ 12 (only)			
Magnet		Plastic magnet										
Support		Aluminum alloy (special rust prevention treatment)										
Wear ring					Pla	stic						

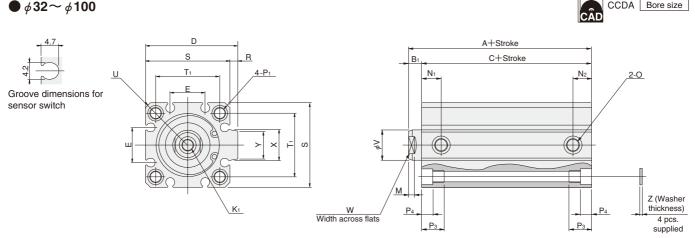
Seals

Parts	Rod seal	Piston seal	Tube g	gasket
Bore mm	nou seai	FISION Seal	Rod side	Head side
φ 12	MYR-6	COP-12	Y090260	Y090260
φ 16	MYR-8	COP-16	Y090207	Y090207
φ 20	MYR-10	COP-20	Y090216	Y090216
φ 25	MYR-12	COP-25	Y090210	Y090210
φ 32	MYR-16	COP-32	L090084	L090084
φ 40	MYR-16	COP-40	L090151	L090151
φ 50	MYR-20	COP-50	L090174	L090106
φ 63	MYR-20	COP-63	L090180	L090107
φ 80	PNY-25	COP-80	L090171	L090108
<i>φ</i> 100	PNY-32	COP-100	L090172	L090109


Mass

								g [oz.]
Bore size	Zero stroke	Additional mass for	Additional mass of	Mas	ss of mounting bra	cket	Additional mass of	sensor switch Note2
mm [in.]	mass Note 1	each 1mm [0.0394in.] stroke	cylinder with magnet	Foot bracket	Flange bracket	Clevis bracket	ZE	ZE
12 [0.472]	39.15 [1.381]	1.28 [0.0451]	7 [0.25]	50 [1.76]	55 [1.94]	30 [1.06]		
16 [0.630]	54.75 [1.931]	1.62 [0.0571]	11 [0.39]	62 [2.19]	71 [2.50]	40 [1.41]		
20 [0.787]	84 [2.963]	2.26 [0.0797]	26 [0.92]	84 [2.96]	101 [3.56]	75 [2.65]		
25 [0.984]	121 [4.268]	3.11 [0.110]	38 [1.34]	104 [3.67]	160 [5.64]	100 [3.53]		
32 [1.260]	184.15 [6.496]	4.11 [0.145]	28 [0.99]	126 [4.44]	186 [6.56]	165 [5.82]	15 [0 52]	25 [1 02]
40 [1.575]	281.75 [9.938]	4.77 [0.168]	34 [1.20]	160 [5.64]	335 [11.82]	200 [7.05]	15 [0.53]	35 [1.23]
50 [1.969]	370.23 [13.059]	7.03 [0.248]	56 [1.98]	220 [7.76]	447 [15.77]	315 [11.11]		
63 [2.480]	578.65 [20.411]	8.69 [0.307]	79 [2.79]	300 [10.58]	591 [20.85]	495 [17.46]		
80 [3.150]	1057.6 [37.305]	13.06 [0.461]	250 [8.82]	644 [22.72]	1414 [49.88]	1110 [39.15]		
100 [3.940]	1913.7 [67.503]	18.61 [0.656]	350 [12.35]	1172 [41.34]	2606 [91.92]	1490 [52.56]		

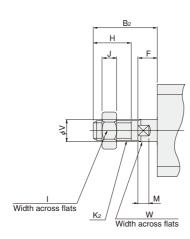
Notes: 1. The above table is for the standard strokes.


2. Sensor switch codes A and B show the lead wire lengths. A: 1000mm [39in.] B: 3000mm [118in.] $\begin{array}{l} \mbox{Calculation example: For the mass of a cylinder with magnet, bore size of 25mm, stroke of 150mm, and with 2 sensor switches ($ **ZE135A** $) \\ 121+(3.11\times150)+38+(15\times2)=655.5g \cite{23.122oz.} \cite{23.122oz.} \cite{23.122oz} \cite$

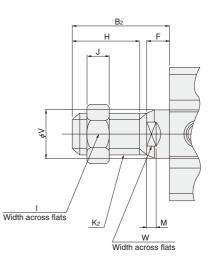
Dimensions of Long Stroke Cylinder Double Acting Type (mm)

 ϕ 32 \sim ϕ 100

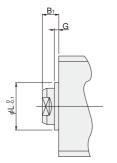
CCDA Bore size



Туре	Standa	ard cylinder ((CCDA)	Cylinder	with mag	gnet (C	CDAS)	D	Е		K 1		м	N1	N ₂	0
Bore Code mm [in.]	Α	B 1	С	Α	B 1		С	U	E		K 1		IVI	IN1	IN2	0
12 [0.472]	38	5	33	43	5		38	-	-	МЗ×	0.5 De	epth6	3.5	8	8	M5×0.8
16 [0.630]	38.5	5.5	33	43.5	5.5	5	38	-	6.2	$M4 \times$	0.7 De	epth8	3.5	8	8	M5×0.8
20 [0.787]	41.5	5.5	36	51.5	5.5	5	46	—	12.2	$M5 \times$	0.8 De	epth10	4.5	9.5	9.5	M5×0.8
25 [0.984]	42.5	6	36.5	52.5	6		46.5	-	12.2	$M6 \times$	1 De	epth10	5	10.5	10.5	M5×0.8
32 [1.260]	47	7	40	52	7		45	48.5	18.2	$M8 \times$	1.25 De	epth12	6	9.5	9.5	Rc1/8
40 [1.575]	50	7	43	55	7		48	56.5	18.2	M8×	1.25 De	epth12	6	10.5	10.5	Rc1/8
50 [1.969]	47	9	38	52	9		43	70	24.8	M102	×1.5 De	pth15	7	11	9.5	Rc1/4
63 [2.480]	51	9	42	56	9		47	83	26.8	M102	×1.5 De	epth15	7	12.5	11	Rc1/4
80 [3.150]	62	11	51	72	11		61	102	32.8	M142	×2 De	pth20	9	18	12	Rc3/8
100 [3.940]	73	12	61	83	12		71	122	32.8	M182	×2.5 De	pth20	9	22.5	16.5	Rc3/8
Bore Code		F	1		P3	P 4	R	s	T1	U	v	w	х	Y	z	Appropriate through bolt %
12 [0.472]	φ 4.3 (Thru hole)	Counterbore ϕ 6.5 (Both sides) and M5×	(0.8 (Both sides)	9.5	4.5	—	25	16.3	R16	6	5	—	—	1	M3
16 [0.630]	φ 4.3 (Thru hole)	Counterbore ϕ 6.5 (Both sides) and M5×	(0.8 (Both sides)	9.5	4.5	-	29	19.8	R19	8	6	—	—	1	M3
20 [0.787]	ϕ 4.3 (Thru hole)	Counterbore ϕ 6.5 (Both sides) and M5×	(0.8 (Both sides)	9.5	4.5	-	34	24	R22	10	8	—	—	1	М3
25 [0.984]	φ 5.1 (Thru hole)	Counterbore ϕ 8 (B	oth sides) and M6 $ imes$ 1	(Both sides)	11.5	5.5	—	40	28	R25	12	10	—	—	1	M4
32 [1.260]	ϕ 5.1 (Thru hole)	Counterbore ϕ 8 (B	oth sides) and M6 $ imes$ 1	(Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole)	Counterbore ϕ 9.5 (Both sides) and M8×	(1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole)	Counterbore ϕ 11 (I	Both sides) and M8 $ imes$	1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 [2.480]	ϕ 6.9 (Thru hole)	Counterbore ϕ 11 (I	Both sides) and M8 $ imes$	1.25 (Both sides)	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
		Onumberham 144/	Dath aidea) and M10)	(d. 75 (Dath sides)	00 5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
80 [3.150]	ϕ 10.5 (Thru hole)	Counterbore \$ 14 (I	bourn sides) and wirz /	K 1.75 (Both sides)	22.5	10.5	0	94	74	N02	25	22	27.0	25	1.0	IVIO


* Some types of mounting screws are available (to be ordered separately). See p.209.

Double acting type


 ϕ 32 \sim ϕ 100

Bore Code mm [in.]	B ₂	F	Н	I	J	K2	М	V	W
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

Code B1 G L 16 [0.630] 5.5 1.5 9.4 20 [0.787] 5.5 1.5 12 25 [0.984] 6 2 15 7 2 32 [1.260] 21 7 40 [1.575] 2 29 50 [1.969] 9 2 38 63 [2.480] 9 2 40 2 80 [3.150] 11 45 100 [3.940] 12 2 55

•Not available for bore size ϕ 12.

JIG CYLINDERS C SERIES END KEEP CYLINDERS

Double Acting Type

l≩

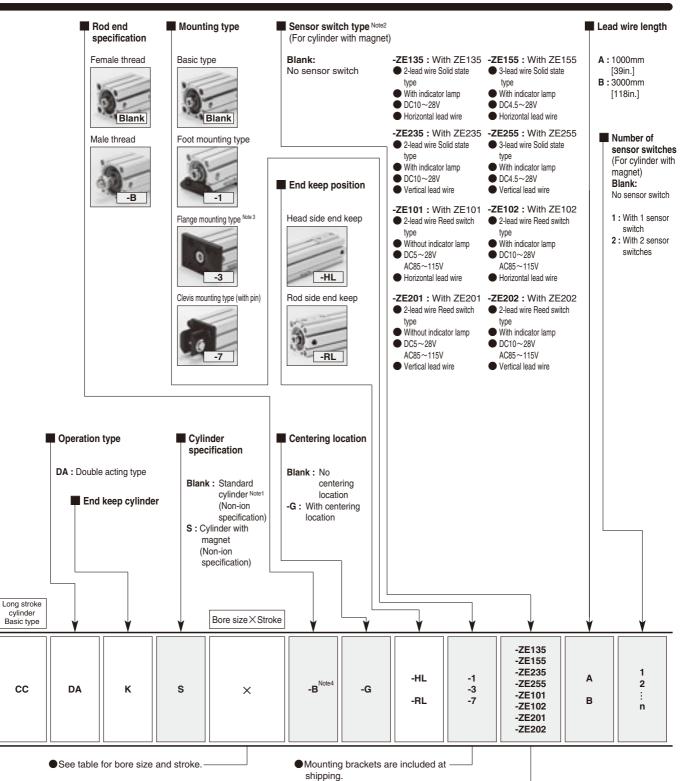
Symbols

Rod side end keep

Specifications

Item Bore size mm [in.	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	
Operation type				Double acting type	9			
Media				Air				
Operating pressure range MPa [psi.]	0.2~0.9 [29~131]		0.15~0.9	[22~131]		0.1~0.7	[15~102]	
Proof pressure MPa [psi.]				1.5 [218]				
Operating temperature range °C [°F]				0~60 [32~140]				
Operating speed range mm/s [in./sec.]		З	0∼500 [1.2~19. ⁻	7]		30~300 [1.2~11.8]		
Cushion			Rubber bu	umper (Standard e	quipment)	•		
Lubrication		Not required (If Iu	brication is require	ed, use Turbine Oil	Class 1 [ISO VG3	32] or equivalent.)		
Maximum holding force (at end keep) N [lbf.]	61.7 [13.9]	96.1 [21.6]	151 [33.9]	248.1 [55.8]	387.3 [87.1]	471.6 [106]	534.4 [120]	
Backlash (at end keep) mm [in.]		1.4 [0.055] MAX.			1.6 [0.06	063] MAX.		
Port size		M5×0.8		Rc	1/8	Rc	1/4	

Remark : For Handling Instructions and Precautions, see p.205.


Bore Size and Stroke

For non-standard	strokes, <mark>see p</mark>	.206.	mm
Operation type	Bore size	Standard strokes	
Operation type	Dore Size	Standard cylinder, cylinder with magnet	
	16	5, 10, 15, 20, 25, 30, 35, 50, 75, 100, 125	
	20	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200	
	25	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200, 225, 250	
Double acting type	32		
type	40	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300	
	50		
	63	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300	

Remarks 1: Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$] 2: In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 16 $\sim \phi$ 40, and strokes of

less than 10mm for ϕ 50 and ϕ 63. The collar packed is used for these cases.

Rod side end keep cylinders cannot be collar packed.

Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in.

2. For details of sensor switches, see p.1544.

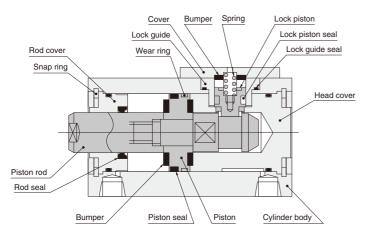
- 3. Cannot be mounted on the bore size ϕ 40 with centering location (-G).
- 4. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

Additional Parts (To be ordered separately)

bracket

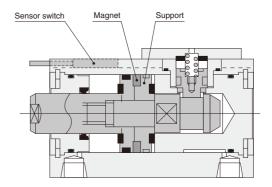
(p.198)

(p.198)

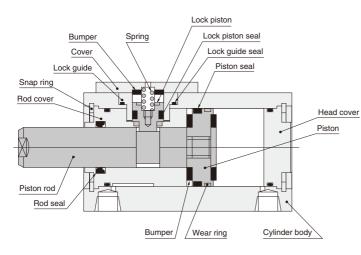

Mounting screws (p.209)

For the order codes of sensor switches only, see p.199.

bracket


(p.197)

Head side end keep (CCDAK-HL)



• Cylinder with magnet

• Cylinder with magnet

Rod side end keep (CCDAK-RL)

er

The locking mechanism uses a sequential operation.

Major Parts and Materials

Parts	<i>φ</i> 16	φ 20	φ 25	φ 32	<i>φ</i> 40	<i>φ</i> 50	φ 63
Cylinder body			Aluminur	m alloy (a	nodized)		
Piston	Alı	uminum a	alloy (spe	cial rust p	reventio	n treatme	nt)
Piston rod	Stainless	steel (chror	me plated)	S	teel (chro	me plate	d)
Seal			Synthe	tic rubber	(NBR)		
Rod cover	AI	uminum	alloy (spe	cial wear	-resistan	t treatmer	nt)
Head cover	Alı	uminum a	alloy (spe	cial rust p	reventio	n treatme	nt)
Snap ring			Steel (pl	nosphate	coating)		
Lock piston			Sta	ainless st	eel		
Bumper			Synthe	tic rubber	· (NBR)		
Magnet			Pla	astic mag	net		
Support	Alı	uminum a	alloy (spe	cial rust p	reventio	n treatme	nt)
Wear ring	Plastic						
Lock cover	Aluminum alloy (anodized)						
Spring			F	Piano wire	e		

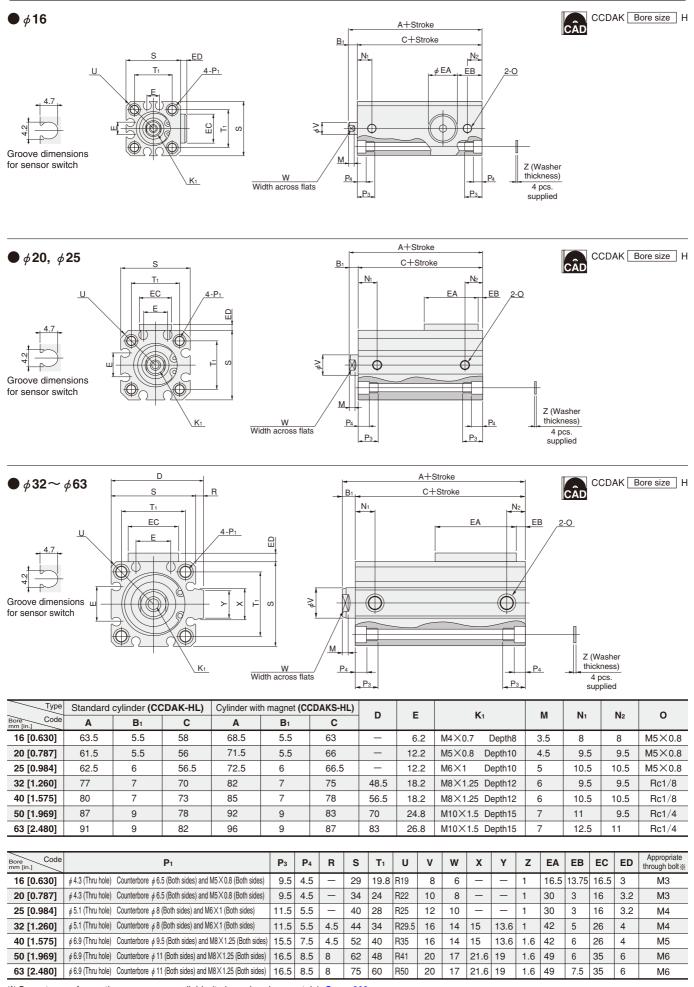
Seals

Parts	Rod seal	Piston	Tube	gasket	Lock piston	Lock guide
Bore mm	nou seai	seal	Rod side	Head side	seal	seal
<i>φ</i> 16	MYR-8	COP-16	Y090207	Y090207	MYN-4	Y090157
φ 20	MYR-10	COP-20	Y090216	Y090216	MYN-5	Y090260
φ 25	MYR-12	COP-25	Y090210	Y090210	MYN-5	Y090260
φ 32	MYR-16	COP-32	L090084	L090084	MYN-10A	L090009
φ 40	MYR-16	COP-40	L090151	L090151	MYN-10A	L090009
φ 50	MYR-20	COP-50	L090174	L090106	MYN-16	L090084
φ 63	MYR-20	COP-63	L090180	L090107	MYN-16	L090084

Head side end keep cylinder

Head side	end keep c	ylinder						g [oz.]	
Bore size	Zero stroke	troke Additional mass for Additional mass of Mass of mounting bracket					Additional mass of sensor switch Note2		
mm [in.]	mass Note 1	each 1mm [0.0394in.] stroke	cylinder with magnet	Foot bracket	Flange bracket	Clevis bracket	ZE	ZEBB	
16 [0.630]	109.33 [3.856]	1.62 [0.0571]	9.93 [0.350]	62 [2.19]	71 [2.50]	40 [1.41]			
20 [0.787]	142.49 [5.026]	2.26 [0.0797]	25.71 [0.907]	84 [2.96]	101 [3.56]	75 [2.65]			
25 [0.984]	205.98 [7.266]	3.11 [0.110]	37.47 [1.322]	104 [3.67]	160 [5.64]	100 [3.53]			
32 [1.260]	330.47 [11.657]	4.11 [0.145]	52.43 [1.849]	126 [4.44]	186 [6.56]	165 [5.82]	15 [0.53]	35 [1.23]	
40 [1.575]	475.35 [16.767]	4.77 [0.168]	69.15 [2.439]	160 [5.64]	335 [11.82]	200 [7.05]			
50 [1.969]	775.35 [27.349]	7.03 [0.248]	108 [3.81]	220 [7.76]	447 [15.77]	315 [11.11]			
63 [2.480]	1137.3 [40.116]	8.69 [0.307]	159 [5.61]	300 [10.58]	591 [20.85]	495 [17.46]]		

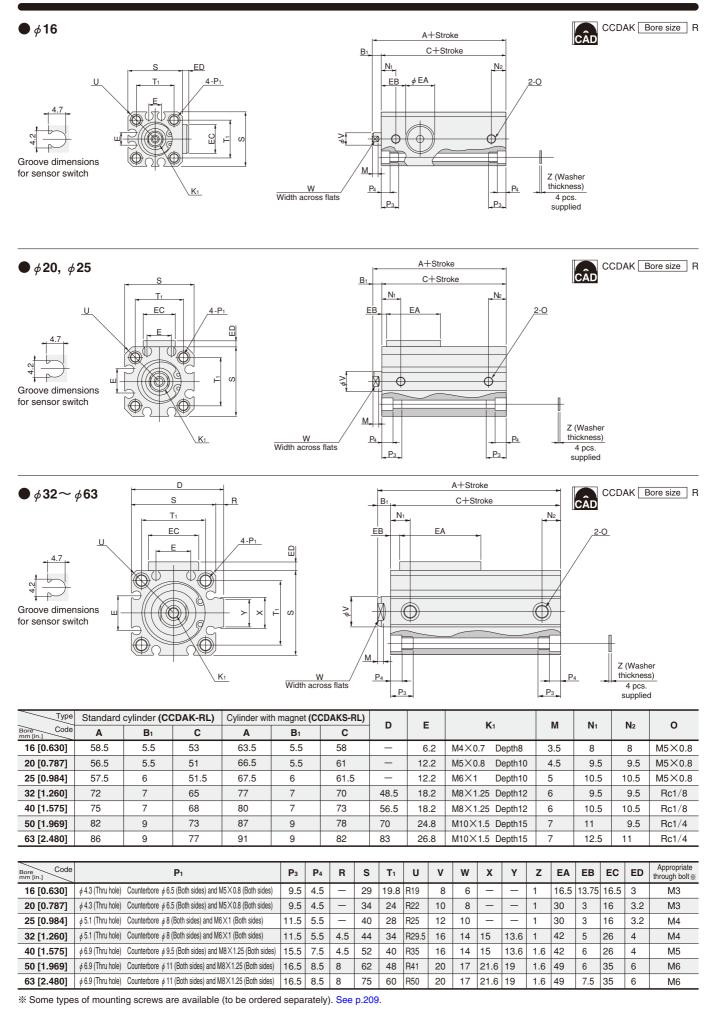
Rod side end keep cylinder


Rod side	Rod side end keep cylinder g[oz.]									
Bore size	Zero stroke	Additional mass for each 1mm	Additional mass of	Mas	s of mounting bra	cket	Additional mass of	sensor switch Note2		
mm [in.]	mass Note 1	[0.0394in.] stroke	cylinder with magnet	Foot bracket	Flange bracket	Clevis bracket	ZE	ZE		
16 [0.630]	101.33 [3.574]	1.62 [0.0571]	9.93 [0.350]	62 [2.19]	71 [2.50]	40 [1.41]				
20 [0.787]	130.49 [4.603]	2.26 [0.0797]	25.71 [0.907]	84 [2.96]	101 [3.56]	75 [2.65]				
25 [0.984]	185.93 [6.558]	3.11 [0.110]	37.47 [1.322]	104 [3.67]	160 [5.64]	100 [3.53]				
32 [1.260]	310.44 [10.950]	4.11 [0.145]	52.46 [1.850]	126 [4.44]	186 [6.56]	165 [5.82]	15 [0.53]	35 [1.23]		
40 [1.575]	445.35 [15.709]	4.77 [0.168]	69.15 [2.439]	160 [5.64]	335 [11.82]	200 [7.05]				
50 [1.969]	755.35 [26.644]	7.03 [0.248]	108 [3.81]	220 [7.76]	447 [15.77]	315 [11.11]				
63 [2.480]	1082.3 [38.176]	8.69 [0.307]	159 [5.61]	300 [10.58]	591 [20.85]	495 [17.46]				

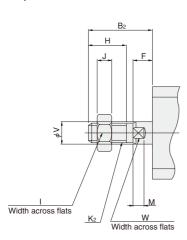
Notes: 1. The above table is for the standard strokes.

2. Sensor switch codes A and B show the lead wire lengths. A: 1000mm [39in.] B: 3000mm [118in.]

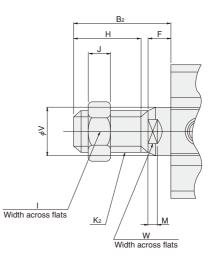
Calculation example: For the mass of a head side end keep cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches (**ZE135A**) $205.98+(3.11\times30)+37.47+(15\times2)=366.75g$ [12.937oz.]


Dimensions of Head Side End Keep Double Acting Type (mm)

% Some types of mounting screws are available (to be ordered separately). See p.209.

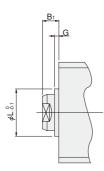

JIG CYLINDERS C SERIES

Dimensions of Rod Side End Keep Double Acting Type (mm)



Double acting type

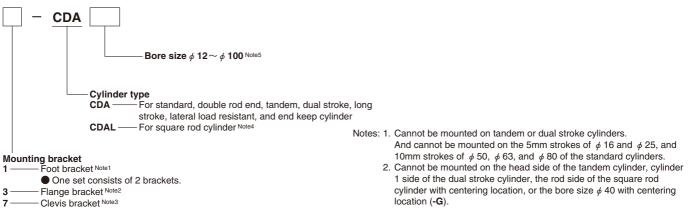
● *ϕ* 16~ *ϕ* 25



Bore Code mm [in.]	B 2	F	Н	I	J	K 2	М	v	W
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

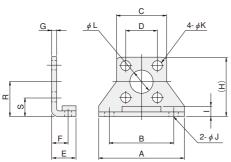

Bore Code	B1	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40

JIG CYLINDERS C SERIES **MOUNTING BRACKETS**

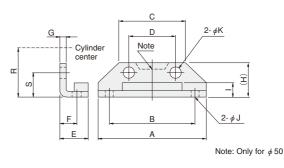
Foot Mounting Bracket, Flange Mounting **Bracket, Clevis Mounting Bracket**

Order Codes of Mounting Bracket Only

- 3. Cannot be used with anything other than the long stroke cylinder, the lateral load resistant cylinder, or the end keep cylinder. 4. Applicable to the foot mounting bracket only.

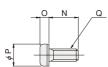

CÂD

5. Not available for ϕ 6 [0.236in.], ϕ 8 [0.315in.], and ϕ 10 [0.394in.].

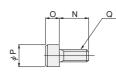

φ 12~ φ 40 : CDA-OP1, φ 50~ φ 100 : CDA-OP2

Dimensions of Foot Mounting Bracket (mm)

• ϕ 12~ ϕ 16



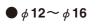
$\phi 20 \sim \phi 100$



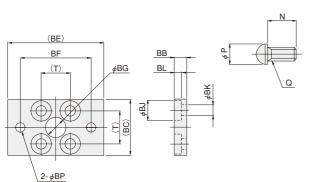
Mounting screw

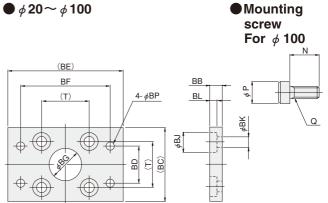
For $\phi 12 \sim \phi 80$

For ϕ **100**


																			Material: Steel
Bore Code	Α	В	С	D	E	F	G	Н	1	J	K	L	N	0	Р	Q	R	S	Mass g [oz.]
12 [0.472]	44	34	25	16.3	12.5	8	2	29.5	4.5	4.5	5.5	11	12	2.7	9.5	M5	17	8.9	50 [1.76]
16 [0.630]	48	38	29	19.8	13	8	2	33.5	4.5	4.5	5.5	11	12	2.7	9.5	M5	19	9.1	62 [2.19]
20 [0.787]	54	44	34	24	15	9.2	3.2	16.5	7	4.5	5.5	—	12 (12, 20)	2.7	9.5	M5	24	12	84 [2.96] (87 [3.07])
25 [0.984]	64	52	40	28	16.5	10.7	3.2	17.5	6	5.5	6.6	-	14 (14, 22)	3.3	10.5	M6	26	12	104 [3.67] (108 [3.81])
32 [1.260]	68	56	44	34	17	11.2	3.2	19	8	5.5	6.6	-	14 (14, 25)	3.3	10.5	M6	30	13	126 [4.44] (131 [4.62])
40 [1.575]	78	64	52	40	18.2	11.2	3.2	19	7	6.6	9	—	20 (20, 30)	4.4	14	M8	33	13	160 [5.64] (168 [5.93])
50 [1.969]	96	78	62	48	22.7	14.7	3.2	22	8	9	9	—	20 (20, 35)	4.4	14	M8	39	15	220 [7.76] (232 [8.18])
63 [2.480]	108	90	75	60	25.2	16.2	3.2	24	8.5	9	9	-	20 (20, 35)	4.4	14	M8	46	16	300 [10.58] (312 [11.01])
80 [3.150]	134	112	94	74	30.5	19.5	4.5	33	12	11	14	-	25	6.6	21	M12	59	22	644 [22.72]
100 [3.940]	160	134	114	90	35.5	23	6	40	14	14	16	—	30	14	21	M14	71	26	1172 [41.34]

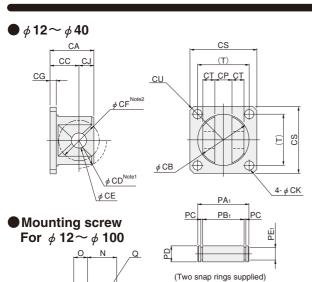
Remark: Figures in parentheses () are for square rod cylinders.

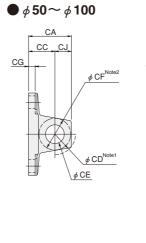

Two figures in parentheses (), Left side: for head side; Right side: for rod side


Mounting screw

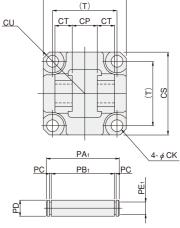
For $\phi 12 \sim \phi 80$

Ρ


φ 12~φ 40 : CDA-OP3, φ 50~φ 100 : CDA-OP4


CÂD

														1	Material: Steel
Bore Code mm [in.]	N	Р	Q	Т	BB	BC	BD	BE	BF	BG	BJ	BK	BL	BP	Mass g [oz.]
12 [0.472]	12	9.5	M5	16.3	6	28	-	50	38	11	10	5.5	3.6	4.5	55 [1.94]
16 [0.630]	12	9.5	M5	19.8	6	32	—	54	42	11	10	5.5	3.6	4.5	71 [2.50]
20 [0.787]	12(18)	9.5	M5	24	6	36	24	58	46	15	10	5.5	3.6	4.5	101 [3.56] (105 [3.70])
25 [0.984]	14(22)	10.5	M6	28	8	42	28	68	54	17	11	6.6	4.3	5.5	160 [5.64] (165 [5.82])
32 [1.260]	14(25)	10.5	M6	34	8	48	34	72	58	22	11	6.6	4.3	5.5	186 [6.56] (196 [6.91])
40 [1.575]	20(30)	14	M8	40	8	58	40	84	68	28	15	9	5.3	6.6	335 [11.82] (351 [12.38])
50 [1.969]	20(35)	14	M8	48	8	66	40	102	82	38	15	9	5.3	9	447 [15.77] (471 [16.61])
63 [2.480]	20(35)	14	M8	60	8	78	50	116	96	40	15	9	5.3	9	591 [20.85] (615 [21.69])
80 [3.150]	25	21	M12	74	12	100	70	142	118	45	22	14	7.3	11	1414 [49.88]
100 [3.940]	30	21	M14	90	20	116	80	170	142	55	23	16	15.2	14	2606 [91.92]


Remark: Figures in parentheses () are for square rod cylinders.

Dimensions of Clevis Mounting Bracket (mm)

CÂD

φ 12~ φ 40 : CDA-OP5, φ 50~ φ 100 : CDA-OP6

CS

(Two snap rings supplied)

																						Μ	lateria	al: Steel
Bore Code	Ν	0	Р	Q	Т	CA	СВ	СС	CD	CE	CF	CG	CJ	СК	СР	CS	СТ	CU	PA ₁	PB ₁	PC	PD	PE1	Mass g [oz.]
12 [0.472]	12	5	8.5	M5	16.3	15	12	11	R 7.5	0	R5	4	4	5.5	4 ^{+0.2} +0.1	25	3	R16	15	10.6	0.7	4 _{f8}	2.5	30 [1.06]
16 [0.630]	12	5	8.5	M5	19.8	17	16	12	R10	5 ^{+0.03}		4	5	5.5	5 ^{+0.2} +0.1	29	3.5	R19	17	12.6	0.7	5f8	3	40 [1.41]
20 [0.787]	12	5	8.5	M5	24	25	22	17	R14	8+0.04	R11	4	8	5.5	8 ^{+0.4} +0.2	34	5.2	R22	24.4	19.6	0.9	8 f8	6	75 [2.65]
25 [0.984]	16	6	10	M6	28	25	26	17	R16	0	R11	4	8	6.6	8 ^{+0.4} +0.2	40	5.2	R25	24.4	19.6	0.9	8 f8	6	100 [3.53]
32 [1.260]	16	6	10	M6	34	29	34	19	R20	0	R12.5	4	10	6.6	$12^{+0.4}_{+0.2}$	44	8	R29.5	34	29.2	0.9	10 _{f8}	8	165 [5.82]
40 [1.575]	20	8	13	M8	40	29	34	19	R20	$10^{+0.04}_{0}$	R12.5	4	10	9	$12^{+0.4}_{+0.2}$	52	8	R35	34	29.2	0.9	10 _{f8}	8	200 [7.05]
50 [1.969]	22	8	13	M8	48	32	-	19	R17	$14^{+0.08}_{0}$	R14	5	13	9 Counterbore φ 17	$20^{+0.6}_{+0.3}$	63	12.5	R41.5	55	47	1.15	14 ^{-0.030} -0.070	13.4	315 [11.11]
63 [2.480]	20	8	13	M8	60	32	-	19	R17	$14^{+0.08}_{0}$	R14	6	13	9 Counterbore φ 20	$20^{+0.6}_{+0.3}$	76	15	R50.5	60	52	1.15	14 ^{-0.030} -0.070	13.4	495 [17.46]
80 [3.150]	30	12	18	M12	74	52	-	32	R24	20 ^{+0.1}	R20	7	20	14 Counterbore φ 22	32 ^{+0.6} +0.3	95	16	R62.5	74	66	1.35	20 ^{-0.040} -0.084	19	1110 [39.15]
100 [3.940]	30	14	21	M14	90	52	_	32	R24	20+0.1	R21	7	20	16 Counterbore ¢ 26	32 ^{+0.6} +0.3	115	16	R75.5	74	66	1.35	20 ^{_0.040} _0.084	19	1490 [52.56]

Notes: 1. CD = Swing range of clevis mounting bracket itself. 2. CF = Maximum radius of swing for mating bracket. Remark: ϕ 12~ ϕ 50 are mounted with 2 bolts.

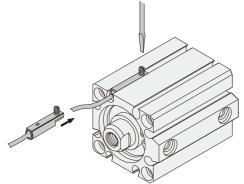
JIG CYLINDERS C SERIES **SENSOR SWITCHES**

Solid State Type, Reed Switch Type

Order Codes

A 1000r B 3000r	nm [39in.]		
ZE135 — Solid state type ZE235 — Solid state type ZE101 — Reed switch type	with indicator lamp with indicator lamp without indicator lamp	DC10V~28V DC10V~28V DC5V~28V AC85~115V	Vertical lead wire Horizontal lead wire
ZE201 — Reed switch type	without indicator lamp	DC5V~28V AC85~115V	Vertical lead wire
ZE155 — Solid state type ZE255 — Solid state type	with indicator lamp	DC4.5V~28V	Horizontal lead wire Vertical lead wire
ZE102 — Reed switch type	with indicator lamp	AC85~115V	Horizontal lead wire
ZE202 — Reed switch type	with indicator lamn	DC10V~28V AC85~115V	Vertical lead wire

For details of sensor switches, see p.1544.


mm

1 pc. mounting

10

Moving Sensor Switch

- Loosening mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- ullet Tighten the mounting screw with a tightening torque of 0.1 \sim 0.2N·m [0.9~1.8in·lbf].

Minimum Cylinder Strokes When Using Sensor Switches

Solid state type

Bore size	2 pcs. mo	unting ^{Note}	1 pc. mounting
Dore Size	1-surface mounting	2-surface mounting	r pc. mounting
6~12 [0.236~0.472in.]	30	10	F
16~100 [0.630~3.940in.]	1	0	5

Note: Two pieces can be mounted with 5mm stroke.

Take note that overlapping may occur, however.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

mm

● Operating range : ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential : C

mm [in]

Reed switch type

Bore size

12 [0.472in.]

16~100 [0.630~3.940in.]

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

2 pcs. mounting

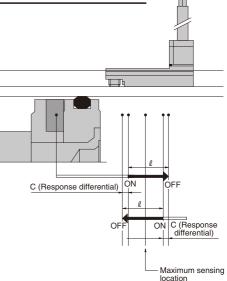
1-surface mounting 2-surface mounting

10

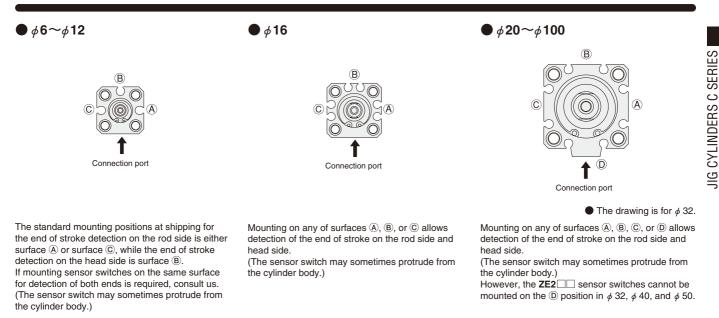
10

30

Solid state type

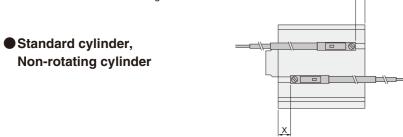

Solid s	tate ty	ре											mm [in.]
Item Bore	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
Operating range : <i>l</i>	1.8~3.0 [0.071~0.118]	1.8~3.0 [0.071~0.118]	2.0~3.2 [0.079~0.126]	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	3.5~7.5 [0.138~0.295]	4~8.5 [0.157~0.335]	4.5~9.5 [0.177~0.374]	4.5~9.0 [0.177~0.354]
Response differential : C	0.2	2 [0.008] or le	ess					0.5 [0.0	2] or less				
Maximum sensing location							6 [0.236]						

Remark: The above table shows reference values.


Reed switch type

Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
Operating range : l	4.5~8.5 [0.177~0.335]	5.5~9.5 [0.217~0.374]	9~13.5 [0.354~0.531]	10~15.5 [0.394~0.610]	8~12 [0.315~0.472]	8.5~14 [0.335~0.551]	9~15 [0.354~0.591]	10~16 [0.394~0.630]	11~16 [0.433~0.630]	11~16.5 [0.433~0.650]
Response differential : C	1.0 [0.039] or less			2.0	[0.079] or l	ess			3.0 [0.118] or less	2.5 [0.098] or less
Maximum sensing location					10 [0	.394]				

Remark: The above table shows reference values.



Mounting Sensor Switch

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the position shown in the diagram below (figures in the tables are reference values), the magnet reaches the sensor switch's maximum sensing location at the end of the stroke.

Solid state type

	Double ac	tin	g ty	/pe									mm	[in.]
Code	Bore	6	8	10	12	16	20	25	32	40	50	63	80	100
x	Standard type	7.2 [0.283]	8 [0.315]	8.3 [0.327]	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]		-	12.5 [0.492]	-	20 [0.787]	25 [0.984]
^	With bumper (-R)	_	_	_	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]			15 [0.591]	20 [0.787]	25 [0.984]
	Standard type	1 [0.039]	0.3 [0.012]	1 [0.039]	4 [0.157]	4 [0.157]	7.5 [0.295]	9 [0.354]			14.5 [0.571]	-	20 [0.787]	25 [0.984]
Y	With bumper (-R)	_	_	_	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]		11.5 [0.453]	-	20 [0.787]	25 [0.984]

Single acting push type

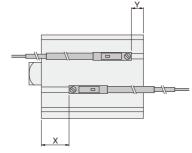
Code

х

act	ing	pus	n ty	pe					m	m [in.]
Bore	6	8	10	12	16	20	25	32	40	50
	17.2						14.5 [0.571]			
		0.0		4				0.5		10.5

Y					10.5 [0.413]

(Single act	ting	pull	typ	е					m	m [in.]
	Code	6	8	10	12	16	20	25	32	40	50
	х	7.2 [0.283]	8 [0.315]	8.3 [0.327]	7 [0.276]	7 [0.276]	11 [0.433]			14.5 [0.571]	
	Y	11 [0.433]	10.3 [0.406]		9 [0.354]	9 [0.354]	12.5 [0.492]			15.5 [0.610]	

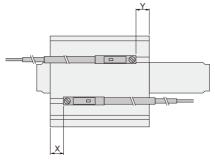

Reed switch type

•	Double ac	ting	l typ	е						m	m [in.]
Code	Bore	12	16	20	25	32	40	50	63	80	100
x	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	15.5 [0.610]	20.5 [0.807]
~	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]	11.5 [0.453]	11 [0.433]	12 [0.472]	11 [0.433]	10.5 [0.413]	80 15.5 [0.610] 15.5 [0.610] 15.5 [0.610] 15.5	20.5 [0.807]
Y	Standard type	-0.5 [-0.020]	-0.5 [-0.020]	3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]	15.5 [0.610]	20.5 [0.807]
Ŷ	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	11.5 [0.453]	15.5 [0.610]	20.5 [0.807]

• Single acting push type mm [in.]											
Code Bore 12 16 20 25 32 40 50											
x	10.5	10.5	9.5	10	11	13	12.5				
	[0.413]	[0.413]	[0.374]	[0.394]	[0.433]	[0.512]	[0.492]				
Y	-3.5	-3.5	0	1	2	3	6				
	[-0.138]	[-0.138]	[0]	[0.039]	[0.079]	[0.118]	[0.236]				

Single acting pull type mm [in.]												
Code	ore 12	16	20	25	32	40	50					
х	2.5	2.5	6.5	6.5	9	10	8					
	[0.098]	[0.098]	[0.256]	[0.256]	[0.354]	[0.394]	[0.315]					
Y	4.5	4.5	8	9.5	9	11	10					
	[0.177]	[0.177]	[0.315]	[0.374]	[0.354]	[0.433]	[0.394]					

Square rod cylinders with magnet



Solid state type														
	Double acting type mm [in.]													
Code Bore 20 25 32 40 50														
x	Standard type	17.5 [0.689]	17.5 [0.689]	22.5 [0.886]	24.5 [0.965]	27.5 [1.083]	30 [1.181]							
^	With bumper (-R)	21.5 [0.846]	22.5 [0.886]	24.5 [0.965]	26.5 [1.043]	30.5 [1.201]	30 [1.181]							
v	Standard type	10 [0.394]	9 [0.354]	14 [0.551]	14.5 [0.571]	14.5 [0.571]	16 [0.630]							
Y	With bumper (-R)	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	11.5 [0.453]	16 [0.630]							

Reed switch type Juble

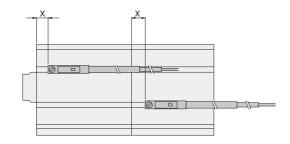
	Double acting type mm [in.]												
Code	Bore	20	25	32	40	50	63						
x	Standard type	13 [0.512]	13 [0.512]	18 [0.709]	20 [0.787]	23 [0.906]	25.5 [1.004]						
	With bumper (-R)	17 [0.669]	18 [0.709]	20 [0.787]	22 [0.866]	26 [1.024]	25.5 [1.004]						
	Standard type	5 [0.197]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]						
Y	With bumper (-R)	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	11.5 [0.453]						

• Double rod cylinders with magnet

Solid state type

	Double acting type mm [in.]														
	Code	Bore	6	8	10	12	16	20	25	32	40	50	63	80	100
x	Standard type	7.2 [0.283]	8 [0.315]	8.3 [0.327]	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]		-	-		20.5 [0.807]	25 [0.984]	
	^	With bumper (-R)	_	-	_	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]			-	20.5 [0.807]	25 [0.984]
	Y	Standard type	5.5 [0.217]	5.8 [0.228]	6 [0.236]	10 [0.394]	10 [0.394]		14.5 [0.571]						
		With bumper (-R)	_	_	_	12 [0.472]	12 [0.472]	15 [0.591]	14.5 [0.571]	6.5 [0.256]				26.5 [1.043]	

Single acting type mm [in.]											
Code Bore 12 16 20 25 32 40											
х	15	15	14	14.5	15.5	17.5	16.5				
	[0.591]	[0.591]	[0.551]	[0.571]	[0.610]	[0.689]	[0.650]				
Y	7	7	11	11	13.5	14.5	12.5				
	[0.276]	[0.276]	[0.433]	[0.433]	[0.531]	[0.571]	[0.492]				


Reed switch type

	Double acting type mm [in.]													
Code	Bore	12	16	20	25	32	40	50	63	80	100			
x	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	16 [0.630]	20.5 [0.807]			
*	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]	11.5 [0.453]	11 [0.433]	12 [0.472]	9.5 [0.374]	10.5 [0.413]	16 [0.630]	20.5 [0.807]			
v	Standard type	5.5 [0.217]	5.5 [0.217]	9.5 [0.374]	10 [0.394]	11 [0.433]	13 [0.512]	12 [0.472]	13.5 [0.531]	22 [0.866]	27 [1.063]			
Y	With bumper (-R)	7.5 [0.295]	7.5 [0.295]	10.5 [0.413]	10 [0.394]	2 [0.079]	11 [0.433]	10.5 [0.413]	13.5 [0.531]	22 [0.866]	27 [1.063]			

• Single acting type mm [in.] Code Bore 12 16 20 25 32 40 50 13 [0.512] 10.5 [0.413] 10.5 [0.413] 9.5 10 11 12 х [0.374] [0.394] [0.433] [0.472] 2.5 2.5 6.5 6.5 9 10 8 [0.098] [0.098] [0.256] [0.256] [0.354] [0.394] [0.315] Υ

201

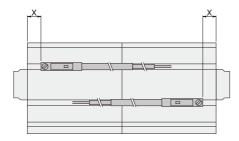
Tandem cylinders with magnet

Y Υ

Solid state type

	Double acting type mm [in.]													
Co	Bore	12	16	20	25	32	40	50	63	80	100			
x	Standard type	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]	13.5 [0.531]	14.5 [0.571]		15 [0.591]	20 [0.787]	25 [0.984]			
,	With bumper (-R)	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]	16.5 [0.650]		15 [0.591]	20 [0.787]	25 [0.984]			
		4 [0.157]	4 [0.157]	7.5 [0.295]	9 [0.354]	8.5 [0.335]	10.5 [0.413]	-	16 [0.630]	20 [0.787]	25 [0.984]			
)	With bumper (-R)	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	11.5 [0.453]	16 [0.630]	20 [0.787]	25 [0.984]			

•Single acting push type mm [in.]												
Bore 12 16 20 25 32 40												
	х		15 [0.591]	15 [0.591]	14 [0.551]	14.5 [0.571]	15.5 [0.610]	17.5 [0.689]	16.5 [0.650]			
	Y		1 [0.039]	1 [0.039]	4.5 [0.177]	5.5 [0.217]	6.5 [0.256]	7.5 [0.295]	10.5 [0.413]			

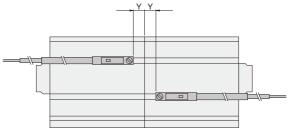

Reed switch type

Double acting type mm [in.]												
Cod	eBore	12	16	20	25	32	40	50	63	80	100	
x	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]			
X	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]	11.5 [0.453]	11 [0.433]	12 [0.472]	11 [0.433]	10.5 [0.413]			
	Standard type	-0.5 [-0.020]		3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]			
Y	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	11.5 [0.453]	15.5 [0.610]		

• Single acting push type

• Single acting push type mm [in.]												
Code Bore 12 16 20 25 32 40												
x	10.5	10.5	9.5	10	11	13	12					
	[0.413]	[0.413]	[0.374]	[0.394]	[0.433]	[0.512]	[0.472]					
Y	-3.5	-3.5	0	1	2	3	6					
	[-0.138]	[-0.138]	[0]	[0.039]	[0.079]	[0.118]	[0.236]					

Dual stroke cylinders with magnet

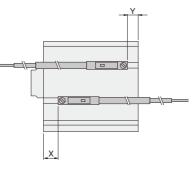


Solid state type

	Double acting type mm [in.]											
	Code	Bore	12	16	20	25	32	40	50	63	80	100
	x	Standard type	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]	13.5 [0.531]			15 [0.591]	20 [0.787]	25 [0.984]
	^	With bumper (-R)	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]	16.5 [0.650]	14 [0.551]	15 [0.591]	20 [0.787]	25 [0.984]
	v	Standard type	4	4	7.5	9	8.5	10.5	14.5	16 [0.630]	20	25
Y	With bumper (-R)	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	13.5 [0.531]	16 [0.630]	20 [0.787]	25 [0.984]	

Single a	Single acting push type mm [in.]													
Code	Bore 12	16	20	25	32	40	50							
x	15	15	14	14.5	15.5	17.5	16.5							
	[0.591]	[0.591]	[0.551]	[0.571]	[0.610]	[0.689]	[0.650]							
Y	1	1	7.5	5.5	6.5	7.5	10.5							
	[0.039]	[0.039]	[0.295]	[0.217]	[0.256]	[0.295]	[0.413]							

Single act	Single acting pull type mm [in.]												
Code	12	16	20	25	32	40	50						
Y	7	7	11	11	13.5	14.5	12.5						
~	[0.276]	[0.276]	[0.433]	[0.433]	[0.531]	[0.571]	[0.492]						
v	9	9	12.5	14	13.5	15.5	14.5						
1	[0.354]	[0.354]	[0.492]	[0.551]	[0.531]	[0.610]	[0.571]						

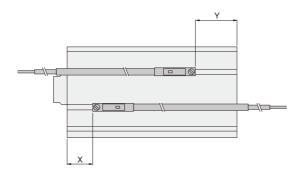

Reed switch type

•	Double acting type mm [in.]												
Code	Bore	12	16	20	25	32	40	50	63	80	100		
x	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	15.5 [0.610]	20.5 [0.807]		
^	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]	11.5 [0.453]	11 [0.433]	12 [0.472]	9.5 [0.374]	10.5 [0.413]	15.5 [0.610]	20.5 [0.807]		
v	Standard type	-0.5 [-0.020]	-0.5 [-0.020]	3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]	15.5 [0.610]			
Y	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	9 [0.354]	11.5 [0.453]	15.5 [0.610]	20.5 [0.807]		

Single acting push type mm [in.]													
Code	12	16	20	25	32	40	50						
x	10.5	10.5	9.5	10	11	13	12						
	[0.413]	[0.413]	[0.374]	[0.394]	[0.433]	[0.512]	[0.472]						
Y	-3.5	-3.5	3	1	2	3	6						
	[-0.138]	[-0.138]	[0.118]	[0.039]	[0.079]	[0.118]	[0.236]						

Single act	Single acting pull type mm [in.]												
Code	12	16	20	25	32	40	50						
х	2.5	2.5	6.5	6.5	9	10	8						
	[0.098]	[0.098]	[0.256]	[0.256]	[0.354]	[0.394]	[0.315]						
Y	4.5	4.5	8	9.5	9	11	10						
	[0.177]	[0.177]	[0.315]	[0.374]	[0.354]	[0.433]	[0.394]						

•Lateral load resistant cylinders with magnet

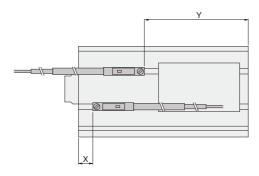

Solid state type

Double acting type mm [in												
Code	12	16	20	25	32	40	50	63	80	100		
x	10 [0.394]	10 [0.394]	15 [0.591]		15.5 [0.610]							
Y	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]		11.5 [0.453]					

-	Reed switch type Double acting type mm [in.]												
Code	<u> </u>	Bore	12	16	20	25	32	40	50	63	80	100	
	х		5.5 [0.217]	5.5 [0.217]		11.5 [0.453]		12 [0.472]	11 [0.433]	13 [0.512]	22 [0.866]	27 [1.063]	
	Y		1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	9 [0.354]	14 [0.551]	19 [0.748]	

203

Long stroke cylinders with magnet


Solid state type

Double ac	Double acting type mm [in.]													
Code	12	16	20	25	32	40	50	63	80	100				
х	15 [0.591]	15 [0.591]	20 [0.787]	21 [0.827]		21.5 [0.846]								
Y	12 [0.472]	12 [0.472]		14.5 [0.571]										

Reed switch type

• Do	Double acting type mm [in.]													
Code	<u> </u>	Bore	12	16	20	25	32	40	50	63	80	100		
	Х			10.5 [0.413]				17 [0.669]	16 [0.630]	18 [0.709]	27 [1.063]	32 [1.260]		
	Y		7.5 [0.295]	7.5 [0.295]	10.5 [0.413]	10 [0.394]	9 [0.354]	11 [0.433]	8 [0.315]	9 [0.354]	14 [0.551]	19 [0.748]		

• End keep cylinder with magnet

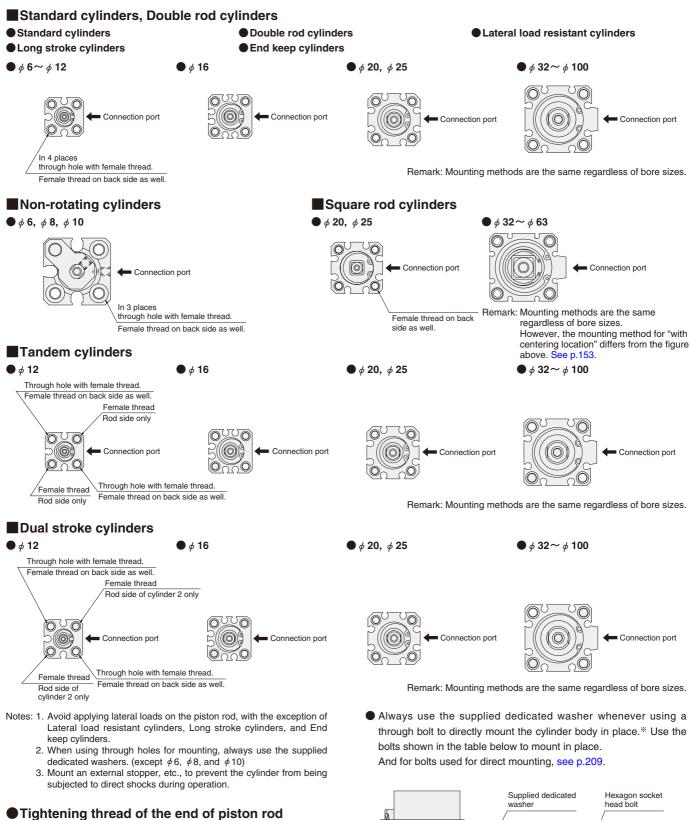
Solid state type

Head side	Head side end keep mm [in.]												
Code	16	20	25	32	40	50	63						
х	15.5	20.5	21.5	20.5	21.5	20.5	22.5						
	[0.610]	[0.807]	[0.846]	[0.807]	[0.846]	[0.807]	[0.886]						
Y	36.5	34.5	34.5	43.5	45.5	51.5	54.5						
	[1.437]	[1.358]	[1.358]	[1.713]	[1.791]	[2.028]	[2.146]						

Reed switch type

	Head side end keep mm [in.]												
C	ode	16	20	25	32	40	50	63					
	х	11 [0.433]	16 [0.630]	17 [0.669]	16 [0.630]	17 [0.669]	16 [0.630]	16 [0.630]					
	Y	32 [1.260]	30 [1.181]	30 [1.181]	39 [1.535]	41 [1.614]	47 [1.850]	50 [1.969]					

Solid state type


Rod side	Rod side end keep												
Code	16	20	25	32	40	50	63						
х	35.5	35.5	36.5	45.5	46.5	55.5	57.5						
	[1.398]	[1.398]	[1.437]	[1.791]	[1.831]	[2.185]	[2.264]						
Y	11.5	14.5	14.5	13.5	15.5	11.5	13.5						
	[0.453]	[0.571]	[0.571]	[0.531]	[0.610]	[0.453]	[0.531]						

Reed switch type

Rod side	Rod side end keep mm [in.]												
Code	16	20	25	32	40	50	63						
x	31	31	32	41	42	51	53						
	[1.220]	[1.220]	[1.260]	[1.614]	[1.654]	[2.008]	[2.087]						
Y	7	10	10	9	11	7	9						
	[0.276]	[0.394]	[0.394]	[0.354]	[0.433]	[0.276]	[0.354]						

Body mounting

Jig cylinder mounting holes include both through holes with female mounting thread, and dedicated female mounting threads, for a variety of mountings. For details, see the diagrams below.

Since a tool (thin wrench) has been prepared for holding the piston rod when tightening the rod end thread, consult us.

Bore size	6	8	10	12	16	20	25	32	40	50	63	80	100
mm [in.]	[0.236]	[0.315]	[0.394]	[0.472]	[0.630]	[0.787]	[0.984]	[1.260]	[1.575]	[1.969]	[2.480]	[3.150]	[3.940]
Hexagon socket head bolt nominal size	МЗ	M3	M3	МЗ	M3	M3	M4	M4	M5	M6	M6	M8	M10

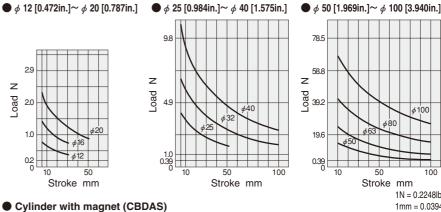
Bracket mounting

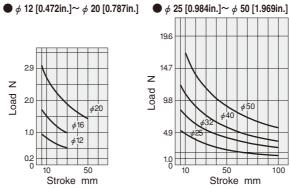
- Foot mounting brackets cannot be installed on tandem cylinders and dual stroke cylinders.
- Flange mounting brackets cannot be installed on the head side of tandem cylinders and the stroke 1 side of dual stroke cylinders.
- Clevis mounting brackets cannot be installed on anything except for lateral load resistant cylinders, long stroke cylinders, and end keep cylinders.

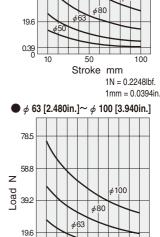
Non-standard stroke

In most cases, body cutting is used for the manufacturing for non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 12 [0.472in.]~ \(\phi\) 40 [1.575in.], and strokes of less than 10mm for ϕ 50 [1.969in.] $\sim \phi$ 100 [3.940in.]. The collar packed is used for these cases. Moreover, sizes $\phi \in [0.236in.]$ $\sim \phi 10$ [0.394in.] are collar packed only. For delivery, consult us.

Rod side end keep cylinders cannot be collar packed.


- Dimensions
- 1. Additional strokes obtained by body cutting remain classed as non-standard strokes.
- 2. Additional strokes obtained by collar packed are classed as standard strokes in the longer one.


Lateral Load


- Keep the lateral load on the rod end of the lateral load resistant cylinder, long stroke cylinder, and end keep cylinder, at or below the values shown in the graphs below.
 - Note: Avoid applying lateral load on any cylinder types other than the lateral load resistant cylinder, long stroke cylinder, and end keep cylinder.

Lateral load resistant cylinders

Standard type (CBDA)

Long stroke cylinders, End keep cylinders ● Standard type (CCDA,CCDAK) ● φ 25 [0.984in.]~ φ 50 [1.969in.]

● φ 12 [0.472in.]~ φ 20 [0.787in.] ● φ 25 [0.984in.]~ φ 40 [1.575in.]

3.9

2.9

2.0

1.0

02

30

150

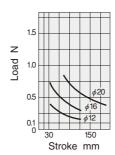
Stroke mm

z

Load

● φ 12 [0.472in.]~ φ 20 [0.787in.]

29


1.0

0.2

n.

z

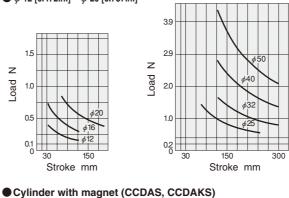
Load 2.0

1.5

1.0

05

0.1


30

150

Stroke mm

z

Load

39.2

50

Stroke mm 1N = 0.2248lbf.

• *φ* 63 [2.480in.]~ *φ* 100 [3.940in.]

100

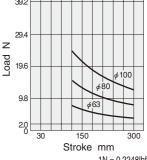
1mm = 0.0394in.

0.39

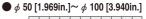
39.2

29.

19.6


9.8

2.0 30


z

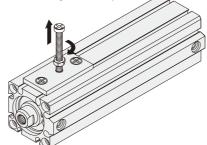
300

10

Single acting cylinders

Standard cylinders single acting push type Standard cylinders single acting pull type Double rod cylinders single acting type Tandem cylinders single acting push type Dual stroke cylinders single acting push type Dual stroke cylinders single acting pull type

If in the above types' application, air is being continuously applied from a connection port, and the spring remains in a compressed state for long periods of time, the piston may sometimes fail to return to its original position even after the air is exhausted. If equipment is to be used in this way over long periods of time, consult us.


End keep cylinder

Control circuit

- For control of Jig end keep cylinders, we recommend the use of 2-position, 4-, 5-port valves. Avoid the use of a control circuit of ABR connections (exhaust centers) with 3position valves that exhaust air from 2 ports.
- Always use meter-out control for speed control. Meter-in control may result in failure of the locking mechanism to release.
- Notes: 1. It is dangerous to supply air to a connection port on a side with a locking mechanism while already exhausted, because the piston rod could suddenly extend (retract). In addition, it could also cause galling of the lock piston and piston rod, resulting in defective operation. Always supply air to the connection port on the opposite side to ensure back pressure is applied.
 - 2. When restarting operations after air has been exhausted from the cylinder due to completion of operations or to an emergency stop, always start by supplying air to the connection port on the opposite side of the locking mechanism.
 - Connect the valve port A (NC) to the connection port on the side with the locking mechanism.

Manual operation of the locking mechanism

While the locking mechanism is normally released automatically through cylinder operations, it can also be released manually. For manual release, insert an $M3 \times 0.5$ screw that has 30mm [1.18in.] below head length into the manual override opening, thread it in about 3 turns into the internal lock piston, and then pull up the screw. To maintain the manual override for adjustment, etc., thread the locknut onto the screw and, with the locking mechanism in a released state, tighten the locknut against the cylinder.

- Notes: 1. It is dangerous to release the lock when a load (weight) is present on the piston rod, because it may cause a sudden fall or cause the unintended piston rod's extension (retraction). In this case, always supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.
 - 2. If the locking mechanism cannot easily be released even with manual override, it could be the result of galling of the lock piston and piston rod. In this case, supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.
 - 3. Because water, oil, dust, etc., entering via the manual override opening could be a cause of defective locking or other erratic operation, use a cover, etc., for protection when using in locations subject to dripping water, dripping oil, or to large amounts of dust, etc.

Sensor switch

In the standard cylinder, a magnet for the sensor switch is not built-in.

To install a sensor switch, a cylinder with a built-in magnet for the sensor switch is required.

- Notes: 1. For the sensor switch mounting location and moving ranges, see p.199.
 - Contact protection measures are required for connecting inductive loads to reed sensor switches or for when capacitive surges are generated. For contact protection measures, see p.1566.

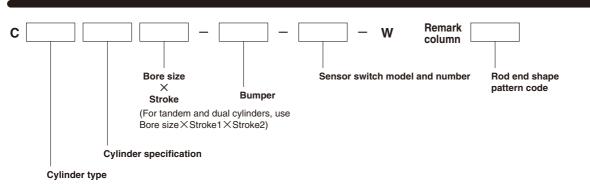
Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the cylinder. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

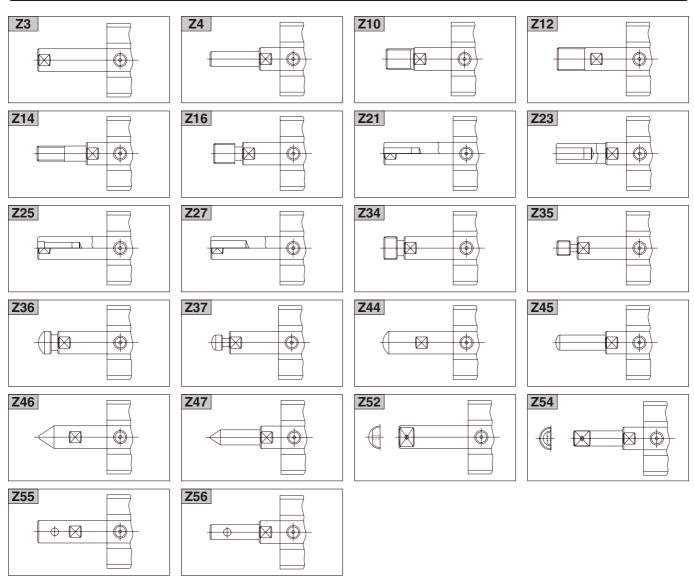
Atmosphere

- If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.
- The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.
 - Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Lubrication


The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (**ISO VG32**) or equivalent.

Avoid using spindle oil or machine oil.


OPTIONAL ROD END SHAPE PATTERNS

Use an order form of rod end pattern and fill the items on the selected one from among 22 types of optional patterned shapes to obtain made-to-order cylinders of non-standard rod end shapes. The optional rod end shapes can be applied to the entire Jig Cylinders C Series. For the order form containing the optional patterned shapes, contact us. (Except ϕ 6, ϕ 8, ϕ 10)

Order Codes

Piston Rod End Shape Pattern Diagrams (22 Types)

MOUNTING SCREWS FOR JIG CYLINDERS

• Some types of mounting screws specifically for the Jig Cylinders are available.

Use the order codes below to place orders.

		_	_	(
List	of	Order	Codes	(

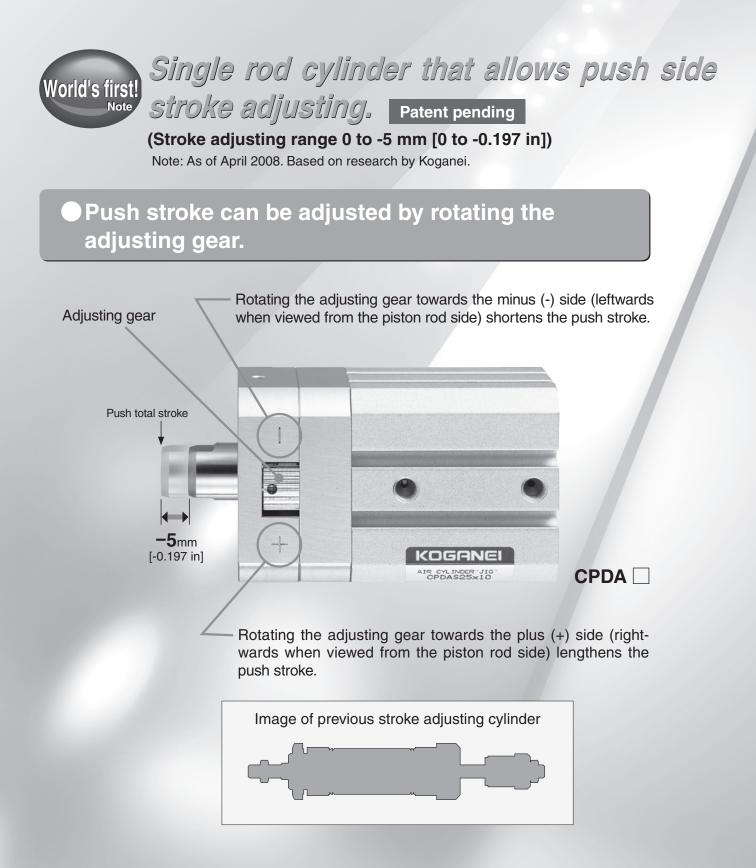
1 Mounting screw type: JIS B 1176 Hexagon socket head cap screws 2 Surface treatment: Nickel plated

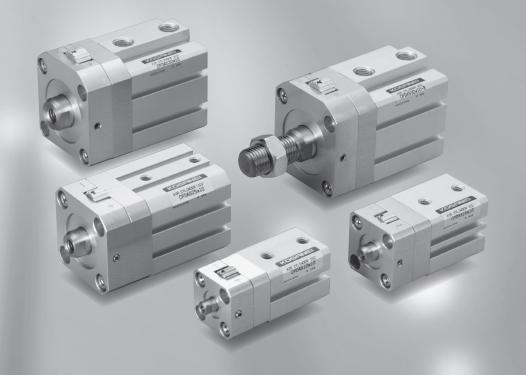
Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws		Applicable cylinde bore size mm [in.]
	CRK124	M3×25		•	
	CRK125	M3×30			
6 [0.236]	CRK126	M3×35	2		
8 [0.315]	CRK127	M3×40	2		
10 [0.394]	CRK128	M3×45			
	CRK129	M3×50			
12 [0.472]	CRK130	M3×30			
16 [0.630]	CRK131	M3×35			80 [3.150]
20 [0.787]	CRK132	M3×40	4		00 [3.130]
	CRK133	M3×45			
	CRK134	M3×50			
	CRK135	M4×30	_		
	CRK136	M4×35			
	CRK137	M4×40			
	CRK138	M4×45			
25 [0.984]	CRK139	M4×50	- 4	-	
32 [1.260]	CRK140	M4×55			
	CRK141	M4×60	_		
	CRK142	M4×65	_		
	CRK143	M4×70	_		
	CRK144	M4×75			
	CRK145	M5×35			
	CRK146	M5×40			100 [0 0 10]
	CRK147	M5×45			100 [3.940]
	CRK148	M5×50			
	CRK149	M5×55			
	CRK150	M5×60	_		
40 [1.575]	CRK151 CRK152	M5×65 M5×70	4		
	CRK152 CRK153	M5×70			
	CRK155	M5×75 M5×80	_		
·	CRK155	M5×85			
·	CRK156	M5×90			
·	CRK157	M5×100			
	CRK158	M5×110			
	CRK159	M6×40			
	CRK160	M6×45	_		
	CRK161	M6×50			
	CRK162	M6×55	_		
	CRK163	M6×60			
	CRK164	M6×65	_		
	CRK165	M6×70			
50 [1 060]	CRK166	M6×75	<u> </u>		
50 [1.969]	CRK167	M6×80	- 4		
63 [2.480]	CRK168	M6×85			
	CRK169	M6×90			
	CRK170	M6×100			
	CRK171	M6×110			
	CRK172	M6×120			
	CRK173	M6×130			
	CRK174	M6×140			
	CRK175	M6×150			

Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws		
	CRK176	M8×60			
	CRK177	M8×65			
	CRK178	M8×70]		
	CRK179	M8×75]		
	CRK180	M8×80]		
	CRK181	M8×85	1		
	CRK182	M8×90	1		
00 [0 4 50]	CRK183	M8×95			
80 [3.150]	CRK184	M8×100	4		
	CRK185	M8×110	1		
	CRK186	M8×120	1		
	CRK187	M8×130	1		
	CRK188	M8×140	1		
	CRK189	M8×150	1		
	CRK190	M8×160	1		
	CRK191	M8×170	1		
	CRK192	M10×65			
	CRK193	M10×70	1		
	CRK194	M10×75	1		
	CRK195	M10×80	1		
	CRK196	M10×85	1		
	CRK197	M10×90	1		
	CRK198	M10×95	1		
100 [3.940]	CRK199	M10×100	4		
	CRK200	M10×110	1		
	CRK201	M10×120	1		
	CRK202	M10×130	1		
	CRK203	M10×140	1		
	CRK204	M10×150	-		
	CRK205	M10×160			
	CRK206	M10×170	1		

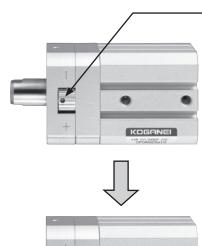
KOGANEI

ACTUATORS GENERAL CATALOG


JIG CYLINDERS C SERIES STROKE-ADJUSTING CYLINDERS


INDEX

RoHS directive compliant products


Features	18
Handling instructions and precautions	20
Specifications	22
Order codes	23
Internal configuration and names of each part —	24
Dimensions	25
Sensor switch	28

JIG CYLINDERS C SERIES Stroke Adjusting Cylinders (push stroke adjusting)

Stroke adjusting method

After stroke adjusting

With the adjusting gear $\phi 2$ [0.079] ($\phi 12$ to $\phi 25$ [0.472 to 0.984] cylinder bores) or $\phi 2.5$ [0.098] ($\phi 32$ [1.260], $\phi 40$ [1.575] cylinder bores) holes are at 90° intervals.

Holes

- Use a pin or other suitable object to rotate as required.
 - Note: The adjusting gear cannot be rotated while air is being applied. Do not try to force rotation past where adjusting gear adjustment ends. Doing so can lead to malfunction. Do not try to rotate with your fingernail. Doing so creates the risk of personal injury.
 - When determining the stroke, tighten the fixing screw. One fixing screen is temporarily installed at the factory.

Fixing screw (For fixing the adjusting gear) There is also a female screw on the opposite side as a fixing screw.

Cylinder	Cylinder bore and stroke (mm [in])														
Cylinder bore	Sta	Standard stroke													
12 [0.472]	5 [0.1	97]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	-	-	-	-	-	-		
16 [0.630]	5 [0.1	97]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	-	-	-	-	-	-		
20 [0.787]	5 [0.1	97]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	-	-		
25 [0.984]	5 [0.1	97]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	-	-		
32 [1.260]	5 [0.1	97]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	75 [2.953]	100 [3.9]		
40 [1.575]	5 [0.1	97]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	75 [2.953]	100 [3.9]		

Lubrication

Cylinders can be used without lubrication. To lubricate, use turbine oil 1 (ISO VG32) or an equivalent. Avoid using spindle oil or machine oil.

Mid-stroke

The mid-stroke manufacturing method basically uses tube cutting.

However, strokes up to 5 mm [0.197 in] are not tube cut. Contact your nearest Koganei sales office for information about availability.

Dimensions

In the case of tube cutting, the add stroke is the mid-stroke.

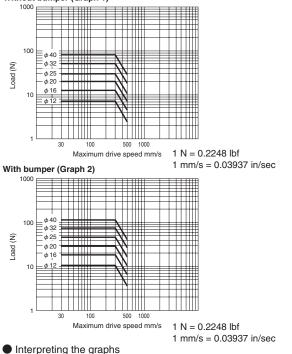
Other

Avoid use that subjects the piston rod to lateral load.

Allowable kinetic energy

Use the following equation to calculate the kinetic energy of loads.

 $Ex = \frac{m}{2} V^2$


Ex: Kinetic energy (J)

m: Mass of load (kg)

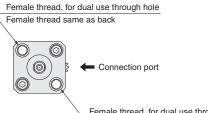
v: Piston speed (m/s)

	J [ft•lbf]
Allowable ki	netic energy
Without bumper	With bumper
0.032 [0.024]	0.048 [0.035]
0.057 [0.042]	0.086 [0.063]
0.090 [0.066]	0.135 [0.100]
0.140 [0.103]	0.210 [0.155]
0.230 [0.170]	0.344 [0.254]
0.359 [0.265]	0.538 [0.397]
	Without bumper 0.032 [0.024] 0.057 [0.042] 0.090 [0.066] 0.140 [0.103] 0.230 [0.170]

According to Graph 1, a maximum speed of 300 mm/s [11.8 in/sec] or less is required for operating a load of 30 N [6.744 lbf] when with a CPDA (S) 25. According to Graph 2, ϕ 32 [1.260] [CPDA (S) 32×Stroke-R] for operation of a load of 20 N [4.496 lbf] operated at a maximum speed of 500 mm/s [19.7 in/sec].

Sensor switch

Standard cylinders do not have a sensor switch magnet built in. To mount a sensor switch, a sensor cylinder with a built-in sensor switch magnet is required.


Note 1. For information about the sensor switch mounting position and movement range, refer to page **29**.

 Contact protection measures are required for connections that result in an inductive load on a contact sensor switch, or when capacitance surge is generated. For details about contact protection measures, refer to the sensor switch page of the general personal catalog.

Installing the main unit

To allow for a variety of possible mounting methods, the jig cylinder mounting holes are available as a combination of female threaded holes and as through holes, or as female threaded holes only. For details, refer to the diagrams below. The mounting method is the same regardless of the cylinder bore.

* When fixing the main unit with direct through bolts, be sure to use the attached special washers.

Female thread, for dual use through hole Female thread same as back

* The head side (back surface) has dual use female thread/through holes at two locations. The other two locations are female thread only.

General precautions

Air supply

- 1. Use air as the media. For the use of any other medium, consult your nearest Koganei sales office.
- 2. Air to operate the cylinder should be clean air that contains no degraded compressor oil, etc. Install an air filter (filtration of 40 μ m or less) near the cylinder or valve to remove dust and accumulated liquid. Also drain the air filter periodically. If liquid or dust gets into the cylinder, it may cause defective operation. Install an air filter (filtration of 40 μ m or less) near the cylinder or valve to remove dust and accumulated liquid. Also drain the air filter periodically. If liquid or dust gets into the cylinder, it may cause defective operation.

Piping

Before installing piping to the cylinder, thoroughly flush the inside of the pipes (with compressed air). Machining chips, sealing tape, rust and other debris remaining from the piping work may result in air leaks and malfunctions.

Atmosphere

- 1. Cover the unit when using it in locations where it might be subject to excessive dust, dripping water, dripping oil, etc.
- 2. This product cannot be used if the medium or ambient atmosphere includes any of the substances below. Organic solvents, phosphate type hydraulic oil, sulfur dioxide gas, chlorine gas, acids, or ozone.

Stroke adjusting

Stroke adjusting cylinder

- **1.** Fixing screws are temporarily installed at the factory. Loosen the fixing screws when adjusting the stroke.
- 2. The stroke is set at the factory as noted on the product label. Relative to the indicated product stroke, the push stroke can be adjusted up to a maximum of -5 mm [-0.197 in] by rotating the adjusting gear. When viewed from the piston rod side, rightward rotation (towards the "+" mark)

lengthens the push stroke, while leftward rotations (towards the "-" mark) shortens the push stroke.

- 3. The adjusting gear cannot be rotated while air is being applied.
- **4.** With the adjusting gear ϕ 2 [0.079] (ϕ 12 to ϕ 25 [0.472 to 0.984] cylinder bores) or ϕ 2.5 [0.098] (ϕ 32 [1.260], ϕ 40 [1.575] cylinder bores) holes are at 90° intervals. Use a pin or other suitable object to rotate as required.
- Do not try to rotate with your fingernail. Doing so creates the risk of personal injury. ^{NOTE} 5. Do not try to force rotation past where adjusting gear adjustment ends. Doing so can
- lead to malfunction. Note
- **6.** When determining the stroke, tighten the fixing screw. The tightening torques of the fixing screws are: 0.3 N·m [2.655 in·lbf] (ϕ 12 to ϕ 25 [0.472 to 0.984] cylinder bores) and 0.7 N·m [6.196 in·lbf] (ϕ 32 [1.260] and ϕ 40 [1.575] cylinder bores). There is also a screw on the opposite side. One fixing screw is temporarily installed at the factory.

Fixing screw (For fixing the adjusting gear)

Note: When you are unable to rotate the adjusting gear.

- Is the fixing screw tightened? → NO: Loosen the fixing screw.
 - ► YES: Check the stroke on the product label and the actual product stroke.
 - [Stroke on Product Label] = [Product Stroke] --> The adjusting gear can be rotated towards the minus (-) mark.

● [Stroke on Product Label] > [Product Stroke] → The adjusting gear can be rotated towards the plus (+) mark. If you still have problems rotating the adjusting gear, contact Koganei.

Stroke adjusting guidelines (reference)

Item Model	Cylinder bore mm [in]	Stroke adjusting range mm [in]	,	Amount of adjustment per adjusting gear rotation mm	Required number of adjusting gear rotations to adjust by 1 mm
	12 [0.472]	0 to -5 [0 to -0.197]	6.7	(0.8 [0.031])	(1.3)
	16 [0.630]	0 to -5 [0 to -0.197]	8.3	(0.6 [0.024])	(1.7)
CPDA(S)	20 [0.787]	0 to -5 [0 to -0.197]	8.6	(0.6 [0.024])	(1.7)
	25 [0.984]	0 to -5 [0 to -0.197]	9.8	(0.5 [0.020])	(2.0)
	32 [1.260]	0 to -5 [0 to -0.197]	9.5	(0.5 [0.020])	(1.9)
	40 [1.575]	0 to -5 [0 to -0.197]	10.3	(0.5 [0.020])	(2.1)

Note: Actual values may be different due to component tolerances. Use the above information for general reference only.

Thrust

Determine the thrust required by the load and working air pressure, the then select the appropriate cylinder bore. The table shows calculated values, so select a cylinder bore whose load factor (Load Factor = $\frac{Load}{Calculated value}$) that is 70% or lower (50% or lower in the case of high speed).

Double acting type with adjusting mechanism

N [lbf]

										[]	
Cylinder bore	Piston	Onerstien	Pressure area			Air	pressure MPa	[psi]			
mm [in]	Rod diameter mm [in]	Operation	mm ² [in ²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	
10 [0 470]	6 [0 006]	Push side	113.0 [0.2]	11.3 [2.540]	22.6 [5.081]	33.9 [7.621]	45.2 [10.161]	56.5 [12.702]	67.8 [15.242]	79.1 [17.782]	
12 [0.472]	6 [0.236]	Pull side	84.8 [0.131]	8.5 [1.911]	17.0 [3.822]	25.4 [5.710]	33.9 [7.621]	42.4 [9.532]	50.9 [11.443]	59.3 [13.331]	
16 [0 620]	8 [0.315]	Push side	201.0 [0.3]	20.1 [4.519]	40.2 [9.037]	60.3 [13.556]	80.4 [18.075]	100.5 [22.6]	120.6 [27.1]	140.7 [31.6]	
16 [0.630]		J 8 [0.315]	6 [0.630] 8 [0.315]	Pull side	150.0 [0.2]	15.1 [3.395]	30.1 [6.767]	45.2 [10.161]	60.3 [13.556]	75.4 [16.951]	90.4 [20.323]
00 [0 707]	10 [0.394]	Push side	314.0 [0.5]	31.4 [7.059]	62.8 [14.118]	94.2 [21.177]	125.6 [28.2]	157.0 [35.3]	188.4 [42.4]	219.8 [49.4]	
20 [0.787]		10 [0.394]	Pull side	235.5 [0.4]	23.6 [5.305]	47.1 [10.589]	70.7 [15.894]	94.2 [21.177]	117.8 [26.5]	141.3 [31.8]	164.9 [37.1]
05 [0.084]	10 [0 470]	Push side	490.6 [0.8]	49.1 [11.038]	98.1 [22.054]	147.2 [33.1]	196.3 [44.1]	245.3 [55.1]	294.4 [66.2]	343.4 [77.2]	
25 [0.984]	12 [0.472]	Pull side	377.6 [0.6]	37.8 [8.498]	75.5 [16.973]	113.3 [25.5]	151.0 [33.9]	188.8 [42.4]	226.6 [50.9]	264.3 [59.4]	
20 [1 000]	16 [0 620]	Push side	803.8 [1.2]	80.4 [18.075]	160.8 [36.1]	241.2 [54.2]	321.5 [72.3]	401.9 [90.4]	482.3 [108.4]	562.7 [126.5]	
32 [1.260]	16 [0.630]	Pull side	602.9 [0.9]	60.3 [13.556]	120.6 [27.1]	180.9 [40.7]	241.2 [54.2]	301.4 [67.8]	361.7 [81.3]	422.0 [94.9]	
40 [4 575]	10 00 00 01	Push side	1256.0 [2]	125.6 [28.2]	251.2 [56.5]	376.8 [84.7]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.7]	
40 [1.575]	16 [0.630]	Pull side	1055 0 [2]	105.5 [23.7]	211.0 [47.4]	316.5 [71.2]	422.0 [94.9]	527.5 [118.6]	633.0 [142.3]	738.5 [166.0]	

JIG CYLINDERS C SERIES STROKE ADJUSTING CYLINDERS

Double Acting Type

Symbols

Push side stroke adjusting

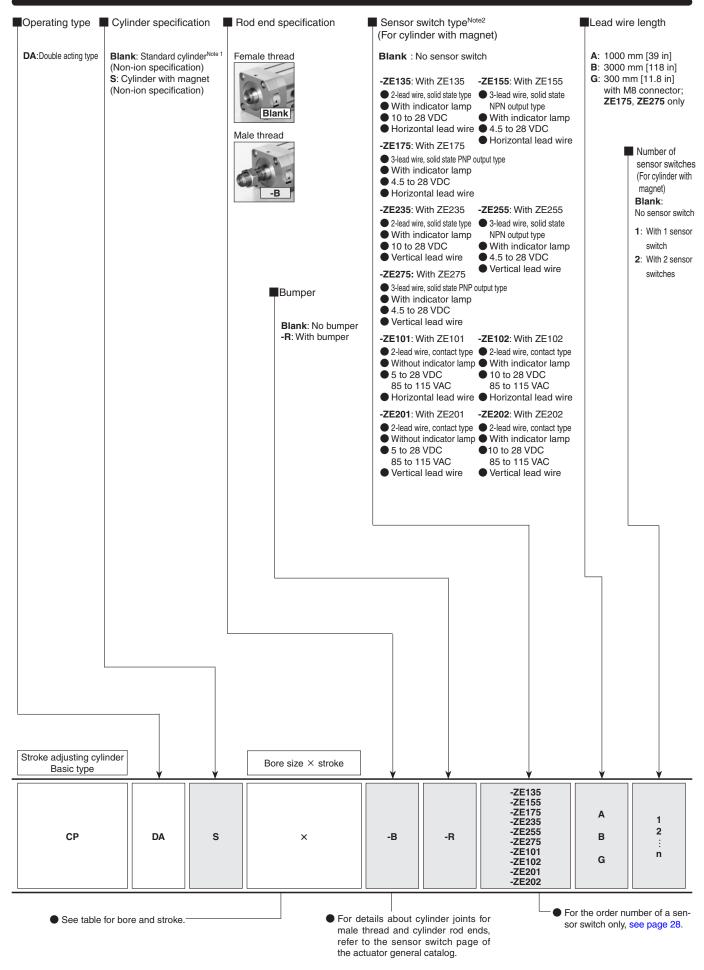
Specifications

Item Cyl	inder bore mm [in]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]				
Operating type Double acting type with stroke adjusting mechanism											
Media	°C [°F]		Air								
Operating temperature range	MPa		0 ~ 60 [32 ~ 140]								
Proof pressure	[psi]		1.05								
Operating pressure range	MPa	0.1 ~ 0.7 [15 ~ 102]									
Operating speed range	[psi]			30 ~ 500 [1	.181 ~ 19.7]						
Cushion	mm/s			Rubber bumpe	er type (option)						
Repeatability	[in/sec]		±0.05	5 [±0.002] (Without r	ubber bumper specifi	cation)					
Stroke adjusting range				$0\sim-5$ [0) ~ -0.197]						
Lubrication	mm [in]		Not required (if I	ubricated, use turbine	e oil class 1 (ISO VG3	32) or equivalent)					
Port size	mm [in]		M5×0.8 Rc1/8								

Bore Size and Stroke

For information about mid-stroke, refer to page 20.

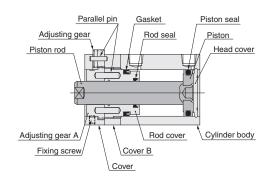
mm [in]


			[]
Operating type	Bore	Standard	d strokes
Operating type	DOIG	Standard cylinder	Cylinder with magnet
	12 [0.472]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],
Double esting type	16 [0.630]	30 [1.181]	30 [1.181]
Double acting type	20 [0.787]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],
with stroke adjusting mechanism	25 [0.984]	30 [1.181], 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969]	30 [1.181], 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969]
mechanism	32 [1.260]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 30 [1.181],	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 30 [1.181],
	40 [1.575]	35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969], 75 [2.953], 100 [3.9]	35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969], 75 [2.953], 100 [3.9]

Reference 1: Stroke tolerance $^{+1}_{0}$ (for basic stroke)

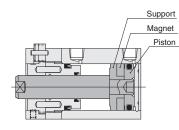
2: Mid-strokes basically are tube cut.

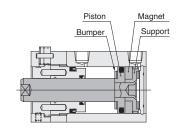
However, strokes up to 5 mm [0.197 in] are not tube cut. 3: The stroke adjusting range is 0 to -5 mm [0 to -0.197 in] for the basic stroke.


Order Codes for Stroke Adjusting Cylinders

Note 1: Stroke adjusting standard cylinders do not have a sensor switch magnet built in.

2: For details about sensor switches, see the general personal catalog.


- Double acting type (CPDA)
- Φ 12 [0.472] ~ φ 40 [1.575]

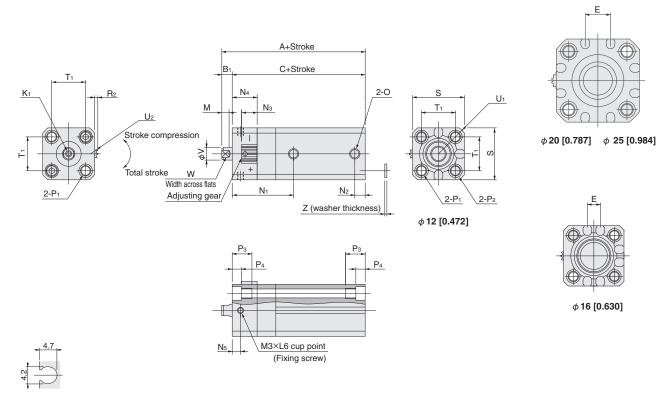

With bumper

• Cylinder with magnet

• With magnet and bumper

Major Parts and Materials

Article Cylinder bore mm [in]											
Article	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]					
Cylinder body			Aluminum all	oy (anodized)							
Cover, Cover B			Aluminum all	oy (anodized)							
Piston		Aluminum alloy (special anti-rust treatment)									
Piston rod	Stai	Stainless steel (with chrome plating) Hard steel (with chrome plating)									
Seal		Synthetic rubber (NBR)									
Rod cover		Aluminum	alloy (special	anti-abrasion	treatment)						
Adjusting gear, Adjusting gear A			Aluminum all	oy (anodized)							
Parallel pin			Stainle	ss steel							
Bumper			Synthetic ru	ubber (NBR)							
Magnet		Plastic magnet									
Support		Alumin	um alloy (spec	ial anti-rust tre	atment)						
Fixing screw	Stainless steel Steel (nickel plated)										

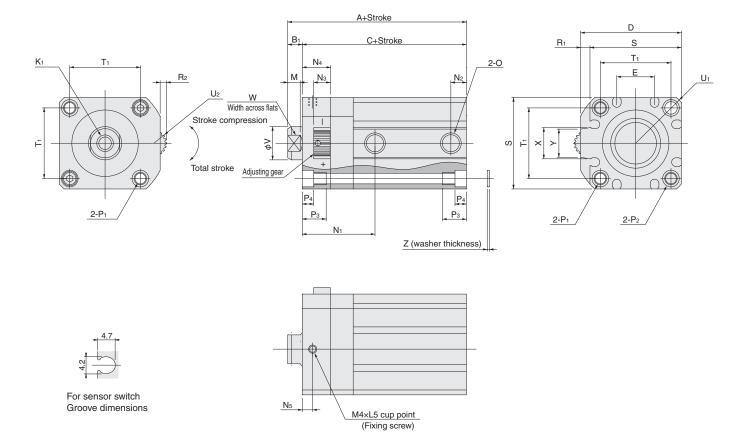

Mass

						g [oz]
Cylinder bore mm [in]	Zero stroke Mass	Additional mass for each 1mm stroke	Mass added by bumper	Additional mass of cylinder with magnet	Additional mass of ZE A	f sensor switch ^{Note2}
12 [0.472]	64.9 [2.289]	1.28 [0.045]	6.42 [0.226]	6.59 [0.232]		
16 [0.630]	92.5 [3.263]	1.62 [0.057]	8.08 [0.285]	9.93 [0.350]		
20 [0.787]	139.5 [4.9]	2.26 [0.080]	11.29 [0.398]	25.71 [0.907]	15 [0.529]	35 [1.235]
25 [0.984]	203.6 [7.2]	3.11 [0.110]	15.53 [0.548]	37.47 [1.322]	15 [0.529]	35 [1.235]
32 [1.260]	300.9 [10.6]	4.11 [0.145]	20.57 [0.726]	52.43 [1.849]		
40 [1.575]	443.0 [15.6]	4.77 [0.168]	0	69.15 [2.439]		

Note 1: Above table values are for standard stroke.

2: Sensor switch codes A, B, and G are lead wire lengths. A: 1000 mm [39 in], B: 3000 mm [118 in], G: 300 mm [11.8 in], with M8 connector

Φ 12 [0.472] ~ φ 25 [0.984]

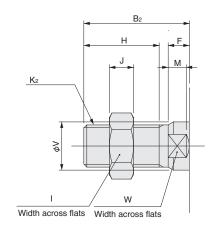


For sensor switch Groove dimensions

Model	Standar	d cylinder	(CPDA)	Cylinder v	vith magnet	(CPDAS)	Standard cyli	nder with bum	oer (CPDA-R)	Cylinder with m	agnet and bump	oer (CPDAS-R)	E	K1	D.A.	N1	N2	N ₃	N4	N5	0
Bore	Α	B1	С	Α	B 1	С	Α	B 1	С	Α	B1	С	E	K1	IVI	IN1	IN2	1113	IN4	1115	0
12 [0.472]	44 [1.732]	5 [0.197]	39 [1.535]	49 [1.929]	5 [0.197]	44 [1.732]	49 [1.929]	5 [0.197]	44 [1.732]	54 [2.126]	5 [0.197]	49 [1.929]	-	M3×0.5, depth 6 [0.236]	3.5 [0.138]	29.5 [1.161]	5 [0.197]	7.5 [0.295]	12 [0.472]	4 [0.157]	M5×0.8
16 [0.630]	45.5 [1.791]	5.5 [0.217]	40 [1.575]	50.5 [1.988]	5.5 [0.217]	45 [1.772]	50.5 [1.988]	5.5 [0.217]	45 [1.772]	55.5 [2.185]	5.5 [0.217]	50 [1.969]	6.2 [0.244]	M4×0.7, depth 8 [0.315]	3.5 [0.138]	30.5 [1.201]	5 [0.197]	7.5 [0.295]	12 [0.472]	4 [0.157]	M5×0.8
20 [0.787]	48 [1.890]	5.5 [0.217]	42.5 [1.673]	58 [2.283]	5.5 [0.217]	52.5 [2.067]	53 [2.087]	5.5 [0.217]	47.5 [1.87]	63 [2.480]	5.5 [0.217]	57.5 [2.264]	12.2 [0.480]	M5×0.8, depth 10 [0.394]	4.5 [0.177]	32 [1.260]	5 [0.197]	7.5 [0.295]	12 [0.472]	4 [0.157]	M5×0.8
25 [0.984]	51 [2.008]	6 [0.236]	45 [1.772]	61 [2.402]	6 [0.236]	55 [2.165]	56 [2.205]	6 [0.236]	50 [1.969]	66 [2.598]	6 [0.236]	60 [2.362]	12.2 [0.480]	M6×1, depth 10 [0.394]	5 [0.197]	34 [1.339]	5 [0.197]	7.5 [0.295]	12.5 [0.492]	4.5 [0.177]	M5×0.8

Bore Code	P1	P2	P3	P 4	R ₂	S	T 1	U1	U2	٧	W	Z	Applicable through bolt
12 [0.472]	ϕ 4.3 [0.169] (through hole) counter bore ϕ 6.5 (both sides) and M5×0.8 (both sides)	Counter bore ϕ 6.5 [0.256] and M5×0.8	9.5 [0.374]	4.5 [0.177]	1.5 [0.059]	25 [0.984]	16.3 [0.642]	R16	R3.57	6 [0.236]	5 [0.197]	1 [0.039]	M3
16 [0.630]	ϕ 4.3 [0.169] (through hole) counter bore ϕ 6.5 (both sides) and M5×0.8 (both sides)	Counter bore ϕ 6.5 [0.256] and M5×0.8	9.5 [0.374]	4.5 [0.177]	1.4 [0.055]	29 [1.142]	19.8 [0.780]	R19	R3.57	8 [0.315]	6 [0.236]	1 [0.039]	M3
20 [0.787]	ϕ 4.3 [0.169] (through hole) counter bore ϕ 6.5 (both sides) and M5×0.8 (both sides)	Counter bore ϕ 6.5 [0.256] and M5×0.8	9.5 [0.374]	4.5 [0.177]	2.1 [0.083]	34 [1.339]	24 [0.945]	R22	R4.2	10 [0.394]	8 [0.315]	1 [0.039]	M3
25 [0.984]	$\phi 5.1$ [0.201] (through hole) counter bore $\phi 8$ (both sides) and M6×1 (both sides)	Counter bore \$\$\phi 8 [0.315] and M6 \times 1	11.5 [0.453]	5.5 [0.217]	2.3 [0.091]	40 [1.575]	28 [1.102]	R25	R4.52	12 [0.472]	10 [0.394]	1 [0.039]	M4

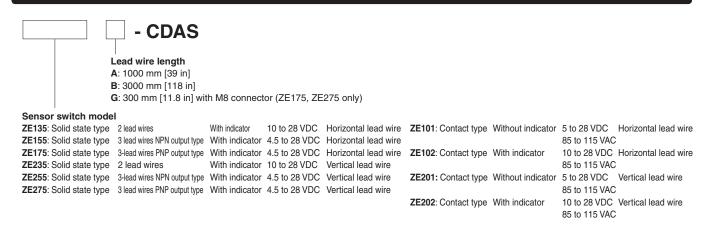
• φ **32** [1.260] • φ **40** [1.575]


Model	Standard	d cylinder	(CPDA)	Cylinder w	<i>i</i> ith magne	t (CPDAS)	Standard cyli	nder with bum	per (CPDA-R)	Cylinder with m	agnet and bum	per (CPDAS-R)	_	-								
Bore		B 1	С	Α	B 1	С	Α	B 1	С	Α	B1	С	D	E	K 1	м	N1	N2	N3	N 4	N5	0
32 [1.260]	56 [2.205]	7 [0.276]	49 [1.929]	66 [2.598]	7 [0.276]	59 [2.323]	61 [2.402]	7 [0.276]	54 [2.126]	66 [2.598]	7 [0.276]	59 [2.323]	48.5 [1.909]	18.2 [0.717]	M8×1.25, depth 12 [0.472]	6 [0.236]	35 [1.378]	7.5 [0.295]	8 [0.315]	13.5 [0.531]	5 [0.197]	Rc1/8
40 [1.575]	61 [2.402]	7 [0.276]	54 [2.126]	71 [2.795]	7 [0.276]	64 [2.520]	61 [2.402]	7 [0.276]	54 [2.126]	71 [2.795]	7 [0.276]	64 [2.520]	56.5 [2.224]	18.2 [0.717]	M8×1.25, depth 12 [0.472]	6 [0.236]	38 [1.496]	7.5 [0.295]	8 [0.315]	15.5 (0.610)	6 [0.236]	Rc1/8

Bore	P1	P ₂	P ₃	P 4	R1	R ₂	S	T 1	U1	U2	V	W	Х	Y	Z	Applicable through bolt
32 [1.260]	ϕ 5.1 [0.201] (through hole) counter bore ϕ 8 [0.315] (both sides) and M6 \times 1 (both sides)	Counter bore $\phi 8$ [0.315] and M6×1	11.5 [0.453]	5.5 [0.217]	4.5 [0.177]	3.1 [0.122]	44 [1.732]	34 [1.339]	R29.5	R6.11	16 [0.630]	14 [0.551]	15 [0.591]	13.6 [0.535]	1 [0.039]	M4
40 [1.575]	ϕ 6.9 [0.272] (through hole) counter bore ϕ 9.5 [0.374] (both sides) and M8 \times 1.25 (both sides)	Counter bore ϕ 9.5 [0.374] and M8×1.25	15.5 [0.610]	7.5 [0.295]	4.5 [0.177]	3.9 [0.154]	52 [2.047]	40 [1.575]	R35	R6.75	16 [0.630]	14 [0.551]	15 [0.591]	13.6 [0.535]	1.6 [0.063]	M5

● φ 12 [0.472] ~ φ 25 [0.984]

• φ **32** [1.260] • φ **40** [1.575]


Bore	B2	F	Н	I	J	K2	М	V	W
12 [0.472]	17 [0.669]	5 [0.197]	10 [0.394]	8 [0.315]	4 [0.157]	M5×0.8	3.5 [0.138]	6 [0.236]	5 [0.197]
16 [0.630]	20.5 [0.807]	5.5 [0.217]	13 [0.512]	10 [0.394]	5 [0.197]	M6×1	3.5 [0.138]	8 [0.315]	6 [0.236]
20 [0.787]	22.5 [0.886]	5.5 [0.217]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	4.5 [0.177]	10 [0.394]	8 [0.315]
25 [0.984]	24 [0.945]	6 [0.236]	15 [0.591]	14 [0.551]	6 [0.236]	M10×1.25	5 [0.197]	12 [0.472]	10 [0.394]
32 [1.260]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	6 [0.236]	16 [0.630]	14 [0.551]
40 [1.575]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	6 [0.236]	16 [0.630]	14 [0.551]

Remark: Cylinder joints and cylinder rod ends for mounting on a male thread rod end specification are also available. For details, see the general personal catalog.

JIG CYLINDERS C SERIES SENSOR SWITCHES

Solid State Type, Reed Switch Type

Order codes

Minimum allowable cylinder stroke for sensor switch use


Solid State	mm [in]		
Culinder here	Two mou	unted ^{Note}	One mounted
Cylinder bore	One surface mounting	Two surface mounting	One mounted
12 [0.472]	30 [1.181]	10 [0.394]	E [0 107]
16~40 [0.630~1.575]	.394]	5 [0.197]	

Note: Two can be mounted with a 5 mm [0.197 in] stroke. However, care should be taken because overlap may occur.

Reed Swite	ch Type		mm [in]			
Culinder here	Two m	ounted	One mounted			
Cylinder bore	One surface mounting	One mounted				
12 [0.472]	30 [1.181]	10 [0.394]	10 [0.394]			
16~40 [0.630~1.575]	~40 [0.630~1.575] 10 [0.394]					

Moving Sensor Switch

- Loosening the screw allows the sensor switch to be moved along the switch mounting groove of the cylinder tube.
- The tightening torque for the screws is 0.1 N•m to 0.2 N•m [0.885] in•lbf to 1.77 in•lbf].

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: *l*

The range from where the piston turns the switch on and the point where the switch is turned off as the piston travels in the same direction. Response differential: C

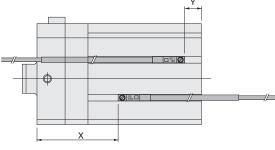
The distance between the point where the piston turns the switch on and the point where the switch is turned off as the piston travels in the opposite direction.

Solid State Type

Solid S	State Type					mm [in]
Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Operating range: <i>l</i>	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]
Response differential: C			0.5 [0.02	0] or less		
Maximum sensing location			6 [0.	236]		

Remark: The values in the table above are reference values.

Reed Switch Type


Reed \$	Switch Typ	е				mm [in]				
Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]				
Operating range: <i>l</i>	4.5~8.5 [0.177~0.335]	5.5~9.5 [0.217~0.374]	9~13.5 [0.354~0.531]	10~15.5 [0.394~0.61]	8~12 [0.315~0.472]	8.5~14 [0.335~0.551]				
Response differential: C	1.0 [0.039] or less		2.0 [0.079] or less							
Maximum sensing location			10 [0	.394]						

Remark. The values in the table above are reference values.

Mounting Position of the End of Stroke Detection Sensor Switch

Mounting the sensor switch in the locations shown (values in diagram are reference values), the sensor magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Stroke adjusting cylinder

Following cylinder stroke adjusting, be sure to adjust the sensor switch mounting position also.

T

ÓN

ON

C (response differential)

Maximum sensing location

O

C (response differential)

Solid State Type

Double acting type

Dou	ble acting ty	ре					mm [in]
Code	Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
x	Standard type	28 [1.102]	29 [1.142]	33 [1.299]	35 [1.378]	39 [1.535]	42 [1.654]
~	With bumper (-R)	31 [1.220]	33 [1.299]	38 [1.496]	39 [1.535]	41 [1.614]	44 [1.732]
v	Standard type	4 [0.157]	4 [0.157]	7.5 [0.295]	8 [0.315]	8 [0.315]	10 [0.394]
Y	With bumper (-R)	6 [0.236]	5 [0.197]	8 [0.315]	9 [0.354]	6 [0.236]	8 [0.315]

Double acting type mm [in] Bore 12 [0.472] 16 [0.630] 20 [0.787] 25 [0.984] 32 [1.260] 40 [1.575] Code 29 [1.142] Standard type 24.5 [0.965] 25 [0.984] 31 [1.220] 35 [1.378] 38 [1.496] Х With bumper (-R) 27.5 [1.083] 29 [1.142] 34 [1.339] 35 [1.378] 37 [1.457] 40 [1.575] Standard type -0.5 [-0.02] -0.5 [-0.02] 3 [0.118] 4 [0.157] 4 [0.157] 6 [0.236] Υ With bumper (-R) 1.5 [0.059] 1 [0.039] 4 [0.157] 5 [0.197] 2 [0.079] 4 [0.157]

ACTUATORS GENERAL CATALOG

JIG CYLINDERS C SERIES LOW-FRICTION CYLINDER

Low friction cylinders INDEX

RoHS directive compliant products

Features	32
Handling instructions and	
precautions ———	34
Low friction cylinders	
Specifications ———	36
Order codes	37
Internal configuration and	
names of each part ———	38
Dimensions ———	39
Clean specification low friction cylinder	
Specification ———	
Order codes	42
Internal configuration and	
names of each part ————	43
Cleanliness evaluation ———	44
Dimensions ———	45
Mounting brackets —	47
Sensor switch	49

JIG CYLINDERS C SERIES Low friction cylinders

New C Series jig cylinders that provide both low pressure operation and low speed operation. Minimum operating pressure from 0.01 MPa [1 psi], minimum operating speed of 1 mm/s [0.039 in/sec].

Low friction

Low sliding friction and reduced stickslip following non-operation for improved response delay. Support for pressing pressure control, tension control, etc.

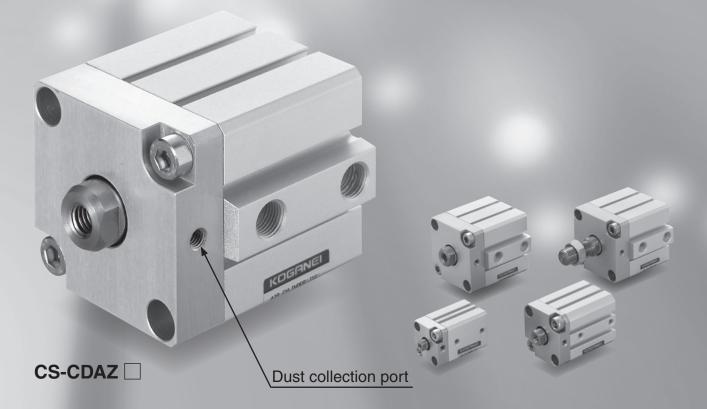
Low-speed operation

1 mm/s [0.039 in/sec] minimum operating speed provides smooth operation with little stick-slip.

Cylinder bores from ϕ 6 [0.236]

Bores from $\phi 6$ [0.236] to $\phi 40$ [1.575] meet a wide range of needs.

Low-pressure operation


Minimum operating pressure from 0.01 \sim 0.1 MPa [1 \sim 15 psi].

Cylinder bore mm [in]	Minimum operating pressure (MPa [psi])
6 [0.236]	0.1 [15]
8 [0.315]	0.06 [9]
10 [0.394]	0.03 [4]
12 [0.472]	0.03 [4]
16 [0.630]	0.02 [3]
20 [0.787]	0.02 [3]
25 [0.984]	0.02 [3]
32 [1.260]	0.01 [1]
40 [1.575]	0.01 [1]
(Measurement meth	od: JIS B8377-1 standard)

The same applies to the clean specification.

Clean specification low friction cylinders

JIS/ISO Class 4 equivalent cleanliness (FED-STD Class 10 equivalent) clean specification also available (based on Koganei standards).

Low friction cylinders, clean specification low-friction cylinders

Bore size	Bore size and stroke (mm [in])												
Cylinder bore	Standa	Standard stroke											
6 [0.236]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	—	—	—	—	—	—	—	—	
8 [0.315]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	—	—	—	—	—	—	—	—	
10 [0.394]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	—	—	—	—	—	—	—	—	
12 [0.472]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	—	—	—	—	—	—	
16 [0.630]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	—	—	—	—	—	—	
20 [0.787]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	—	—	
25 [0.984]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	—	—	
32 [1.260]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	75 [2.953]	100 [3.9]	
40 [1.575]	5 [0.197]	10 [0.394]	15 [0.591]	20 [0.787]	25 [0.984]	30 [1.181]	35 [1.378]	40 [1.575]	45 [1.772]	50 [1.969]	75 [2.953]	100 [3.9]	

- Be sure to thoroughly wash your hands following contact with the grease used for low friction cylinders and clean specification low friction cylinders. Grease on the hands can become heated when smoking and can cause grease to adhere to the cigarette, which creates the risk of noxious gas being emitted when the grease burns. Grease that is used on the outside is chemically very stable at normal temperatures, but generates noxious gas at temperatures above 260°C [500 °F].
 - Before use, be sure to read the safety precautions at the front of the general personal catalog.
- Low friction cylinders, clean specification low-friction cylinders are not non-ion specification.

General precautions

Air supply

- 1. Use air as the media. For the use of any other medium, consult your nearest Koganei sales office.
- 2. Air to operate the cylinder should be clean air that contains no degraded compressor oil, etc. Install an air filter (filtration of 40 μ m or less) near the cylinder or valve to remove dust and accumulated liquid. Also drain the air filter periodically. If liquid or dust gets into the cylinder, it may cause defective operation.

Piping

Before installing piping to the cylinder, thoroughly flush the inside of the pipes (with compressed air). Machining chips, sealing tape, rust and other debris remaining from the piping work may result in air leaks and malfunctions.

Atmosphere

- 1. Cover the unit when using it in locations where it might be subject to excessive dust, dripping water, dripping oil, etc.
- 2. This product cannot be used if the medium or ambient atmosphere includes any of the substances below. Organic solvents, phosphate type hydraulic oil, sulfur dioxide gas, chlorine gas, acids, or ozone.

Lubrication

Do not supply oil.

Bracket mounting

- **1.** A foot bracket cannot be mounted on a low friction cylinder with spigot joint that has a cylinder bore of ϕ 40 [1.575] (-G). Cannot be mounted on a clean specification low friction cylinder with spigot joint (-G), of any cylinder bore.
- **2.** A flange bracket cannot be mounted on the rod side of a low friction cylinder with spigot joint that has a cylinder bore of ϕ 40 [1.575] (-G). Cannot be mounted on the rod side of a clean specification low friction cylinder with spigot joint (-G), of any cylinder bore.
- **3.** A clevis bracket cannot be mounted on a clean specification low friction cylinder.

Disassembly and assembly

Note the following before replacing a seal. Be sure to cut off all air supply completely, and confirm that residual pressure inside the product or in piping connected to the product is zero. To disassemble, remove the snap ring and then pull out the rod. The snap ring can fly off when it is being removed, so caution is required. Doing so creates the risk of injury.

The snap ring can fly off when it is being removed, so caution is required. A snap ring flying off creates the risk of material damage. When assembling, check to make sure that the snap ring is engaged securely. Incomplete assembly results in a dangerous situation that creates the risk of material damage and life-threatening injury.

Mid-stroke

 The mid-stroke manufacturing method basically uses tube cutting.

However, strokes up to 5 mm [0.197 in] with cylinder bores of ϕ 12 [0.472] to ϕ 40 [1.575] use collar stoppers.

 ϕ 6 [0.236], ϕ 8 [0.315], and ϕ 10 [0.394] cylinder bore midstrokes are special handling (collar stoppers). Contact your nearest Koganei sales office for information about availability.

- Dimensions
- **1.** In the case of tube cutting, the add stroke is the mid-stroke.
- **2.** For the add stroke in the case of a collar stopper, the longer stroke becomes the standard stroke.

Sensor switch

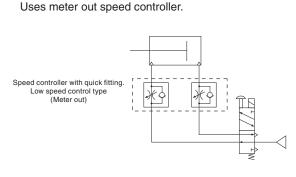
Standard cylinders do not have a sensor switch magnet built in. To mount a sensor switch, a sensor cylinder with a built-in sensor switch magnet is required.

- Note 1. For information about the sensor switch mounting position and movement range, refer to page 🕲 .
 - 2. Contact protection measures are required for connections that result in an inductive load on a reed sensor switch, or when capacitance surge is generated. For details about contact protection measures, refer to the sensor switch page of the general personal catalog.

Other

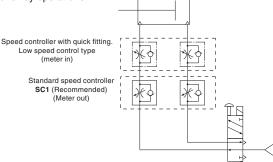
- 1. Avoid use that subjects the piston rod to lateral load.
- 2. Minimum operating pressure is measured based on JIS B8377-1.
 - Measurement Method Summary: With no load, horizontal mounting, a minimum operating pressure

is applied to each size cylinder and then stopped. A full stroke is performed to check for vibration or any other abnormality.



Piping and mounting

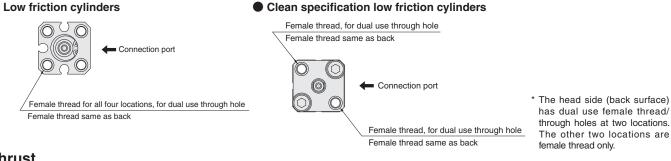
Refer to the diagrams below in the case of low-speed operation of a low friction cylinder.


Recommended circuit

2. Rod pop-out prevention circuit

Using the cylinder in combination with the speed controller shown in the following diagram is effective for controlling speed and preventing runaway operations.

Note: Install the speed controller as close as possible to the cylinder.


Installing the main unit

To allow for a variety of possible mounting methods, the jig cylinder mounting holes are available as a combination of female threaded holes and as through holes, or as female threaded holes only.

For details, refer to the diagrams below. The mounting method is the same regardless of the cylinder bore.

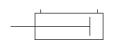
Note: When fixing the main unit with direct through bolts, be sure to use the attached special washers (not included with ϕ 6 [0.236], ϕ 8 [0.315], ϕ 10 [0.394] cylinder bores).

Low friction cylinders

Thrust

Determine the thrust required by the load and working air pressure, then select the appropriate cylinder bore. Load The table shows calculated values, so select a cylinder bore whose load factor (Load Factor = $\frac{\text{Load}}{\text{Calculated value}}$) that is 70% or lower (50% or lower in the case of high speed).

Double acting type


	1 1		1 1
· · •			
Push —		Puii —	

										N [lbf]		
Cylinder bore	Piston Rod diameter	Operation	Pressure area	Air pressure MPa [psi]								
mm [in]	mm [in]	Operation	mm ²	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]		
6 [0 026]	4 [0 157]	Push side	28.3 [0.044]	2.8 [0.629]	5.7 [1.281]	8.5 [1.911]	11.3 [2.540]	14.1 [3.170]	17.0 [3.822]	19.8 [4.451]		
6 [0.236]	4 [0.157]	Pull side	15.7 [0.024]	1.6 [0.360]	3.1 [0.697]	4.7 [1.057]	6.3 [1.416]	7.9 [1.776]	9.4 [2.113]	11.0 [2.473]		
9 [0 215]	[0 215] 5 [0 107]	Push side	50.3 [0.078]	5.0 [1.124]	10.1 [2.271]	15.1 [3.395]	20.1 [4.519]	25.1 [5.643]	30.2 [6.789]	35.2 [7.913]		
8 [0.315]	5 [0.197]	Pull side	30.6 [0.047]	3.1 [0.697]	6.1 [1.371]	9.2 [2.068]	12.3 [2.765]	15.3 [3.440]	18.4 [4.136]	21.4 [4.811]		
10 [0 20/]	E [0 107]	Push side	78.5 [0.122]	7.9 [1.776]	15.7 [3.530]	23.6 [5.305]	31.4 [7.059]	39.3 [8.835]	47.1 [10.589]	55.0 [12.364]		
10 [0.394]	5 [0.197]	Pull side	58.9 [0.091]	5.9 [1.326]	11.8 [2.653]	17.7 [3.979]	23.6 [5.305]	29.5 [6.632]	35.3 [7.936]	41.2 [9.262]		
10 [0 /72]	6 [0 006]	Push side	113.0 [0.2]	11.3 [2.540]	22.6 [5.081]	33.9 [7.621]	45.2 [10.161]	56.5 [12.702]	67.8 [15.242]	79.1 [17.782]		
12 [0.472]	6 [0.236]	Pull side	84.8 [0.131]	8.5 [1.911]	17.0 [3.822]	25.4 [5.71]	33.9 [7.621]	42.4 [9.532]	50.9 [11.443]	59.3 [13.331]		
16 [0 620]	0 [0 015]	Push side	201.0 [0.3]	20.1 [4.519]	40.2 [9.037]	60.3 [13.556]	80.4 [18.075]	100.5 [22.6]	120.6 [27.1]	140.7 [31.6]		
16 [0.630]	8 [0.315]	Pull side	150.0 [0.2]	15.1 [3.395]	30.1 [6.767]	45.2 [10.161]	60.3 [13.556]	75.4 [16.951]	90.4 [20.323]	105.5 [23.7]		
20 [0 797]	10 [0 204]	Push side	314.0 [0.5]	31.4 [7.059]	62.8 [14.118]	94.2 [21.177]	125.6 [28.2]	157.0 [35.3]	188.4 [42.4]	219.8 [49.4]		
20 [0.787]	10 [0.394]	Pull side	235.5 [0.4]	23.6 [5.305]	47.1 [10.589]	70.7 [15.894]	94.2 [21.177]	117.8 [26.5]	141.3 [31.8]	164.9 [37.1]		
25 [0 094]	10 [0 470]	Push side	490.6 [0.8]	49.1 [11.038]	98.1 [22.054]	147.2 [33.1]	196.3 [44.1]	245.3 [55.1]	294.4 [66.2]	343.4 [77.2]		
25 [0.984]	12 [0.472]	Pull side	377.6 [0.6]	37.8 [8.498]	75.5 [16.973]	113.3 [25.5]	151.0 [33.9]	188.8 [42.4]	226.6 [50.9]	264.3 [59.4]		
20 [1 060]	16 [0 620]	Push side	803.8 [1.2]	80.4 [18.075]	160.8 [36.1]	241.2 [54.2]	321.5 [72.3]	401.9 [90.4]	482.3 [108.4]	562.7 [126.5]		
32 [1.260]	16 [0.630]	Pull side	602.9 [0.9]	60.3 [13.556]	120.6 [27.1]	180.9 [40.7]	241.2 [54.2]	301.4 [67.8]	361.7 [81.3]	422.0 [94.9]		
40 [1 575]	16 [0 620]	Push side	1256.0 [2]	125.6 [28.2]	251.2 [56.5]	376.8 [84.7]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.7]		
40 [1.575]	16 [0.630]	Pull side	1055.0 [2]	105.5 [23.7]	211.0 [47.4]	316.5 [71.2]	422.0 [94.9]	527.5 [118.6]	633.0 [142.3]	738.5 [166.0]		

JIG CYLINDERS C SERIES LOW FRICTION CYLINDERS

Double Acting Type

Symbol

Specifications

Item Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	
Operating type		Double acting type								
Media		Air								
Maximum operating pressure MPa [psi]		0.7 [102]								
Proof pressure MPa [psi]		1.05 [152]								
Operating temperature range °C [°F]				0	~ 60 [32 ~ 14	10]				
Cushion		None				Rubber bu	Imper type			
Lubrication		No								
Port size M3×0.5 M5×0.8 Rc1/8							1/8			

Minimum operating pressure

Item Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Minimum operating pressure MPa [psi] 0.1 [15]		0.06 [9]	0.03 [4]		0.02 [3]			0.01 [1]	

Operating speed range

Item Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Operating speed range mm/s [in/sec]				1 ^{Note} ~	- 500 [0.039 ~	· 19.7]			

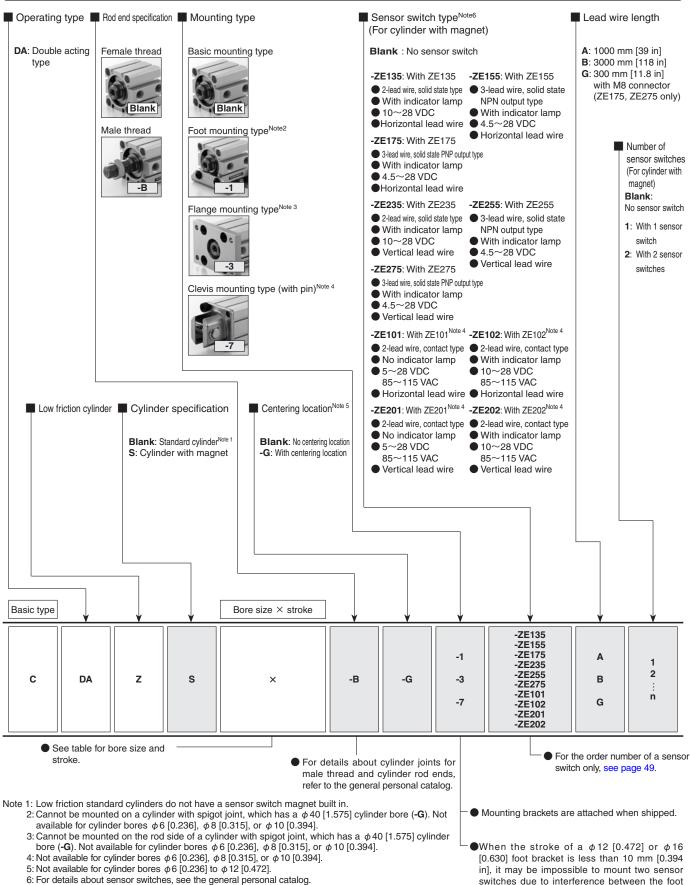
Note: When using ϕ 6 [0.236] at 1 mm/s [0.039 in/sec], apply air pressure of at least 0.3 MPa [44 psi].

When using $\phi 8$ [0.315] to $\phi 40$ [1.575] at 1 mm/s [0.039 in/sec], apply air pressure of at least 0.15 MPa [22 psi]. When using reed switch type sensor switches, operates at cylinder speed of 30 mm/s [1.181 in/sec] or higher.

Bore Size and Stroke

For information about mid-stroke, refer to page 34.

mm [in] Standard stroke Operating type Bore Standard cylinders Cylinder with magnet 6 [0.236] 8 [0.315] 5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787] 5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787] 10 [0.394] 12 [0.472] 5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], Double acting type 16 [0.630] 30 [1.181] 30 [1.181] 20 [0.787] 5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 25 [0.984] 30 [1.181], 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969] 30 [1.181], 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969] 32 [1.260] 5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 30 [1.181], 5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 30 [1.181], 40 [1.575] 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969], 75 [2.953], 100 [3.9] 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969], 75 [2.953], 100 [3.9]


Reference 1: Stroke tolerance +1 [0.039]

2: \$\phi 6\$ [0.236], \$\phi 8\$ [0.315], and \$\phi 10\$ [0.394] cylinder bore mid-strokes are special handling (collar stoppers).

3: ϕ 12 [0.472] to ϕ 40 [1.575] cylinder bore mid-strokes basically are tube cut.

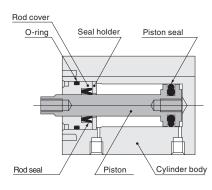
However, strokes up to 5 mm [0.197 in] with cylinder bores of ϕ 12 [0.472] to ϕ 40 [1.575] are not tube cut. In this case, a collar stopper is used.

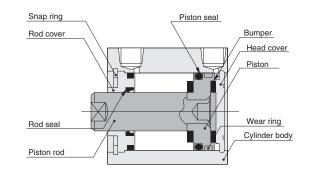
Order Codes for Low Friction Cylinders

Additional Parts (To be ordered separately)

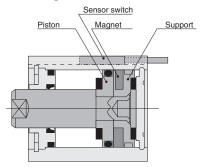
ing bracket

(page 48)


Foot mounting bracket (page 47)


Clevis mount-

switches due to interference between the foot bracket and sensor switch. For details, contact your nearest Koganei sales office.


- Double acting type (CDAZ)
- φ6 [0.236] ~ φ 10 [0.394]

• ϕ 12 [0.472] ~ ϕ 40 [1.575]

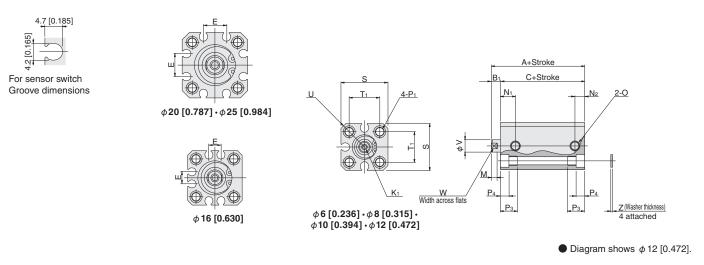
• Cylinder with magnet

Major Parts and Materials

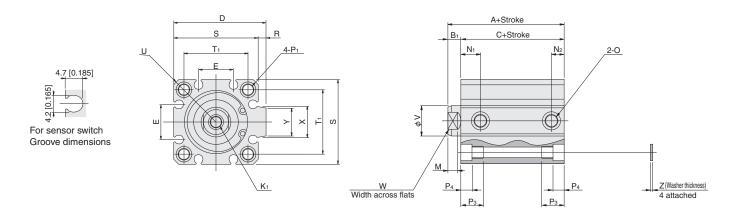
Article Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]		
Cylinder body		Aluminum alloy (anodized)									
Piston	Sta	ainless st	eel	A	luminum a	alloy (spe	cial anti-r	ust treate	d)		
Piston rod		— Stainless steel (with chrome plating) Hard steel (with chrome plating)									
Gasket		Synthetic rubber (NBR)									
Rod cover		Aluminum alloy (special anti-abrasion treated)									
Bumper		—			Sy	nthetic ru	ıbber (NB	R)			
Magnet	Neod	ymium m	agnet			Plastic	magnet				
Support	С	opper allo	ру	A	luminum a	alloy (spe	cial anti-r	ust treate	d)		
Snap ring		Hard steel (phosphoric acid salt coating)							g)		
Wear ring		—				Synthe	tic resin				

Seal Repair Kit

Bore mm [in]	Model	Set contents			
12 [0.472]	SRK-CDAZ12				
16 [0.630]	SRK-CDAZ16	Piston seal	1		
20 [0.787]	SRK-CDAZ20	Rod seal	1		
25 [0.984]	SRK-CDAZ25	O-ring:	1		
32 [1.260]	SRK-CDAZ32	O-mig.	I		
40 [1.575]	SRK-CDAZ40				

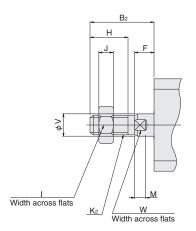

Note 1: There is no seal repair kit available for cylinder bores φ6 [0.236], φ8 [0.315], or φ10 [0.394].
2: Use special grease. For information about grease, contact Koganei.

Mass

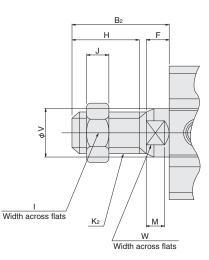

								g [oz]
Dere eize	Zara straka	Additional mass	Additional mass	Mas	s of mounting brac	ckets	Additional mass o	f sensor switch ^{Note}
Bore size mm [in]	Zero stroke Mass	for each 1 mm stroke	of cylinder with magnet	Foot bracket	Flange bracket	Clevis bracket	ZE 🗌 🗌 A ZE 🗌 🗌 G	ZE 🗌 🗌 B
6 [0.236]	10.3 [0.363]	0.74 [0.026]	3.9 [0.138]	—	—	—		
8 [0.315]	13.9 [0.490]	0.95 [0.034]	5.4 [0.190]	—	—	—		
10 [0.394]	18.9 [0.667]	1.12 [0.040]	6.8 [0.240]	_	—	—		
12 [0.472]	28.3 [0.998]	1.28 [0.045]	8 [0.282]	50 [1.764]	55 [1.940]	30 [1.058]		
16 [0.630]	39.9 [1.407]	1.62 [0.057]	11 [0.388]	62 [2.187]	71 [2.504]	40 [1.411]	15 [0.529]	35 [1.235]
20 [0.787]	66.1 [2.332]	2.26 [0.080]	27 [0.952]	84 [2.963]	101 [3.6]	75 [2.646]		
25 [0.984]	91.5 [3.228]	3.11 [0.110]	39 [1.376]	104 [3.7]	160 [5.6]	100 [3.5]]	
32 [1.260]	140.1 [4.9]	4.11 [0.145]	28 [0.988]	126 [4.4]	186 [6.6]	165 [5.8]		
40 [1.575]	236.1 [8.3]	4.47 [0.158]	37 [1.305]	160 [5.6]	335 [11.8]	200 [7.1]		

Note: Sensor switch types A, B, and G are lead wire lengths. A: 1000 mm [39 in], B: 3000 mm [118 in], G: 300 mm [11.8 in], with M8 connector

• φ6 [0.236] ~ φ 25 [0.984]

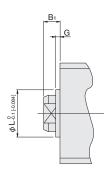


• φ 32 [1.260] • φ 40 [1.575]



	Model	Standa	rd cylinder ((CDAZ)	Cylinder	with ma	gnet (C	DAZS)	D	Е		K.		M	NL.	N2	0
Bore	Code	Α	B 1	С	Α	B 1		С	D	-		K 1		М	N 1	IN2	0
6 [0.2	236]	19 [0.748]	5 [0.197]	14 [0.551]	24 [0.945]	5 [0.19	7] 19	[0.748]	-	-	M2.5×	0.45, depth	5 [0.197]	3 [0.118]	6.5 [0.256]	3.5 [0.138] M3×0.5
8 [0.3	315]	20 [0.787]	5 [0.197]	15 [0.591]	25 [0.984]	5 [0.19	7] 20	[0.787]	-	-	M3×	M3×0.5, depth 5 [0.197]		3 [0.118]	7.5 [0.295]	3.5 [0.138] M3×0.5
10 [0.	.394]	21 [0.827]	5 [0.197]	16 [0.630]	26 [1.024]	5 [0.19	5 [0.197] 21 [0		-	-	M3×	0.5, depth 5	[0.197]	3 [0.118]	8 [0.315]	4 [0.157]	M3×0.5
12 [0.	472]	27 [1.063]	5 [0.197]	22 [0.866]	32 [1.260]	5 [0.19	7] 27	[1.063]	-	-	M3×	0.5, depth 6	[0.236]	3.5 [0.138]	8 [0.315]	5 [0.197]	M5×0.8
16 [0.	630]	27.5 [1.083]	5.5 [0.217]	22 [0.866]	32.5 [1.280]	5.5 [0.2	217] 27	[1.063]	-	6.2 [0.24	4] M4×	0.7, depth 8	[0.315]	3.5 [0.138]	8 [0.315]	5 [0.197]	M5×0.8
20 [0.	787]	30 [1.181]	5.5 [0.217]	24.5 [0.965]	40 [1.575]	5.5 [0.2	217] 34	.5 [1.358]	—	12.2 [0.48	0] M5×0	.8, depth 10	0 [0.394]	4.5 [0.177]	9.5 [0.374]	5 [0.197]	M5×0.8
25 [0.	984]	32 [1.260]	6 [0.236]	26 [1.024]	42 [1.654]	6 [0.23	6] 36	[1.417]	—	12.2 [0.48	0] M6×	1, depth 10	[0.394]	5 [0.197]	10.5 [0.413]	5 [0.197]	M5×0.8
32 [1.	260]	35 [1.378]	7 [0.276]	28 [1.102]	40 [1.575]	7 [0.27	6] 33	[1.299]	48.5 [1.909]] 18.2 [0.71	7] M8×1.	.25, depth 1	2 [0.472]	6 [0.236]	9.5 [0.374]	7.5 [0.295] Rc1/8
40 [1.	.575]	38 [1.496]	7 [0.276]	31 [1.220]	43 [1.693]	7 [0.27	6] 36	[1.417]	56.5 [2.224	224] 18.2 [0.717]		.25, depth 1	2 [0.472]	6 [0.236]	10.5 [0.413]	7.5 [0.295] Rc1/8
Bore	Code		Р	1		P ₃	P 4	R	S	T 1	U	V	W	X	Y	Z	Applicable through bolt
6 [0.2	236]	φ 3.3 [0.13] (through h	ole) counter bore $\phi 6$ (C	0.236] (both sides) and N	/4×0.7 (both sides)	9.5 [0.374]	3.5 [0.138]	-	19 [0.748]	11 [0.433]	R12	4 [0.157]	3.5 [0.138	- 1	-	-	M3
8 [0.3	315]	φ 3.3 [0.13] (through h	ole) counter bore φ6.2	[0.244] (both sides) and I	M4×0.7 (both sides)	9.5 [0.374]	3.5 [0.138]	-	21 [0.827]	13 [0.512]	R13.5	5 [0.197]	4 [0.157]	-	-	_	M3
10 [0.	394]	φ3.3 [0.13] (through h	ole) counter bore φ6.2	[0.244] (both sides) and I	M4×0.7 (both sides)	9.5 [0.374]	3.5 [0.138]	-	23 [0.906]	15 [0.591]	R15	5 [0.197]	4 [0.157]	-	-	—	M3
12 [0.	472]	φ4.3 (0.169) (through h	iole) counter bore ϕ 6.5	[0.256] (both sides) and I	M5×0.8 (both sides)	9.5 [0.374]	4.5 [0.177]	-	25 [0.984]	16.3 [0.642]	R16	6 [0.236]	5 [0.197]	-	-	1 [0.039]	M3
16 [0.	630]	φ4.3 (0.169) (through h	iole) counter bore ϕ 6.5	[0.256] (both sides) and I	M5×0.8 (both sides)	9.5 [0.374]	4.5 [0.177]	-	29 [1.142]	19.8 [0.780]	R19	8 [0.315]	6 [0.236]	-	-	1 [0.039]	M3
20 [0.	787]	φ4.3 (0.169) (through h	iole) counter bore ϕ 6.5	[0.256] (both sides) and I	M5×0.8 (both sides)	9.5 [0.374]	4.5 [0.177]	-	34 [1.339]	24 [0.945]	R22	10 [0.394]	8 [0.315]	-	-	1 [0.039]	M3
25 [0.	984]	φ5.1 [0.201] (through	hole) counter bore $\phi 8$	[0.315] (both sides) and	M6×1 (both sides)	11.5 [0.453]	5.5 [0.217]	-	40 [1.575]	28 [1.102]	R25	12 [0.472]	10 [0.394]	-	—	1 [0.039]	M4
32 [1.	260]	φ5.1 [0.201] (through	hole) counter bore $\phi 8$	[0.315] (both sides) and	M6×1 (both sides)	11.5 [0.453]	5.5 [0.217]	4.5 [0.177]	44 [1.732]	34 [1.339]	R29.5	16 [0.630]	14 [0.551]	15 [0.591]	13.6 [0.535]	1 [0.039]	M4
40 [1.	575]	φ6.9 (0.272) (through h	iole) counter bore ϕ 9.5	[0.374] (both sides) and I	/18×1.25 (both sides)	15.5 [0.610]	7.5 [0.295]	4.5 [0.177]	52 [2.047]	40 [1.575]	R35	16 [0.630]	14 [0.551]	15 [0.591]	13.6 [0.535]	1.6 [0.063]	M5

Φ6 [0.236] ~ φ 25 [0.984]


• φ 32 [1.260] • φ 40 [1.575]

Bore	B ₂	F	Н	I	J	K 2	М	V	W
6 [0.236]	15 [0.591]	5 [0.197]	8 [0.315]	5.5 [0.217]	1.8 [0.071]	M3×0.5	3 [0.118]	4 [0.157]	3.5 [0.138]
8 [0.315]	15 [0.591]	5 [0.197]	8 [0.315]	7 [0.276]	2.4 [0.094]	M4×0.7	3 [0.118]	5 [0.197]	4 [0.157]
10 [0.394]	15 [0.591]	5 [0.197]	8 [0.315]	7 [0.276]	2.4 [0.094]	M4×0.7	3 [0.118]	5 [0.197]	4 [0.157]
12 [0.472]	17 [0.669]	5 [0.197]	10 [0.394]	8 [0.315]	4 [0.157]	M5×0.8	3.5 [0.138]	6 [0.236]	5 [0.197]
16 [0.630]	20.5 [0.807]	5.5 [0.217]	13 [0.512]	10 [0.394]	5 [0.197]	M6×1	3.5 [0.138]	8 [0.315]	6 [0.236]
20 [0.787]	22.5 [0.886]	5.5 [0.217]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	4.5 [0.177]	10 [0.394]	8 [0.315]
25 [0.984]	24 [0.945]	6 [0.236]	15 [0.591]	14 [0.551]	6 [0.236]	M10×1.25	5 [0.197]	12 [0.472]	10 [0.394]
32 [1.260]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	6 [0.236]	16 [0.630]	14 [0.551]
40 [1.575]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	6 [0.236]	16 [0.630]	14 [0.551]

Remark: Cylinder joints and cylinder rod ends for mounting on a male thread rod end specification are also available. For details, see the general personal catalog.

Dimensions of Centering Location (mm [in])

Bore	B 1	G	L
16 [0.630]	5.5 [0.217]	1.5 [0.059]	9.4 [0.370]
20 [0.787]	5.5 [0.217]	1.5 [0.059]	12 [0.472]
25 [0.984]	6 [0.236]	2 [0.079]	15 [0.591]
32 [1.260]	7 [0.276]	2 [0.079]	21 [0.827]
40 [1.575]	7 [0.276]	2 [0.079]	29 [1.142]

•Not available for φ6 [0.236], φ8 [0.315], φ10 [0.394], and φ12 [0.472]

JIG CYLINDERS C SERIES CLEAN SPECIFICATION LOW FRICTION CYLINDERS

Double Acting Type

Symbol

Specifications

Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]				
Operating type		Double acting type											
Media					Air								
Maximum operating pressure MPa [psi]					0.7 [102]								
Proof pressure MPa [psi]	pressure MPa [psi] 1.05 [152]												
Operating temperature range $\ ^{\circ}C[^{\circ}F]$ 0 ~ 60 [32 ~ 140]													
Cushion		None				Rubber bu	Imper type						
Lubrication					No								
Port size		M3×0.5			M5>	Rc1/8							
Dust collection port	M3×0.5 M5×0.8												
Cleanliness		Class 4 equivalent (FED-STD Class 10 equivalent)											
Cleanniness	(Vacuum suction from dust collection port. Based on Koganei standards. For details, refer to page 44.)												

Minimum Operation Pressure

Item Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Minimum operating pressure MPa [psi]	0.1 [15]	0.06 [9]	0.03	3 [4]		0.02 [3]		0.0	1 [1]

Operating Speed Range

Item Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Operating speed range mm/s [in/sec]				1 ^{Note} ~	~ 500 [0.039 ~	[,] 19.7]			

Note: When using ϕ 6 [0.236] at 1 mm/s [0.039 in/sec], apply air pressure of at least 0.3 MPa [44 psi].

When using $\phi 8$ [0.315] to $\phi 40$ [1.575] at 1 mm/s [0.039 in/sec], apply air pressure of at least 0.15 MPa [22 psi].

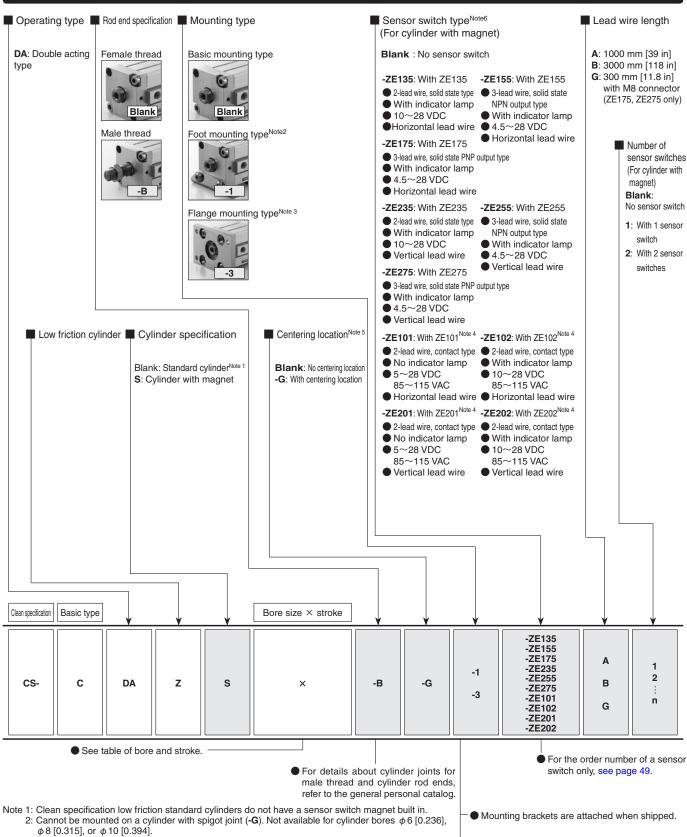
When using reed switch type sensor switches, operates at cylinder speed of 30 mm/s [1.181 in/sec] or higher.

Bore Size and Stroke

For information about mid-stroke, refer to page 34.

			mm [in]
	B	Standar	rd stroke
Operating type	Bore	Standard cylinders	Cylinder with magnet
	6 [0.236]		
	8 [0.315]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787]
	10 [0.394]		
	12 [0.472]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],
Double acting type	16 [0.630]	30 [1.181]	30 [1.181]
	20 [0.787]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984],
	25 [0.984]	30 [1.181], 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969]	30 [1.181], 35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969]
	32 [1.260]	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 30 [1.181],	5 [0.197], 10 [0.394], 15 [0.591], 20 [0.787], 25 [0.984], 30 [1.181],
	40 [1.575]	35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969], 75 [2.953], 100 [3.9]	35 [1.378], 40 [1.575], 45 [1.772], 50 [1.969], 75 [2.953], 100 [3.9]
	1 [0 0 2 0]		

Reference 1: Stroke tolerance ${}^{+1}_{0}$


2: $\phi 6$ [0.236], $\phi 8$ [0.315], and $\phi 10$ [0.394] cylinder bore mid-strokes are special handling (collar stoppers).

3: ϕ 12 [0.472] to ϕ 40 [1.575] cylinder bore mid-strokes basically are tube cut.

However, strokes up to 5 mm [0.197 in] with cylinder bores of ϕ 12 [0.472] to ϕ 40 [1.575] are not tube cut.

In this case, a collar stopper is used.

Order Codes for Clean Specification Low Friction Cylinders

- 3: Cannot be mounted on the rod side a cylinder with spigot joint (-G). Not available for cylinder bores φ6 [0.236], φ8 [0.315], or φ10 [0.394].
- 4: Not available for cylinder bores $\phi \in [0.236]$, $\phi \in [0.315]$, or $\phi = 10 [0.394]$. 5: Not available for cylinder bores $\phi \in [0.236]$ to $\phi = 12 [0.472]$. 6: For details about sensor switches, see the general personal catalog.

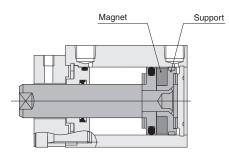
Additional Parts (To be ordered separately)

Foot mounting bracket (page 47)

Flange mounting bracket (page 48)


• When the stroke of a ϕ 12 [0.472] or ϕ 16

[0.630] foot bracket is less than 10 mm [0.394 in], it may be impossible to mount two sensor switches due to interference between the foot bracket and sensor switch. For details, contact your nearest Koganei sales office.


42 KOGANEI

• Double acting type (CS-CDAZ)

 ϕ 6 [0.236] $\sim \phi$ 10 [0.394]

• Cylinder with magnet

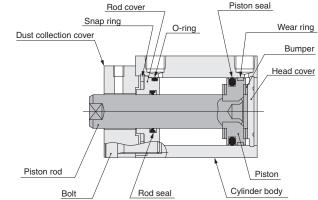
Major Parts and Materials

Article Cylinder bore mm [in]	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]			
Cylinder body				Aluminu	m alloy (a	nodized)						
Piston	Sta	ainless st	eel	Aluminum alloy (special anti-rust treated)								
Piston rod		_		Stainles	s steel (wi	th chrome	plating)	Hard steel (with	chrome plating)			
Gasket		Synthetic rubber (NBR)										
Rod cover		Aluminum alloy (special anti-abrasion treated)										
Bumper		_			Sy	nthetic ru	ubber (NB	R)				
Magnet	Neod	lymium m	agnet			Plastic	magnet					
Support	С	opper allo	ру	A	luminum a	alloy (spe	cial anti-r	ust treate	d)			
Snap ring		_			5	Steel (nic	kel plated)				
Wear ring		_				Synthe	tic resin					
Dust collection cover		Aluminum alloy (anodized)										
Bolt	Sta	ainless st	steel Steel (nickel plated) Stain						Stainless steel			

Seal Repair Kit

Bore mm [in]	Model	Set contents
12 [0.472]	SRK-CDAZ12	
16 [0.630]	SRK-CDAZ16	Piston seal: 1
20 [0.787]	SRK-CDAZ20	Rod seal: 1
25 [0.984]	SRK-CDAZ25	i iou oouii
32 [1.260]	SRK-CDAZ32	O-ring: 1
40 [1.575]	SRK-CDAZ40	

Note 1: There is no seal repair kit available for cylinder bores $\phi \in [0.236]$, $\phi \in [0.315]$, or $\phi = 10 [0.394]$.


2: Use special grease. For information about grease, contact Koganei.

Mass

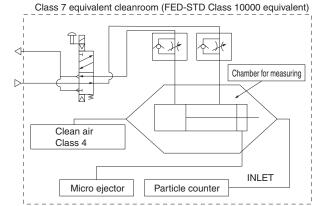
							g [oz		
Bore size	Zero stroke	Additional mass	Additional mass	Mass of mou	nting brackets	Additional mass of	of sensor switch ^{Note}		
mm [in]	Mass	for each 1 mm stroke	of cylinder with magnet	Foot bracket	Flange bracket	ZE 🗌 🗌 A ZE 🗌 🗌 G	ZE 🗌 🗌 B		
6 [0.236]	17.2 [0.607]	0.74 [0.026]	3.9 [0.138]	—	—				
8 [0.315]	22.7 [0.801]	0.95 [0.034] 5.4 [0.190]		—					
10 [0.394]	29.3 [1.034]	1.12 [0.040]	6.8 [0.240]	—	—				
12 [0.472]	49.3 [1.739]	49.3 [1.739] 1.28 [0.045]		50 [1.764]	55 [1.940]				
16 [0.630]	67.9 [2.395]	1.62 [0.057]	11 [0.388]	62 [2.187]	71 [2.504]	15 [0.529]	35 [1.235]		
20 [0.787]	100.2 [3.5]	2.26 [0.080]	27 [0.952]	84 [2.963]	101 [3.6]				
25 [0.984]	146.1 [5.2]	3.11 [0.110]	39 [1.376]	104 [3.7]	160 [5.6]				
32 [1.260]	235.7 [8.3]	4.11 [0.145]	.11 [0.145] 28 [0.988]		186 [6.6]				
40 [1.575]		4.47 [0.158]	37 [1.305]	160 [5.6]	335 [11.8]				

Rod cover

• ϕ 12 [0.472] ~ ϕ 40 [1.575]

Note: Sensor switch types A, B, and G are lead wire lengths. A: 1000 mm [39 in], B: 3000 mm [118 in], G: 300 mm [11.8 in], with M8 connector

Cleanliness evaluation methods for current clean specification pneumatic equipment are not defined by JIS or other standards. Because of this, Koganei devises its own independent measurement methods for cleanliness and carries out evaluation accordingly.


Jig cylinder C series clean specification low friction cylinder dust volume is measured using the method described below.

1. Samples being measured

CS-CDAZ40×100 (Load: 288 g [10.2 oz])

2. Measurement conditions

2-1 Test circuit: With suction from dust collection port

2-2 Sample operation conditions

3. Particle counter used

Manufacturer/Model:	RION Co., Ltd./KM20
Suction flow:	28.3 ℓ /min (ANR) [1.000 ft ³ /min (SCFM)]
Passable particle sizes:	0.1 μm, 0.2 μm, 0.3 μm, 0.5 μm, 0.7 μm, 1.0 μm

4. Measurement methodology

4-1 Measurement system dust emission volume check

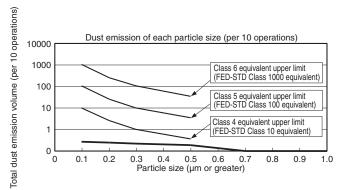
Measurement for nine minutes with the particle counter without operation of the test sample in accordance with conditions 1 and 2 to confirm a count value no greater than 1.

m

4-2 Actual measurement

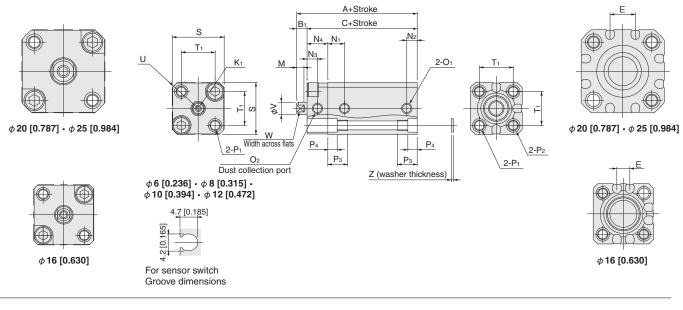
Operation of the test sample in accordance with conditions 1 and 2 for 36 minutes, total value measurement for the latter 18 minutes.

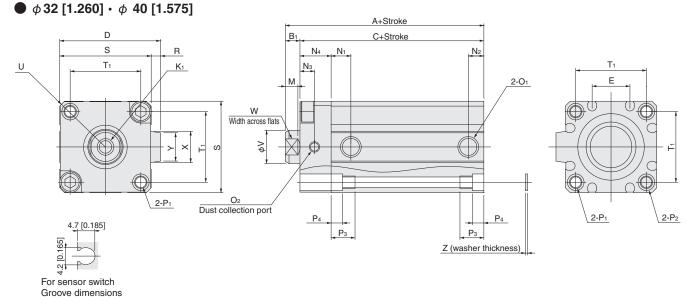
4-3 Re-confirmation


Performance of check 4-1 again to re-check measurement system dust emission.

4-4 Measurement value conversion

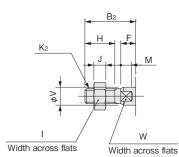
Conversion of the total value obtained during the latter 18 minutes of 4-2 to a value per 10 operations of the cylinder.

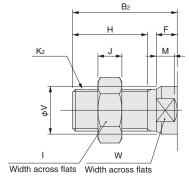

5. Measurement result precautions^{Note}


Suction from dust collection port

Note: The individual particle size graphs are for measurements following one million product operations.

• φ6 [0.236] ~ φ 25 [0.984]

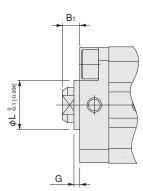



Model	Standard	cylinder (C	S-CDAZ)	Cylinder wi	th magnet (CS-CDAZS)		-	K						0	O 2
Bore	Α	B1	С	Α	B 1	С	D	E	K 1	M	N 1	N2	N3	N 4	O 1	
6 [0.236]	24 [0.945]	5 [0.197]	19 [0.748]	29 [1.142]	5 [0.197]	24 [0.945]	-	—	M2.5×0.45, depth 5 [0.197]	3 [0.118]	6.5 [0.256]	3.5 [0.138]	2.5 [0.098]	5 [0.197]	M3×0.5	M3×0.5
8 [0.315]	25 [0.984]	5 [0.197]	20 [0.787]	30 [1.181]	5 [0.197]	25 [0.984]	-	—	M3×0.5, depth 5 [0.197]	3 [0.118]	7.5 [0.295]	3.5 [0.138]	2.5 [0.098]	5 [0.197]	M3×0.5	M3×0.5
10 [0.394]	26 [1.024]	5 [0.197]	21 [0.827]	31 [1.220]	5 [0.197]	26 [1.024]	-	—	M3×0.5, depth 5 [0.197]	3 [0.118]	8 [0.315]	4 [0.157]	2.5 [0.098]	5 [0.197]	M3×0.5	M3×0.5
12 [0.472]	37 [1.457]	5 [0.197]	32 [1.260]	42 [1.654]	5 [0.197]	37 [1.457]	-	—	M3×0.5, depth 6 [0.236]	3.5 [0.138]	8 [0.315]	5 [0.197]	5 [0.197]	10 [0.394]	M5×0.8	M5×0.8
16 [0.630]	37.5 [1.476]	5.5 [0.217]	32 [1.260]	42.5 [1.673]	5.5 [0.217]	37 [1.457]	-	6.2 [0.244]	M4×0.7, depth 8 [0.315]	3.5 [0.138]	8 [0.315]	5 [0.197]	5 [0.197]	10 [0.394]	M5×0.8	M5×0.8
20 [0.787]	40 [1.575]	5.5 [0.217]	34.5 [1.358]	50 [1.969]	5.5 [0.217]	44.5 [1.752]	-	12.2 [0.480]	M5×0.8, depth 10 [0.394]	4.5 [0.177]	9.5 [0.374]	5 [0.197]	5 [0.197]	10 [0.394]	M5×0.8	M5×0.8
25 [0.984]	42 [1.654]	6 [0.236]	36 [1.417]	52 [2.047]	6 [0.236]	46 [1.811]	-	12.2 [0.480]	M6×1, depth 10 [0.394]	5 [0.197]	10.5 [0.413]	5 [0.197]	5 [0.197]	10 [0.394]	M5×0.8	M5×0.8
32 [1.260]	50 [1.969]	7 [0.276]	43 [1.693]	55 [2.165]	7 [0.276]	48 [1.890]	48.5 [1.909]	18.2 [0.717]	M8×1.25, depth 12 [0.472]	6 [0.236]	9.5 [0.374]	7.5 [0.295]	7 [0.276]	15 [0.591]	Rc1/8	M5×0.8
40 [1.575]	53 [2.087]	7 [0.276]	46 [1.811]	58 [2.283]	7 [0.276]	51 [2.008]	56.5 [2.224]	18.2 [0.717]	M8×1.25, depth 12 [0.472]	6 [0.236]	10.5 [0.413]	7.5 [0.295]	7 [0.276]	15 [0.591]	Rc1/8	M5×0.8

Bore	P1	P 2	P ₃	P 4	R	S	T 1	U	V	W	Х	Y	Z	Applicable through bolt
6 [0.236]	ϕ 3.3 [0.13] (through hole) counter bore ϕ 6 [0.236] (both sides) and M4 \times 0.7 (both sides)	Counter bore $\phi6[0.236]$ and M4 $\times0.7$	9.5 [0.374]	3.5 [0.138]	-	19 [0.748]	11 [0.433]	R12	4 [0.157]	3.5 [0.138]	—	-	-	M3
8 [0.315]	ϕ 3.3 [0.13] (through hole) counter bore ϕ 6.2 [0.244] (both sides) and M4×0.7 (both sides)	Counter bore $\phi6.2[0.244]$ and $M4{\times}0.7$	9.5 [0.374]	3.5 [0.138]	—	21 [0.827]	13 [0.512]	R13.5	5 [0.197]	4 [0.157]	_	-	—	M3
10 [0.394]	ϕ 3.3 [0.13] (through hole) counter bore ϕ 6.2 [0.244] (both sides) and M4×0.7 (both sides)	Counter bore $\phi6.2[0.244]$ and $M4{\times}0.7$	9.5 [0.374]	3.5 [0.138]	—	23 [0.906]	15 [0.591]	R15	5 [0.197]	4 [0.157]	_	-	_	M3
12 [0.472]	ϕ 4.3 [0.169] (through hole) counter bore ϕ 6.5 [0.256] (both sides) and M5 \times 0.8 (both sides)	Counter bore $\phi6.5[0.256]$ and $M5{\times}0.8$	9.5 [0.374]	4.5 [0.177]	-	25 [0.984]	16.3 [0.642]	R16	6 [0.236]	5 [0.197]	—	-	1 [0.039]	M3
16 [0.630]	ϕ 4.3 [0.169] (through hole) counter bore ϕ 6.5 [0.256] (both sides) and M5 \times 0.8 (both sides)	Counter bore $\phi6.5[0.256]$ and $M5{\times}0.8$	9.5 [0.374]	4.5 [0.177]	—	29 [1.142]	19.8 [0.780]	R19	8 [0.315]	6 [0.236]	_	-	1 [0.039]	M3
20 [0.787]	ϕ 4.3 [0.169] (through hole) counter bore ϕ 6.5 [0.256] (both sides) and M5 \times 0.8 (both sides)	Counter bore $\phi6.5[0.256]$ and $M5{\times}0.8$	9.5 [0.374]	4.5 [0.177]	—	34 [1.339]	24 [0.945]	R22	10 [0.394]	8 [0.315]	_	-	1 [0.039]	M3
25 [0.984]	$\phi5.1$ [0.201] (through hole) counter bore $\phi8$ [0.315] (both sides) and M6×1 (both sides)	Counter bore $\phi8[0.315]$ and M6 $\times1$	11.5 [0.453]	5.5 [0.217]	_	40 [1.575]	28 [1.102]	R25	12 [0.472]	10 [0.394]	_	-	1 [0.039]	M4
32 [1.260]	$\phi5.1$ [0.201] (through hole) counter bore $\phi8$ [0.315] (both sides) and M6×1 (both sides)	Counter bore $\phi 8$ [0.315] and M6 $\times 1$	11.5 [0.453]	5.5 [0.217]	4.5 [0.177]	44 [1.732]	34 [1.339]	R29.5	16 [0.630]	14 [0.551]	15 [0.591]	13.6 [0.535]	1 [0.039]	M4
40 [1.575]	$\phi 6.9$ [0.272] (through hole) counter bore $\phi 9.5$ [0.374] (both sides) and M8 \times 1.25 (both sides)	Counter bore $\phi9.5[0.374]$ and M8 $\times1.25$	15.5 [0.610]	7.5 [0.295]	4.5 [0.177]	52 [2.047]	40 [1.575]	R35	16 [0.630]	14 [0.551]	15 [0.591]	13.6 [0.535]	1.6 [0.063]	M5

• φ6 [0.236] ~ φ 25 [0.984]

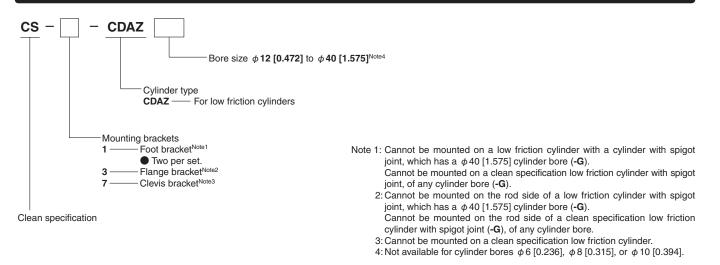
• φ **32** [1.260] • φ **40** [1.575]



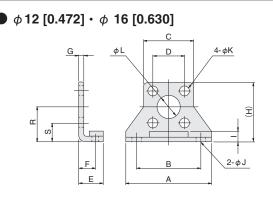
Bore	B ₂	F	Н	I	J	K2	М	V	W
6 [0.236]	15 [0.591]	5 [0.197]	8 [0.315]	5.5 [0.217]	1.8 [0.071]	M3×0.5	3 [0.118]	4 [0.157]	3.5 [0.138]
8 [0.315]	15 [0.591]	5 [0.197]	8 [0.315]	7 [0.276]	2.4 [0.094]	M4×0.7	3 [0.118]	5 [0.197]	4 [0.157]
10 [0.394]	15 [0.591]	5 [0.197]	8 [0.315]	7 [0.276]	2.4 [0.094]	M4×0.7	3 [0.118]	5 [0.197]	4 [0.157]
12 [0.472]	17 [0.669]	5 [0.197]	10 [0.394]	8 [0.315]	4 [0.157]	M5×0.8	3.5 [0.138]	6 [0.236]	5 [0.197]
16 [0.630]	20.5 [0.807]	5.5 [0.217]	13 [0.512]	10 [0.394]	5 [0.197]	M6×1	3.5 [0.138]	8 [0.315]	6 [0.236]
20 [0.787]	22.5 [0.886]	5.5 [0.217]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	4.5 [0.177]	10 [0.394]	8 [0.315]
25 [0.984]	24 [0.945]	6 [0.236]	15 [0.591]	14 [0.551]	6 [0.236]	M10×1.25	5 [0.197]	12 [0.472]	10 [0.394]
32 [1.260]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	6 [0.236]	16 [0.630]	14 [0.551]
40 [1.575]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	6 [0.236]	16 [0.630]	14 [0.551]

Remark: Cylinder joints and cylinder rod ends for mounting on a male thread rod end specification are also available. For details, see the general personal catalog.

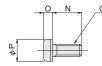
Dimensions of Centering Location (mm [in])

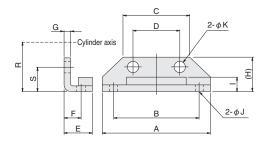

Bore Code	B 1	G	L
16 [0.630]	5.5 [0.217]	1.5 [0.059]	12 [0.472]
20 [0.787]	5.5 [0.217]	1.5 [0.059]	15 [0.591]
25 [0.984]	6 [0.236]	2 [0.079]	17 [0.669]
32 [1.260]	7 [0.276]	2 [0.079]	21 [0.827]
40 [1.575]	7 [0.276]	2 [0.079]	29 [1.142]

•Not available for *φ*6 [0.236], *φ*8 [0.315], *φ*10 [0.394], and *φ*12 [0.472]


JIG CYLINDERS C SERIES MOUNTING BRACKETS

Foot Mounting Bracket, Flange Mounting Bracket, Clevis Mounting Bracket

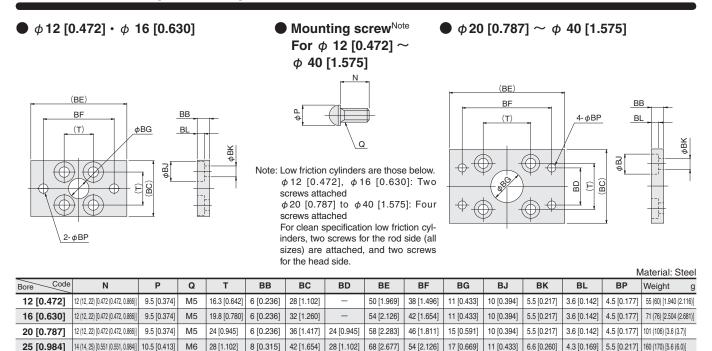

Order Codes of Mounting Bracket Only


Dimensions of Foot Mounting Bracket (mm [in])

Mounting screw (4 attached)
 ● For φ 12 [0.472] ~ φ 40 [1.575]

Φ 20 [0.787] ~ φ 40 [1.575]

Material: Steel


																		IV	laterial. Steel
Bore	A	В	С	D	Е	F	G	н	I	J	К	L	N [lbf]	0	Р	Q	R	S	Weight g
12 [0.472]	44 [1.732]	34 [1.339]	25 [0.984]	16.3 [0.642]	12.5 [0.492]	8 [0.315]	2 [0.079]	29.5 [1.161]	4.5 [0.177]	4.5 [0.177]	5.5 [0.217]	11 [0.433]	12 (12, 22) [0.472 (0.472, 0.866)]	2.7 [0.106]	9.5 [0.374]	M5	17 [0.669]	8.9 [0.350]	50 (54) [1.764 (1.905)]
16 [0.630]	48 [1.890]	38 [1.496]	29 [1.142]	19.8 [0.780]	13 [0.512]	8 [0.315]	2 [0.079]	33.5 [1.319]	4.5 [0.177]	4.5 [0.177]	5.5 [0.217]	11 [0.433]	12 (12, 22) [0.472 (0.472, 0.866)]	2.7 [0.106]	9.5 [0.374]	M5	19 [0.748]	9.1 [0.358]	62 (66) [2.187 (2.328)]
20 [0.787]	54 [2.126]	44 [1.732]	34 [1.339]	24 [0.945]	15 [0.591]	9.2 [0.362]	3.2 [0.126]	16.5 [0.650]	7 [0.276]	4.5 [0.177]	5.5 [0.217]	-	12 (12, 22) [0.472 (0.472, 0.866)]	2.7 [0.106]	9.5 [0.374]	M5	24 [0.945]	12 [0.472]	84 (88) [2.963 (3.104)]
25 [0.984]	64 [2.520]	52 [2.047]	40 [1.575]	28 [1.102]	16.5 [0.650]	10.7 [0.421]	3.2 [0.126]	17.5 [0.689]	6 [0.236]	5.5 [0.217]	6.6 [0.260]	-	14 (14, 25) [0.551 (0.551, 0.984)]	3.3 [0.130]	10.5 [0.413]	M6	26 [1.024]	12 [0.472]	104 (109) [3.7 (3.8)]
32 [1.260]	68 [2.677]	56 [2.205]	44 [1.732]	34 [1.339]	17 [0.669]	11.2 [0.441]	3.2 [0.126]	19 [0.748]	8 [0.315]	5.5 [0.217]	6.6 [0.260]	-	14 (14, 30) [0.551 (0.551, 1.181)]	3.3 [0.130]	10.5 [0.413]	M6	30 [1.181]	13 [0.512]	126 (134) [4.4 (4.7)]
40 [1.575]	78 [3.071]	64 [2.520]	52 [2.047]	40 [1.575]	18.2 [0.717]	11.2 [0.441]	3.2 [0.126]	19 [0.748]	7 [0.276]	6.6 [0.260]	9 [0.354]	-	20 (20, 35) [0.787 (0.787, 1.378)]	4.4 [0.173]	14 [0.551]	M8	33 [1.299]	13 [0.512]	160 (172) [5.6 (6.1)]

Remarks: Values in parentheses are clean specification.

When there are two values in parentheses, the left value is for the head side while the right value is for the rod side.

Note: When mounting for clean specification, remove the dust collection cover fixing bolt (1), and secure with the mounting screw that comes with the bracket.

Dimensions of Flange Mounting Bracket (mm [in])

Remarks: Values in parentheses are clean specification.

10.5 [0.413]

M6

M8

34 [1.339]

40 [1.575]

14 (14, 30) [0.551 (0.551, 1.181)]

20 (20, 35) [0.787 (0.787, 1.378)] 14 [0.551]

32 [1.260]

40 [1.575]

When there are two values in parentheses, the left value is for the head side while the right value is for the rod side.

Щ

48 [1.890]

58 [2.283]

34 [1.339]

40 [1.575]

72 [2.835]

84 [3.307]

58 [2.283]

68 [2.677]

22 [0.866]

28 [1.102]

11 [0.433]

15 [0.591]

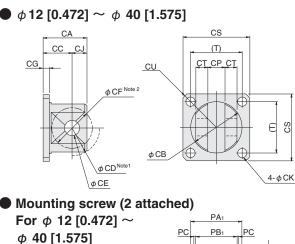
6.6 [0.260]

9 [0.354]

4.3 [0.169]

5.3 [0.209]

5.5 [0.217]


186 (200) [6.6 (7.1)]

6.6 [0.260] 335 (359) [11.8 (12.7)]

8 [0.315]

8 [0.315]

Dimensions of Clevis Mounting Bracket (mm [in])

40 [1.575]

																						Ν	Mater	ial: Steel
Bore	N	0	Р	Q	Т	CA	СВ	СС	CD	CE	CF	CG	CJ	СК	СР	CS	СТ	CU	PA 1	PB1	PC	PD	PE1	Weight g
12 [0.472]	12 [0.472]	5 [0.197]	8.5 [0.335]	M5	16.3 [0.642]	15 [0.591]	12 [0.472]	11 [0.433]	R7.5	4 [0.157] ^{+0.03}	R 5	4 [0.157]	4 [0.157]	5.5 [0.217]	4 [0.157] ^{+0.2} +0.1	25 [0.984]	3 [0.118]	R16	15 [0.591]	10.6 [0.417]	0.7 [0.028]	4 [0.157]18	2.5 [0.098]	30 [1.058]
16 [0.630]	12 [0.472]	5 [0.197]	8.5 [0.335]	M5	19.8 [0.780]	17 [0.669]	16 [0.630]	12 [0.472]	R10	5 [0.197] ^{+0.03}	R 6	4 [0.157]	5 [0.197]	5.5 [0.217]	5 [0.197] ^{+0.2} _{+0.1}	29 [1.142]	3.5 [0.138]	R19	17 [0.669]	12.6 [0.496]	0.7 [0.028]	5 [0.197]18	3 [0.118]	40 [1.411]
20 [0.787]	12 [0.472]	5 [0.197]	8.5 [0.335]	M5	24 [0.945]	25 [0.984]	22 [0.866]	17 [0.669]	R14	8 [0.315] ^{+0.04}	R11	4 [0.157]	8 [0.315]	5.5 [0.217]	8 [0.315] ^{+0.4} +0.2	34 [1.339]	5.2 [0.205]	R22	24.4 [0.961]	19.6 [0.772]	0.9 [0.035]	8 [0.315]18	6 [0.236]	75 [2.646]
25 [0.984]	16 [0.630]	6 [0.236]	10 [0.394]	M6	28 [1.102]	25 [0.984]	26 [1.024]	17 [0.669]	R16	8 [0.315] ^{+0.04}	R11	4 [0.157]	8 [0.315]	6.6 [0.260]	8 [0.315] ^{+0.4} +0.2	40 [1.575]	5.2 [0.205]	R25	24.4 [0.961]	19.6 [0.772]	0.9 [0.035]	8 [0.315]18	6 [0.236]	100 [3.5]
32 [1.260]	16 [0.630]	6 [0.236]	10 [0.394]	M6	34 [1.339]	29 [1.142]	34 [1.339]	19 [0.748]	R20	10 [0.394] ^{+0.04}	R12.5	4 [0.157]	10 [0.394]	6.6 [0.260]	12 [0.472] ^{+0.4} +0.2	44 [1.732]	8 [0.315]	R29.5	34 [1.339]	29.2 [1.150]	0.9 [0.035]	10 [0.394]18	8 [0.315]	165 [5.8]
40 [1.575]	20 [0.787]	8 [0.315]	13 [0.512]	M8	40 [1.575]	29 [1.142]	34 [1.339]	19 [0.748]	R20	10 [0.394] ^{+0.04}	R12.5	4 [0.157]	10 [0.394]	9 [0.354]	12 [0.472] ^{+0.4} +0.2	52 [2.047]	8 [0.315]	R35	34 [1.339]	29.2 [1.150]	0.9 [0.035]	10 [0.394]®	8 [0.315]	200 [7.1]

Note 1: CD = Swing range of the clevis itself.

2: CF = Maximum allowable swing radius of the opposing bracket. Remark: Installation is by two bolts.

48 KOGANEI

JIG CYLINDERS C SERIES SENSOR SWITCHES

Solid State Type, Reed Switch Type

Order Codes

Lead wire length A: 1000 mm [39 in] **B**: 3000 mm [118 in] G: 300 mm [11.8 in] with M8 connector (ZE175, ZE275 only)

Sensor switch model

ZE135: Solid state type	2 lead wires	With indicator	$10 \sim 28 \text{VDC}$	Horizontal lead wire
ZE155: Solid state type	3 lead wires NPN output type	With indicator	$4.5 \sim 28 \text{VDC}$	Horizontal lead wire
ZE175: Solid state type	3 lead wires PNP output type	With indicator	$4.5 \sim 28 \text{VDC}$	Horizontal lead wire
ZE235: Solid state type	2 lead wires	With indicator	$10 \sim 28 \text{VDC}$	Vertical lead wire
ZE255: Solid state type	3 lead wires NPN output type	With indicator	$4.5 \sim 28 \text{VDC}$	Vertical lead wire
ZE275: Solid state type	3 lead wires PNP output type	With indicator	$4.5 \sim 28 \text{VDC}$	Vertical lead wire

 $85 \sim 115 \, \text{VAC}$ ZE102: Contact type With indicator $10 \sim 28 \text{ VDC}$ Horizontal lead wire $85 \sim 115 \text{ VAC}$ **ZE201**: Contact type Without indicator $5 \sim 28$ VDC Vertical lead wire

ZE202: Contact type With indicator

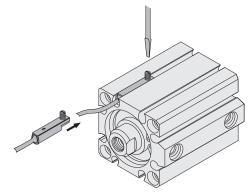
ZE101: Contact type Without indicator 5 \sim 28 VDC $\,$ Horizontal lead wire

 $85 \sim 115 \, \text{VAC}$

 $10 \sim 28$ VDC Vertical lead wire $85 \sim 115$ VAC

Minimum Allowable Cylinder Stroke for Sensor Switch Use

Solid State Type mm [in]									
Outlin days have	Two mou	One meaning of							
Cylinder bore	One surface mounting	One mounted							
6~12 [0.236~0.472]	30 [1.181]	10 [0.394]	5 [0.197]						
16~40 [0.63~1.575]	[0.63~1.575] 10 [0.394]								


Note: Two can be mounted with a 5 mm [0.197 in] stroke. However, care should be taken because overlap may occur.

Reed Switch Type

		71		լուլ ուու
	Cylinder bore	Two m	ounted	On a manufact
		One surface mounting	One mounted	
	12 [0.472]	30 [1.181]	10 [0.394]	10 [0 00 4]
	16~40 [0.63~1.575]	10 [0	10 [0.394]	

Moving Sensor Switch

- Loosening the screw allows the sensor switch to be moved along the switch mounting groove of the cylinder tube.
- The tightening torque for the screws is 0.1 to 0.2 N·m [0.885 to 1.770 in•lbf].

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

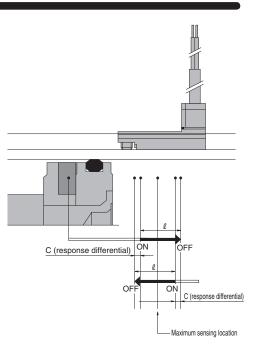
[in]

●Operating range: ℓ

The range from where the piston turns the switch on and the point where the switch is turned off as the piston travels in the same direction. Response differential: C

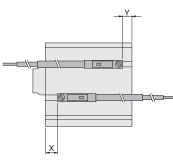
The distance between the point where the piston turns the switch on and the point where the switch is turned off as the piston travels in the opposite direction.

Solid State Type


Solid \$	Solid State Type mm [in]									
Item Bore	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	
Operating range: <i>l</i>	1.8~3.0 [0.071~0.118]	1.8~3.0 [0.071~0.118]	2.0~3.2 [0.079~0.126]	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	
Response differential: C	0.2 [0.008] or less			0.5 [0.020] or less						
Maximum sensing location				6 [0.236]						

Remark: The values in the table above are reference values.

Reed Switch Type


Reed \$	Reed Switch Type mm [in]									
Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]				
Operating range: ℓ	4.5~8.5 [0.177~0.335]	5.5~9.5 [0.217~0.374]	9~13.5 [0.354~0.531]	10~15.5 [0.394~0.61]	8~12 [0.315~0.472]	8.5~14 [0.335~0.551]				
Response differential: C	1.0 [0.039] or less		2.0 [0.079] or less							
Maximum sensing location	10 [0.394]									

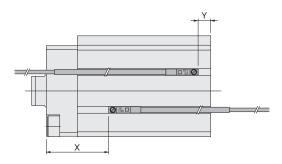
Remark: The values in the table above are reference values.

Mounting the sensor switch in the locations shown (values in diagram are reference values), the sensor magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Low friction cylinders

Solid State Type

Double acting type


Double acting type mm [in]									
Code Bore	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Х	6.5 [0.256]	7.5 [0.295]	8 [0.315]	10 [0.394]	10 [0.394]	15 [0.591]	15 [0.591]	15 [0.591]	16 [0.630]
Y	0.4 [0.016]	0.5 [0.020]	1 [0.039]	6 [0.236]	5 [0.197]	8 [0.315]	9 [0.354]	6 [0.236]	8 [0.315]

Reed Switch Type

Double acting type

Double acting type mm [in]									
Code Bore	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Х	—	—	—	5.5 [0.217]	6 [0.236]	10.5 [0.413]	11 [0.433]	11 [0.433]	12 [0.472]
Y	—		—	1.5 [0.059]	1 [0.039]	4 [0.157]	5 [0.197]	2 [0.079]	4 [0.157]

Clean specification low friction cylinders

Solid State Type

Double acting type mm [in] Code Bore 6 [0.236] 8 [0.315] 10 [0.394] 12 [0.472] 16 [0.630] 20 [0.787] 25 [0.984] 32 [1.260] 40 [1.575] Х 11.5 [0.453] 12.5 [0.492] 13 [0.512] 20 [0.787] 20 [0.787] 25 [0.984] 25 [0.984] 30 [1.181] 31 [1.220] 6 [0.236] 5 [0.197] 8 [0.315] 9 [0.354] 6 [0.236] 8 [0.315] Y 0.4 [0.016] 0.5 [0.020] 1 [0.039]

Reed Switch Type

Double acting type mm [in] Code Bore 6 [0.236] 8 [0.315] 10 [0.394] 12 [0.472] 16 [0.630] 20 [0.787] 25 [0.984] 32 [1.260] 40 [1.575] х 15.5 [0.610] 16 [0.630] 20.5 [0.807] 21 [0.827] 26 [1.024] 27 [1.063] Y 1.5 [0.059] 1 [0.039] 4 [0.157] 5 [0.197] 2 [0.079] 4 [0.157] _

Before selecting and using the product, please read all the Safety Precautions carefully to ensure proper product use. The Safety Precautions shown below are to help you use the product safely and correctly, and to prevent injury or damage to you, other people, and assets beforehand.

Follow the Safety Precautions for: ISO4414 (Pneumatic fluid power—Recommendations for the application of equipment to transmission and control systems), JIS B 8370 (Pneumatic system regulations)

The directions are ranked according to degree of potential danger or damage: "DANGER!", "WARNING!", "CAUTION!", and "ATTENTION!"

Expresses situations that can be clearly predicted as dangerous. If the noted danger is not avoided, it could result in death or serious injury. It could also result in damage or destruction of assets.
Expresses situations that, while not immediately dangerous, could become dangerous. If the noted danger is not avoided, it could result in death or serious injury. It could also result in damage or destruction of assets.
Expresses situations that, while not immediately dangerous, could become dangerous. If the noted danger is not avoided, it could result in light or semi-serious injury. It could also result in damage or destruction of assets.
While there is little chance of injury, this content refers to points that should be observed for appropriate use of the product.

This product was designed and manufactured as parts for use in General Industrial Machinery.

- In the selection and handling of the equipment, the system designer or other person with fully adequate knowledge and experience should always read the Safety Precautions, Catalog, Owner's Manual and other literature before commencing operation. Making mistakes in handling is dangerous.
- After reading the Owner's Manual, Catalog, etc., always place them where they can be easily available for reference to users of this product.
- If transferring or lending the product to another person, always attach the Owner's Manual, Catalog, etc., to the product where they are easily visible, to ensure that the new user can use the product safely and properly.
- The danger, warning, and caution items listed under these "Safety Precautions" do not cover all possible cases. Read the Catalog and Owner's Manual carefully, and always keep safety first.

- Do not use the product for the purposes listed below:
- 1. Medical equipment related to maintenance or management of human lives or bodies.
- 2. Mechanical devices or equipment designed for the purpose of moving or transporting people.
- 3. Critical safety components in mechanical devices.
- This product has not been planned or designed for purposes that require advanced stages of safety. It could cause injury to human life.
- Do not use the product in locations with or near dangerous substances such as flammable or ignitable substances. This product is not explosion-proof. It could ignite or burst into flames.
- When mounting the product and workpiece, always firmly support and secure them in place. Dropping or falling the product or improper operation could result in injury.
- When mounting the Flat Rodless cylinder, always mount it with an end plate tightened with mounting bolts at 4 counterbore locations (left and right).

Failure to firmly secure the end plate could result in separation of the connection between the cylinder barrel and the end plate, leading to possible injury.

- Persons who use a pacemaker, etc., should keep a distance of at least 1 meter [3.28ft.] away from the product. There is a possibility that the pacemaker will malfunction due to the strong magnet built into the product.
- Never attempt to remodel the product. It could result in abnormal operation leading to injury, electric shock, fire, etc.
- Never attempt inappropriate disassembly, or assembly of the product relating to its basic inner construction, or to its performance or functions. It could result in injury, electric shock, fire, etc.
- Do not splash water on the product. Spraying it with water, washing it, or using it underwater could result in malfunction of the product leading to injury, electric shock, fire, etc.
- While the product is in operation, avoid touching it with your hands or otherwise approaching too close. In addition, do not make any adjustments to the interior or to the attached mechanisms (shock absorbers, stroke adjusting mechanism, sensor switch mounting location, disconnection of piping tubes or plugs, etc.). The actuator can move suddenly, possibly resulting in injury.
- When operating the product, always install speed controllers, and gradually loosen the needle valve from a choked state to adjust the speed increasing. Failure to make this adjustment could result in sudden movements, putting lives at risk.

- Do not apply loads exceeding the allowable buckling and bending strength to piston rod. It could reduce operating life or cause abnormal wearing or other damage to the rod and tube.
- Connect axial center of the piston rod and movement direction of load to surely bring them in line. If not, applying excessive force to the piston rod and tube could cause abnormal wearing or other damage to them.

- Do not use the product in excess of its specification range. Such use could result in product breakdowns, function stop, damage, or drastically reduce the operating life.
- Before supplying air or electricity to the device and before starting operation, always conduct a safety check of the area of machine operation. Unintentional supply of air or electricity could possibly result in electric shock, or in injury caused by contact with moving parts.
- Do not touch the terminals and the miscellaneous switches, etc., while the device is powered on. There is a possibility of electric shock and abnormal operation.
- Do not throw the product into fire.
- The product could explode and/or release toxic gases.
- Do not sit on the product, place your foot on it, or place other objects on it.

Accidents such as falling could result in injury. Dropping or toppling the product may result in injury, or it might also damage or break it, resulting in abnormal or erratic operation, runaway, etc.

- When conducting any kind of operation for the product, such as maintenance, inspection, repair, or replacement, always turn off the air supply completely and confirm that residual pressure inside the product or in piping connected to the product is zero before proceeding. In particular, be aware that residual air will still be in the air compressor or air storage tank. The actuator could abruptly move if residual air pressure remains inside the piping, causing injury.
- Do not use the actuator for equipment whose purpose is absorbing the shocks and vibrations of mechanical devices. It could break and possibly result in injury or in damage to mechanical devices.
- Avoid scratching the cords for the sensor switch lead wires, etc. Letting the cords be subject to scratching, excessive bending, pulling, rolling up, or being placed under heavy objects or squeezed between 2 objects, may result in current leaks or defective continuity that lead to fire, electric shock, or abnormal operation.
- For the cylinder rod bushing, when the bore size is 16mm [0.630in.] or less, avoid applying a lateral load with a cylinder thrust force of 1/40 or

more generated by the nominal pressure, or when the bore size is 20mm [0.787in.] or more, avoid applying a lateral load with a cylinder thrust force of 1/20 or more. Such loads could reduce operating life or cause galling or other damage to the rod and tube.

- Do not subject the sensor switch to an external magnetic field during actuator operation. Unintended movements could result in damage to the equipment or in personal injury.
- Use within the recommended load and specified speed. Use exceeding the recommended load and specified speed could cause unintended movement of the rod and plate, and increase the possibility of damage to equipment or of personal injury.
- Use safety circuits or system designs to prevent damage to machinery or injury to personnel when the machine is shut down due to emergency stop or electrical power failure.
- Use under the conditions described below is subject to regulation under the Japanese High Pressure Gas Safety Law. Violation of this law can result in penalties to individuals or the corporation. Before use, perform procedures mandated by the supervising authorities.
 - Pressurized gases at gauge pressures of 1MPa [145psi.] or more are used at room temperature. (Acetylene gas and liquefied gas are subject to even stricter standards.)
- 2. Compressed air at gauge pressures of 5MPa [725psi.] or more are used. For details, see the Japanese High Pressure Gas Safety Law.
- Install relief valves, etc., to ensure that the actuator does not exceed its specified pressure when such pressure is rising due to external forces on the actuator. Excessive pressure could lead to breakdown and damage.
- In initial operations after the equipment has been idle for 48 hours or more, or has been in storage, there is a possibility that contacting parts may stick, resulting in equipment operation delays or sudden movements. For these initial operations, always run a test operation before use to check that operating performance is normal.

- Always wash your hands thoroughly after coming into contact with the grease used in the Low Speed Cylinders. If you light a cigarette with greasy hands, grease adhering to the cigarette could release toxic gases along with the cigarette smoke.
- Do not apply lubrication to the Low Speed Cylinders. Supplying oil could result in erratic operation.
- Do not use the product in locations that are subject to direct sunlight (ultraviolet rays), dust, salt, iron powder, high humidity, or in the ambient atmospheres that include organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, acids, etc. It could lead to an early shutdown of some functions or a sudden degradation of performance, and result in a reduced operating life. For the materials used, see Major Parts and Materials.
- When installing the product, leave room for adequate working space around it. Failure to ensure adequate working space will make it more difficult to conduct daily inspections or maintenance, which could eventually lead to system shutdown or damage to the product.
- For mounting or transport of heavy products, use a lift, supporting tool, or several people, to provide firm support, and proceed with due caution to ensure personal safety.
- Do not bring floppy disks or magnetic media, etc., within 1 meter [3.28ft.] of the product. There is the possibility that the data on the floppy disks will be destroyed due to the magnetism of the magnet.
- Do not use the sensor switch in locations subject to large electrical currents or strong magnetic fields. It could result in erratic operation. In addition, do not use magnetized materials in the mounting bracket. The magnetism could leak, possibly resulting in erratic operation.
- Do not place too closely to magnets. Placing near magnets or in locations subject to large magnetic fields can magnetize the main body or table, resulting in erratic operation of sensor switches or in other operating problems caused by metal powders sticking to parts.
- Never use other companies' sensor switches with these products. It could possibly cause erratic operation or out of control.
- Do not scratch, dent, or deform the actuator by climbing on the product, using it as a scaffold, or placing objects on top of it. It could result in damaged or broken a product that results in operation shutdown or degraded performance.
- Always post an "operations in progress" sign for installations, adjustments, or other operations, to avoid unintentional supplying of air, electrical power, etc. Such accidental supplies may cause electric shock or sudden activation of the product that could result in physical injury.

 Do not pull on the cords of the lead wires, etc., of the sensor switches mounted on the actuators, grab them when lifting or carrying, or place heavy objects or excessive loads on them. Such action could result in current leaks or defective continuity that lead to fire, electric shock, or abnormal operation.

- When considering the possibility of using this product in situations or environments not specifically noted in the Catalog or Owner's Manual, or in applications where safety is an important requirement such as in an airplane facility, combustion equipment, leisure equipment, safety equipment, and other places where human life or assets may be greatly affected, take adequate safety precautions such as an application with enough margins for ratings and performance or failsafe measure.
- Be sure to consult us about such applications.
- Always check the catalog and other reference materials for product wiring and plumbing setup.
- Use a protective cover, etc., to ensure that human bodies do not come into direct contact with the operating portion of mechanical devices, etc.
- Do not control in a way that would cause workpieces to fall during power failure. Take control measures so that they prevent the table or workpieces, etc., from falling during power failure or emergency stop of the mechanical devices.
- When handling the product, wear protective gloves, safety glasses, safety shoes, etc., to keep safety.
- When the product can no longer be used, or is no longer necessary, dispose of it appropriately as industrial waste.
- Pneumatic equipment can exhibit degraded performance and function over its operating life. Always conduct daily inspections of the pneumatic equipment, and confirm that all requisite system functions are satisfied, to prevent accidents from happening.
- For inquiries about the product, contact your nearest Koganei sales office or Koganei overseas department. The address and telephone number is shown on the back cover of this catalog.

- Always observe the following items.
- When using this product in pneumatic systems, always use genuine KOGANEI parts or compatible parts (recommended parts).
 When conducting maintenance and repairs, always use genuine KOGANEI parts or compatible parts (recommended parts). Always observe the required methods.
- Do not attempt inappropriate disassembly or assembly of the product relating to basic configurations, or its performance or functions.

Koganei cannot be responsible if these items are not properly observed.

Design and selection

🕂 Warning

1. Check the specifications.

As use of this component over the specified ranges of voltage, current, temperature, shock, etc., could result in breakdown or abnormal operation, always read the specifications carefully to ensure correct use.

- 2. Avoid mounting actuators in close proximity. Mounting 2 or more actuators with sensor switches in close proximity could result in erratic operation of the sensor switches, due to magnetic field interference with the system. Follow the instructions of each cylinder series when written in the catalog.
- 3. Caution about sensor switch ON time for positioning detection at intermediate stroke position.

Take caution that if the sensor switch is mounted at an intermediate position of the actuator stroke for detection of the piston travel, the sensor switch actuation time may be too short when the actuator speed is very rapid, so that the load (programmable controller, etc.) may fail to activate. Maximum cylinder speed for positioning detection

Sensor switch actuation range (mm) [in]

$$V (mm/s) [in./sec.] = \frac{\text{Sensor switch actuation range (mm) [in.]}}{\text{Time required for activating load (ms)}} \times 1000$$

4. Keep wiring as short as possible.

The solid state sensor switch lead wire length should be within 30m [98ft.] as stipulated in the EN standards. For the reed sensor switch, if the lead wire is long (10m [33ft.] or more), capacitive surges will shorten the operating life of the sensor switch. If long wiring is needed, install the protection circuit mentioned in the catalog. If the load is inductive or capacitive, also install the protection circuit mentioned in the catalog.

5. Avoid repeated or excessive bending or pulling of lead wires.

Applying repeated bending stress or tension force on the lead wire could result in wire breakage.

6. Check for leakage current.

Two-lead wire solid state sensor switches produce leakage current to activate their internal circuits, and the current flows even when in the turned off condition. Check to ensure they satisfy the following inequality.

Input off current of programmable controller > Leakage current If the above inequality cannot be satisfied, select a 3-lead wire solid state sensor switch, instead. Also note that parallel connection of a total of n sensor switches will multiply the amount of leakage current by n times.

▲ Caution

1. Check for sensor switch internal voltage drop.

Series connection of reed sensor switches with indicator lamps or 2-lead wire solid state sensor switches causes increasing internal voltage drop, and the load may fail to activate. A total of n sensor switches will lead to n times the internal voltage drop. Ensure that the system satisfies the following inequality.

Supply voltage – Internal voltage drop \times *n* > Minimum operating voltage for load

In relays with rated voltage of less than 24VDC, check to see whether the above inequality is satisfied, even in the case of n = 1. If the above inequality cannot be satisfied, select a reed sensor switch without indicator lamp.

2.Do not use our sensor switches with other companies' actuators.

The sensor switches are designed for use with Koganei actuators. Use with other companies' actuators could lead to abnormal operation.

Installation and adjustment

/ Warning

1.Do not subject the sensor switch to an external magnetic field during actuator operation. Unintended movements could result in damage to the equipment or in personal injury.

▲ Caution

1.Ensure a safe installation environment for the actuators with sensor switches.

Do not use sensor switches in places where large current or magnetic fields are present. This could lead to unintentional operation. Do not use magnetic material for the mounting brackets. It could result in erratic operation.

2.Install sensor switches in the center of their operating range.

Adjust the mounting position of a sensor switch so that the piston stops in the center of its operating range (the range while the sensor turns ON). Operations can be unstable if mounted at the end of the operating range (at the boundary near ON and OFF). Also be aware that the operating range can vary with changes in temperature.

3.Follow the tightening torque of sensor switches when mounting.

Over-tightening beyond the allowed tightening torque may damage the mounting screws, mounting brackets, sensor switches, etc. In addition, insufficient tightening torque could cause the sensor switch position to be changed, resulting in operation instability.

For the tightening torque, follow the instructions of each cylinder series.

4. Do not carry the actuator grabbing its sensor switch lead wires.

After mounting a sensor switch to an actuator, do not grab and lift the lead wires to carry the actuator. Never do this, as it could result in lead wire disconnections, and could also apply stress to the interior of the sensor switch, resulting in breakage of internal elements.

5. Do not drop switches, or bump them against others.

During handling of switches, do not apply excessive shocks (294.2m/s² [30G] or more) such as hitting, dropping, or bumping. In reed sensor switches, the contact reed can be activated unintentionally, causing it to send or break sudden signals. It can also cause changes in the contact interval that lead to changes in sensor switch sensitivity and result in erratic operation. Even if the sensor switch case is undamaged, the inner parts of the sensor switch may suffer breakdown or cause erratic operation.

KOGANEI

ACTUATORS GENERAL CATALOG

CYLINDER JOINTS CYLINDER ROD ENDS CONTENTS

Cylinder Joints	
Specifications, Order Codes	—— 1569
Inner Construction, Major Parts and Materials —	—— 1570
Dimensions	—— 1571
Cylinder Rod Ends	
Specifications, Order Codes	—— 1573
Dimensions	—— 1574

CYLINDER JOINTS

- Aligning the axial center and correcting the parallelism can be performed easily.
- •High machining accuracy for aligning the axial center is not required.
- Time taken for installation can be greatly reduced.
- •The overall shape is simple and small, allowing simple handling.
- A dust seal is provided preventing any breakdown due to foreign objects or dust.

Specifications

			A	pplicable c	ylinder an	d bore s	ize		Maximum thrust of	Maximum tensile	Allowable	
Model	Applicable cylinder rod thread size		Multi	Jig C (male thread specification :- B)	Slim	Twinport	DYNA	JC	applicable cylinder at 1MPa[145psi.] N [lbf.]	strength load N [lbf.]	eccentricity U mm[in.]	Swivel angle
CJ-3×0.5	M3×0.5	6	6	—	—	_	—	_	19.6 [4.4]	3334.3[750]	0.5[0.020]	
CJ-4×0.7	M4×0.7	10	10	—	—	—	-	—	58.8 [13.2]	3334.3 [750]	0.5[0.020]	
CJ-5×0.8	M5×0.8	16	16	12	_	-	-	-	137.3 [30.9]	5884 [1323]	0.5[0.020]	
CJ-6×1	M6×1	—	—	16	16	16	-	—	176.5 [39.7]	5884 [1323]	0.5[0.020]	
CJ□-8×1-□	M8×1	—	—	20	20, 25*	20, 25	-	20	305 [68.6] (475.6 [106.9])*	20594 [4631]	0.5[0.020]	
CJ10×1.25-	M10×1.25	—	—	25	25, 32	25, 32	32	25	780.6 [175.5]	31381.3 [11025]	0.75[0.0295]	±5°
CJ□-12×1.25-□	M12×1.25	-			-	-	-	-	686.5 [154.3]	449033.3 [11025]	1[0.039]	
CJ□-14×1.5-□	M14×1.5	—	-	32, 40	40, 50, 63	40	40	32, 40	3026.3 [680.3]	449033.3 [11025]	1[0.039]	
CJ□-18×1.5-□	M18×1.5	—	_	50.60			50	50.00	1906.4 [428.6]	60760 6 [14110]	1.05[0.0400]]
CJ10×1.3-	WI0A1.5	-	_	50, 63			63	50,63	3026.3 [680.3]	62762.6 [14112]	1.25[0.0492]	
CJ□-22×1.5-□	M22×1.5	—	_	80	-	-	80	80	4879.7 [1097]	112776.5 [25352]	2[0.079]]
CJ□-26×1.5-□	M26×1.5	_	_	100	_	_	100	100	7624.7 [1714]	122583.1 [27557]	2.5[0.098]]

*: For square rod cylinders.

Order Codes

● For CJ-3×0.5, CJ-4×0.7, CJ-5×0.8, CJ-6×1

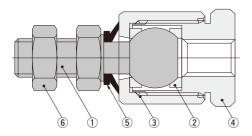
Cylinder	Thread size
joint	3 × 0.5 −−− M3×0.5
	4×0.7 — M4×0.7
	5×0.8 — M5×0.8
	6 × 1 ——M6×1

• For $CJ \square -8 \times 1 \sim CJ \square -26 \times 1.5$

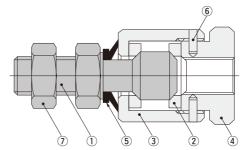
CJ Type S – Short nose type L – Long nose type Cylinder joint	Mounting bracket Blank No mounting bracket 1 Foot mounting type 3 Flange mounting type Notes: 1. The mounting brackets are included at shipping. 2. The foot mounting bracket cannot be installed on the S-type (short nose type).
8 1	 lominal thread size ×1−−−− M 8×1 0×1.25 −− M10×1.25 2×1.25 −− M12×1.25
-	4×1.5 — M14×1.5 8×1.5 — M18×1.5


 $-M22 \times 1.5$

 $-M26 \times 1.5$


22×1.5-

26×1.5-


Allowable Eccentricity and Swivel Angle

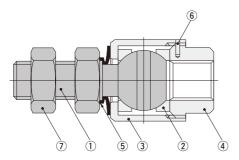
\bigcirc CJ-3 \times 0.5, CJ-4 \times 0.7, CJ-5 \times 0.8

\bigcirc CJ-6×1~CJ \square -14×1.5

The diagram shows $CJ\Box$ -8×1~14×1.5.

No.	Parts	Materials	Remarks
1	Stud	Steel	Nickel plated
2	Ring	Special steel	—
3	Case	Steel (Brass)	Niekol plotod
4	Socket	Steel (Brass)	Nickel plated
5	Dust seal	Synthetic rubber	NBR
6	Pin	Special steel	It is not available in CJ-6 \times 1.
7	Nut	Mild steel	Zinc plated

Note: Inside the parentheses, "()" is for $CJ-6 \times 1$.


Stud 1 Steel Nickel plated 2 Ring Steel 3 Case Brass Nickel plated 4 Socket Brass NBR (5) Dust seal Synthetic rubber 6 Nut Mild steel Zinc plated

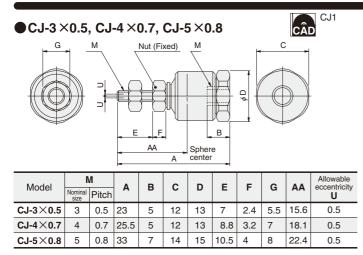
Materials

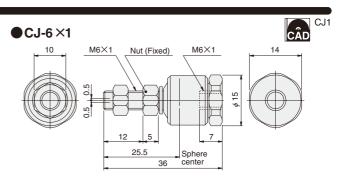
Remarks

●CJ□-18×1.5~CJ□-26×1.5

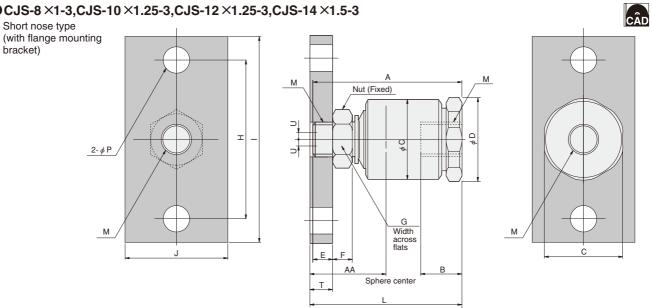
Parts

No.	Parts	Materials	Remarks
1	Stud	Steel	Nickel plated
2	Ring	Special steel	-
3	Case	Steel	Nickel plated
(4)	Socket	Steel	Nickel plated
(5)	Dust seal	Synthetic rubber	NBR
6	Pin	Special steel	_
1	Nut	Mild steel	Zinc plated

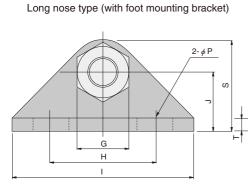

Mass

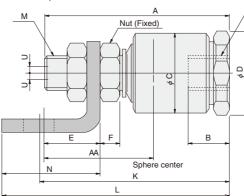

No.

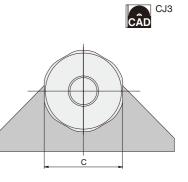
Size 3×0.5 4×0.7 5×0.8 6×1					kg [oz.]
		3×0.5	4×0.7	5×0.8	6×1
Cylinder joint alone 0.011 [0.39] 0.012 [0.42] 0.023 [0.81] 0.025 [0.	Cylinder joint alone	0.011 [0.39]	0.012 [0.42]	0.023 [0.81]	0.025 [0.88]


														kg [lb.]
Size			Short	nose type	(CJS)					Long r	nose type	(CJL)		
Item	8×1	10×1.25	12×1.25	14×1.5	18×1.5	22×1.5	26×1.5	8×1	10×1.25	12×1.25	14×1.5	18×1.5	22×1.5	26×1.5
Cylinder joint alone	0.05 [0.11]	0.10 [0.22]	0.20 [0.44]	0.21 [0.46]	0.36 [0.79]	0.67 [1.48]	1.27 [2.80]	0.055 [0.121]	0.105 [0.232]	0.213 [0.470]	0.24 [0.53]	0.41 [0.90]	0.75 [1.65]	1.18 [2.60]
With foot mounting bracket	-	-	—	—	-	-	—	0.09 [0.20]	0.17 [0.37]	0.36 [0.79]	0.39 [0.86]	1.00 [2.21]	1.69 [3.73]	2.32 [5.12]
With flange mounting bracket	0.10 [0.22]	0.21 [0.46]	0.26 [0.57]	0.47 [1.04]	0.95 [2.09]	1.93 [4.26]	2.52 [5.56]	0.090 [0.198]	0.165 [0.364]	0.272 [0.600]	0.49 [1.08]	0.95 [2.09]	1.96 [4.32]	2.57 [5.67]

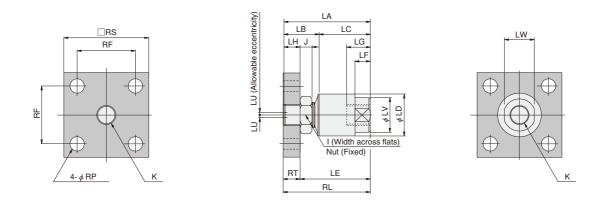
bracket)




CJS-8×1-3,CJS-10×1.25-3,CJS-12×1.25-3,CJS-14×1.5-3



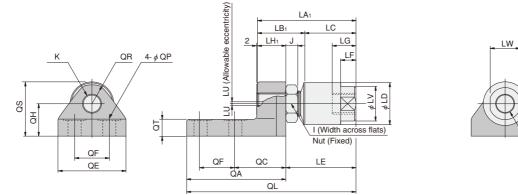
Model	N	Λ			Short I	nose typ	e body				W	ith flang	e mounti	ng brack	ket		Allowable eccentricity
woder	Nominal size	Pitch	Α	В	С	D	Е	F	G	AA	Н	I	J	L	Р	Т	U
CJS-8×1	8	1	38	10	19	20	4	5	12	22.5	40	52	25	40	7	6	0.5
CJS-10×1.25	10	1.25	48	12	24	25.5	7	6	14	29.5	44	56	32	50	7	9	0.75
CJS-12×1.25	12	1.25	59.5	16	30	32	7	7	17	34.5	44	56	32	61.5	7	9	1.0
CJS-14×1.5	14	1.5	63.5	16	30	32	10	8	19	38.5	60	80	38	65.5	11	12	1.0

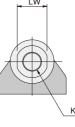

М

CJ2

Model	N	Λ			Long n	ose typ	e body	/					With fo	ot mou	unting t	oracket				Allowable eccentricity
Widdei	Nominal size	Pitch	Α	В	С	D	Е	F	G	AA	Н	I	J	К	L	N	Р	S	Т	U
CJL-8×1	8	1	47	10	19	20	13	5	12	30.5	26	44	15	48	59	25	9	23	3.2	0.5
CJL-10×1.25	10	1.25	57	12	24	25.5	16	6	14	37.5	26	44	19	59	71	30	9	29	5	0.75
CJL-12×1.25	12	1.25	70.5	16	30	32	18	7	17	44.5	26	44	19	70.5	82.5	30	9	29	5	1.0
CJL-14×1.5	14	1.5	72.5	16	30	32	19	8	19	46.5	36	64	22	83.5	98.5	45	11	34	6	1.5

CJS-18×1.5-3, CJS-22×1.5-3, CJS-26×1.5-3


Short nose type (with flange mounting bracket)



Model						Shor	t nose t	ype boo	ly						Wit	With flange mounting bracket							
Woder	Ι	J	К	LA	LB	LC	LD	LE	LF	LG	LH	LU	LV	LW	RF	RL	RP	RS	RT				
CJS-18×1.5	27	11	M18×1.5	77	31	46	38	64	14	21	13	1.25	29	27	50	79	11	75	15				
CJS-22×1.5	32	13	M22×1.5	93	38	55	49	77	16	25	16	2	34	32	62	95	14	100	18				
CJS-26×1.5	36	14	M26×1.5	109	44	65	57	90	21	30	19	2.5	44	41	70	111	14	100	21				

CJL-18×1.5-1, CJL-22×1.5-1, CJL-26×1.5-1

Long nose type (with foot mounting bracket)

Model					Lo	ong no	ose ty	oe boo	dy								W	ith foo	ot mou	unting	brack	et		
Model	I	J	K	LA ₁	LB1	LC	LD	LE	LF	LG	LH1	LU	LV	LW	QA	QC	QE	QF	QH	QL	QP	QR	QS	QT
CJL-18×1.5	27	11	M18×1.5	88	42	46	38	64	14	21	24	1.25	29	27	89	45	60	32	28	153	11	16	47	14
CJL-22×1.5	32	13	M22×1.5	105	50	55	49	77	16	25	28	2	34	32	99	49	68	36	35	176	14	19	59.5	18
CJL-26×1.5	36	14	M26×1.5	122	57	65	57	90	21	30	32	2.5	44	41	103	53	68	36	42	193	14	21	70.5	21

Handling Instructions and Precautions

- The cylinder joint is for air cylinders. Consult us for any use other than for the air cylinder.
- The cylinder joint stud can rotate, but primarily the cylinder joint is not designed as a rotary joint, so it should not be used as a rotary joint.
- It cannot be used again after disassembled.

- The lubricant has been filled in the body.
- The threaded depth in the cylinder rod socket should be within the value shown in the catalog. As a guide, it should be in a position about 1 or 2 rotations back from where it reaches the bottom.
- Be sure not to let any foreign objects or dust enter inside through the socket female thread before installation.

CYLINDER ROD ENDS

Thread size $M3 \times 0.5 \! \sim \! M26 \! \times \! 1.5$

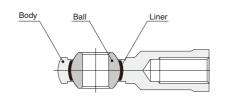
A flexible motion ensures cylinder functions!

Eleven types are available by thread size.
 Suitable for \$\phi\$ 6 [0.236in.]~\$\phi\$ 100 [3.940in.] bore cylinders.
 Because it uses a fluoro plastic liner, no lubrication is required

Specifications

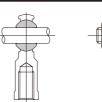
and it is maintenance free.

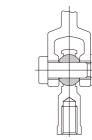
Item				Applicable	The max. cylinder	Allowable radial					
Model	Thread size	Pen	Pen Multi mount		Jig C (male thread specification :- B)		DYNA	JC	thrust of applicable cylinder at 0.97Mpa N [lbf.]	static load N [lbf.]	Mass g [oz.]
$CRE-3 \times 0.5$	M3×0.5	6	6	_	_	_	_	—	27.5 [6.2]	1863.3 [419]	10 [0.35]
$CRE-4 \times 0.7$	M4×0.7	10	10	-	_	_	_	_	76.5 [17.2]	3334.3 [750]	12 [0.42]
CRE-5×0.8	M5×0.8	16	16	12	_	-	_	—	195.2 [43.9]	5785.9 [1301]	18 [0.63]
CRE-6×1	M6×1	-	_	16	16 ^{Note 1}	16	—	—	305.0 [68.6]	7355.0 [1654]	26 [0.92]
CRE-8×1	M8×1	_		20	20, 25 ^{Note 2}	20	-	20	475.6 [106.9]	14121.6 [3175]	45 [1.59]
CRE-10×1.25	M10×1.25	_		25	20, 25, 32	25, 32	32	25	780.6 [175.5]	19711.4 [4432]	75 [2.65]
CRE-12×1.25	M12×1.25	_	-	-	_	_	_	—	780.6 [175.5]	23437.9 [5270]	115 [4.06]
CRE-14×1.5	M14×1.5	-	-	32, 40	40, 50, 63	40	40	32, 40	3026.3 [680.3]	25497.3 [5733]	147 [5.19]
CRE-18×1.5	M18×1.5	_	_	50, 63	_	_	50, 63	50, 63	3026.3 [680.3]	31283.2 [7034]	268 [9.45]
CRE-22×1.5	M22×1.5	_	_	80	—	_	80	80	4879.8 [1097]	48641.0 [10934]	452 [15.94]
CRE-26×1.5	M26×1.5	_	_	100	_	_	100	100	7623.7 [1714]	50504.2 [11353]	648 [22.86]

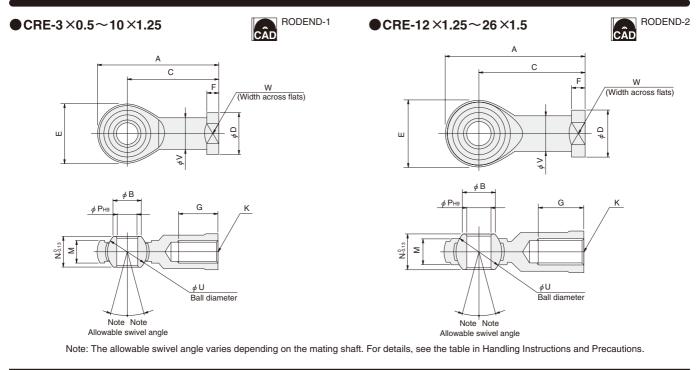

Notes: 1. For the square rod cylinders.

2. Only for the block cylinders.

Order Codes

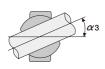

Cylinder rod	Thread size
end	3×0.5 — M3 $\times 0.5$ (Hole diameter for pin ϕ 3 [0.118in.])
	4×0.7 — M4 $\times 0.7$ (Hole diameter for pin ϕ 4 [0.157in.])
	5×0.8 — M5×0.8 (Hole diameter for pin ϕ 5 [0.197in.])
	6 ×1 — M6×1 (Hole diameter for pin ϕ 6 [0.236in.])
	8 ×1 — M8×1 (Hole diameter for pin ϕ 8 [0.315in.])
	$10 \times 1.25 - M10 \times 1.25$ (Hole diameter for pin ϕ 10 [0.394in.])
	$12 \times 1.25 - M12 \times 1.25$ (Hole diameter for pin ϕ 12 [0.472in.])
	14 × 1.5 — M14×1.5 (Hole diameter for pin ϕ 14 [0.551in.])
	18 × 1.5 — M18×1.5 (Hole diameter for pin ϕ 18 [0.709in.])
	22 × 1.5 — M22×1.5 (Hole diameter for pin ϕ 22 [0.866in.])
	26 × 1.5 — M26×1.5 (Hole diameter for pin ϕ 25 [0.984in.])


Inner Construction, Major Parts and Materials



Parts	Materials
Body	Carbon steel (zinc plated)
Ball	Bearing steel (chrome plated)
Liner	Fluoro plastic

Mounting Examples



Model Code	Α	В	С	D	E	F	G	К	М	Ν	Р	U	v	W
CRE-3×0.5	27	5.1	20	8	14	3	6	M3×0.5	4.5	6	3	7.938	6.5	7
CRE-4×0.7	32	7.4	24	10	16	3.5	8	M4×0.7	5.2	7	4	9.525	8	8
CRE-5×0.8	35	7.7	27	11	16	4	10	M5×0.8	6	8	5	11.112	9	9
CRE-6×1	39	9	30	13	18	5	12	M6×1	6.7	9	6	12.700	10	11
CRE-8×1	47	10.4	36	16	22	5	16	M8×1	9	12	8	15.875	12.5	14
CRE-10×1.25	56	12.9	43	19	26	6.5	20	M10×1.25	10.5	14	10	19.050	15	17
CRE-12×1.25	65	15.4	50	22	30	6.5	22	M12×1.25	12	16	12	22.225	17.5	19
CRE-14×1.5	74	16.8	57	25	34	8	27	M14×1.5	14	19	14	25.400	20	22
CRE-18×1.5	92	21.8	71	31	42	10	36	M18×1.5	16.5	23	18	31.750	25	27
CRE-22×1.5	109	25.8	84	37	50	12	43	M22×1.5	20	28	22	38.100	30	32
CRE-26×1.5	122	29.6	94	42	56	12	48	M26×1.5	22	31	25	42.863	33.5	36

Handling Instructions and Precautions

- The cylinder rod end is for the air cylinder only. Consult us for any use other than for the air cylinder.
- It cannot be disassembled.
- Because it uses a fluoro plastic liner, no lubrication is required and it is maintenance free.
- The ball rotates in any direction, but do not use the cylinder rod end exceeding allowable swivel angle. Moreover, the allowable swivel angle varies depending on the mating shaft. See the table below.

Allowable swivel angle							
Model	α1	α2	α3				
CRE-3×0.5	6°	20°	35°				
CRE-4×0.7	6°	20°	35°				
CRE-5×0.8	8°	13°	30°				
CRE-6×1	8°	13°	30°				
CRE-8×1	9°	13°	25°				
CRE-10×1.25	9°	13°	25°				
CRE-12×1.25	9°	13°	25°				
CRE-14×1.5	10°	14°	24°				
CRE-18×1.5	10°	14°	24°				
CRE-22×1.5	10°	15°	23°				
CRE-26×1.5	10°	15°	23°				